

More
Tricks & Tips
for the Amiga

Bleek
Maelger
Weltner

A Data Becker Book
Published by

AbacuslliiiillHHl1

First Printing, March 1989
Printed in U.S.A.
Copyright © 1989

Copyright © 1989

Data Becker, GmbH
MerowingerstraBe 30
4000 Dusseldorf, West Germany
Abacus
5370 52nd Street, SE
Grand Rapids, MI 49508

This book is copyrighted. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of Abacus Software or Data
Becker, GmbH.

Every effort has been made to ensure complete and accurate information concerning the
material presented in this book. However, Abacus Software can neither guarantee nor be
held legally responsible for any mistakes in printing or faulty instructions contained in this
book. The authors always appreciate receiving notice of any errors or misprints.

AmigaBASIC is a trademark or registered trademark of Microsoft Corporation. Amiga 500,
Amiga 1000, Amiga 2000, Amiga and C64 are trademarks or registered trademarks of
Commodore-Amiga, Inc. Lattice C and Lattice are trademarks or registered trademarks of
Lattice Corporation. Aztec C and Aztec are trademarks or registered trademarks of Manx
Software Systems. IBM is a trademark or registered trademark of International Business
Machines, Inc. Atari ST is a trademark or registered trademark of Atari Corporation.

ISBN 1-55755-051-4

ii

Table of Contents

Foreword vii

1. New Tricks and tips 3
1.1 Tips for the eLI 3
1.2 Tips for AmigaBASIC 8
1.3 Printer tips 11
1.4 Tips for working with the Amiga 13
1.5 Secrets and hidden messages 14

2. AmigaBASIC tricks and tips 19
2.1 An Intuition window 19
2.1.1 Gadgets 23
2.1.2 Gadget borders and text 29
2.1.3 User-friendly gadgets 34
2.1.4 Filled gadgets 40
2.1.5 Scrolling tables 45
2.1.6 Proportional gadgets 52
2.2 A file monitor 58
2.2.1 Using the file monitor 72
2.2.2 Patching files with the monitor 74
2.2.3 Patching AmigaBASIC 74
2.3 Accessing AmigaDOS from AmigaBASIC 76
2.3.1 File access through AmigaDOS 77
2.3.2 File, directory and disk information 84
2.3.3 Direct file control 90
2.4 Libraries and applications 92
2.4.1 Directory manager 92
2.4.2 Program documentation 99

3. 11achinelanguage 105
3.1 Division by zero handler 106
3.2 Attention: Virus alarm! 109
3.2.1 The ultimate virus killer 110
3.3 11achine language and BASIC 114
3.3.1 Assembler and C programs from BASIC 116
3.3.2 BASIC enhancement: ColorCycle 118
3.3.3 Putting the mouse to sleep 121

iii

4. Hardware hacking 125
4.1 Disabling memory expansion 127
4.1.1 The 2000A board 127
4.1.2 The Amiga 500: printed circuit board 128
4.2 Disk drive switching 130
4.3 Installing the MC 68010 131
4.4 The roar of the fans 134
4.5 New processor information 135
4.5.1 The 68010: high power, low price 135
4.5.2 The 68012: low cost, high memory 137
4.5.3 Monster processors: 68020. 68030. 6888x 137

5. Workbench 1.3 141
5.1 Using Mount 141
5.1.1 Renaming commands 143
5.1.2 Less is more 144
5.2 Improvements to DOS 1.3 146
5.2.1 The PIPE device 146
5.2.2 The Speak command 147
5.2.3 The NewCon device 148
5.2.4 The FastFileSystem 148
5.2.5 FFS and hard disks 149
5.2.8 The new math libraries 150

6. The printer device 157
6.1 Controlling printer parameters 157
6.2 Graphic dumps with the printer device 163
6.2.1 Hardcopy as an application 167

7. Workbench and extras 171
7.1 Preferences 171
7.1.1 Reading and setting Preferences data 172
7.1.2 The new Preferences (Version 1.3) 176
7.1.3 The 1.3 Utilities drawer 180
7.1.3.1 Other Workbench 1.3 utilities 184
7.2 Tools on the Extras disk 185

8. Personalizing the Workbench 191
8.1 Making preparations 192
8.2 Getting started with text editing 194
8.2.1 Starting messages and the AmigaOOS window 194
8.2.2 Changing the title bar and menus 196
8.2.3 New menu items and messages 197
8.3 A guide to Kickstart messages 200

iv

- ----~~~------------------------

Appendices
A.
B.
c.
D.

Index

Error messages
eLI shortcuts
Printer escape sequences
Guru meditation codes

205
208
210
212

215

v

Foreword

We were very happy when the new Kickstart and Workbench Versions
1.3 were released. Commodore added several new commands, better
applications and many enhancements to the operating system. So we
did some research to find out what was new, unfamiliar and worth
knowing about Kickstart and Workbench 1.3. We looked for changes
and improvements so we could describe them in detail, and compare
them with the program data on Workbench 1.2.

More Amiga Tricks and Tips is the result of our research and
experimenting. The concept of this book is similar to our previous
book, Amiga Tricks and Tips. Youll find important information and
many. many new programs which you can adapt to your own needs.

Here is a book that tells about both Workbench 1.2 and Workbench
1.3. From software to hardware, from the old operating system to the
new operating system, you'll find plenty more Tricks & Tips that will
help you get the most out of your Amiga.

Bleek, Maelger and Weltner
December 1988

vii

l

1.
New tricks and tips

ABACUS

1 .

1.1

#1:
Automatic
backups

Note:

#2:
Interrupting
eLI output

#3:
New eLI text
modes

1. NEW TRICKS AND TIPS

New tricks and tips

This chapter contains many small hints and bits of information that
could be thought of as "mini tricks and tips." These include
information specific to both Workbench 1.2 and 1.3. These tricks and
tips will hopefully make your sessions with your Amiga more
productive and more enjoyable.

Tips for the CL I

Have you ever edited your startup sequence using ED, quit ED, and then
realized that your Amiga won't boot without the line you just deleted
from the startup sequence? Don't panic. ED always creates an automatic
backup of the last file edited, and places this file in the t: (temporary)
directory. The t: directory keeps temporary fIles available on disk,just
in case you mess up the file you're currently editing.

To restore the old startup-sequence file, copy the file ed­
b a c k u p located in the t: directory to the s: directory as the
startup-sequence. The eLI command sequence is as follows:

copy tied-backup to s/startup-sequence

Do not copy the t: directory to the RAM disk. If you do, the t: direc­
tory will be deleted after a reset, and you'll be unable to access it after a
crash.

You can pause text scrolling in the eLI window (Le., whenever you
execute the list, dir or type commands, or any command which
displays large amounts of data in one group) by pressing any character
key. The eON handler stops the text display until you remove this char­
acter by pressing the <Backspace> key. Once you press <Backspace>.
the output resumes. You can easily pause and restart a disk directory
display by pressing <Space> and <Backspace>.

You may have seen some disks which displayed text in different colors
and type styles during booting. There's no magic here: You can change
colors without any problem. Also, you can display text in italic, bold
or underlined text. The nonnal Echo command permits these changes.

To use these text features, you need control characters to inform the
computer that the next characters are escape sequences, and must be
executed rather than printed. These command characters are enclosed in

3

1. NEW TRICKS AND TIPS MORE TRICKS & Tips

#4:
<Ctri> key
combinations

4

quotation marks, and always begin with the sequence "*e". The "*e"
combination represents the <Esc> key and signifies an escape sequence.
After this initialization, chaIacters and numbers follow. Some of these
characters are separated from one another by semicolons, and comprise
the control sequence itself. For example, the number "4" enables under­
lining and the number "42" represents a black background color (see
the values in the following tables for the styles available). The control
sequence concludes with "m" and the text you want displayed.

Try the following: Create a file named UNDERLINE using ED or
another editor. Enter the following in this file:

echo"*e[4mUNDERLINE on"
echo"*e[OmNormal"

Save the file and exit the editor. Now enter Execute Underline
and press <Return> to see the results:

Underline
Normal

The following list documents control sequence values:

Tj'~style Number Remarks
normal 0
bold 1
italic 3
underline 4
inverse 7
Foreground color Number Remarks
normal 30 set using Preferences
white 31
black 32
orange 33
Background color Number Remarks
normal 40 set using Preferences
white 41
black 42
orange 43

Key combinations can accomplish many things. Most of these key
combinations are actuated in conjunction with the <Ctrl> key. When
you press and hold the <Ctr!> key then press another key, the combina­
tion usually affects control of a screen or program. This combination
usually bears the name control key.

The first four control keys allow you to stop the execution of many
programs.

ABAC us 1.1 TIPS FOR THE eLI

#5:
Copy more!

#6:
eLI windows
and script
files

<Ctrl><C> stops a CLI command
<Ctrl><D> stops a running script file
<Ctrl><E> executes a break: of higher priority
<Ctrl><F> executes a break: of higher priority

Here are a few of the most used screen control combinations:

<Ctrl><G> screen flash (without signal tone)
<Ctrl><H> same as the <Delete> key
<Ctrl><J> same as the <Tab> key
<Ctrl><K> same as <Cursor up>
<Ctrl><L> erases the window (same as <Esc><C»
<Ctrl><M> same as the <Return> key
<Ctrl><N> activates a new (an alternative) character set
<Ctrl><O> restores the original character set (same as <Return»
<Ctrl><X> deletes the contents of the current line

The Copy command copies files from within the CLIo There are many
variants to this command that are poorly documented (if any
documentation exists at all). One application of Copy allows you to
copy several files that have nothing to do with one another. These files
cannot be grouped together using the wildcard characters (* and ?).

The solution is very simple: You can copy files with the same names
but different extensions using the bar character (I). The following
example copies three files of the same name (test.c, test.h and
test.o) to the RAM disk:

Copy :test. (CIHIO) to RAM:

We can use this in a different way by viewing the entire filename as an
extension and creating a multiple copy from that. This avoids loading
the Copy command for each copy. The following example copies the
three CLI commands Dir, List and Rename from the c: directory
of the current disk to the c: directory of the RAM disk:

Copy C:(DIRILISTIRENAME) to RAM:C

You can supply your own dimensions and title when opening a new
CLI window. In addition, you can assign the new CLI task to execute
a script file. That looks like this:

NewCLI Outputdevice: Script-file

In Version 1.2 the device for the Outputdevice argument should be
CON: with its window size arguments. The script file executes after the
NewCLI opens. You can execute a script file in parallel with another
process in another window.

5

1. NEW TRICKS AND TIPS MORE TRICKS & TIPS

#7:
Disk icons

#8:
One window,
two CLl:S

#9:
Borderless
CLl:

6

Workbench 1.3 owners should either use NewCon: as the
Output device argument (this keeps all the Shell's editing
features resident in the new window), or NewShel1 without an output
device.

Workbench 1.3 has a slightly different look from the previous version.
All old devices are represented by their old icons. The RAM disk and
the new RAMBO disk still use the old plain disk icon. The icon used
by the Workbench disk can also be used by the RAM and RAMBO
disks by adding two small Copy commands in the startup sequence.
The following lines perform this task:

Copy Disk.info to RAM:
Copy Disk.info to RAD:

Place copy commands before the LoadWB command and you will have
a uniform icon design. This method can be applied to any other disk as
well.

You cannot have two CLIS operating at once in two windows. How­
ever, it's possible to have two CLIS in one window. This is simply
done with the following command sequence:

NewCL! *

This command redirects the NewCLI output to the present window,
without opening a second window. You alternate between the first and
second task. This saves you the somewhat complicated trouble of
switching windows. If you do this, use Run to execute a program
instead of Execute for a direct program call.

There are programs that try to eliminate the border of the CLI window
by using complicated methods. Many of the developers of these pro­
grams seem to have forgotten that the CLI is created using the Console
device. The Console device contains commands which let you change
the border's appearance using escape sequences. These sequences let you
do just about everything with the size and appearance of the window:

Sequence Explanation
<Esc> rn u sets the window width at n characters
<Esc> [n x sets the left border at n pixels
<Esc> [n y_ sets the upper border at n pixels
<Esc> rn t sets the number of lines at n
<Esc> c sets everything back to normal

The Echo command is used to call each sequence. It is also possible to
link multiple sequences using semicolons. The window must be resized
after <Esc><c> to display the border. Here is an example:

ABACUS

#10:
Quick
messages

1.1 TIPS FOR THE eLI

;This sequence configures for border OFF
echo n*e[80u*e[Ox*e[Oy*e[31t n
;Press <Ctrl><L><Return> to actuate borderless window

;This sequence returns system to normal mode
echo "*ec"

Usually the startup sequence displays messages about the Workbench
version number and the current date. If you wish, you can add your own
messages to this data.

The problem in doing so is that when the Echo command displays
text, the command must be reloaded every time, which is quite time
consuming. You can speed this up by writing the entire text to a file
and using the Amiga's multitasking capability to display the new text
on the screen during the startup sequence.

Enter the following line in your startup sequence file to call the text
file that you want displayed:

Run Type Textfile

7

I

~

1. NEW TRICKS AND TIPS MORE TRICKS & TIPS

1.2

#11:
Closing with
standard icons

Program start:

After closing
file:

#12:
Modular work

8

Tips for AmigaBASIC

AmigaBASIC uses one particular icon for all the programs created from
AmigaBASIC, as well as files created from AmigaBASIC programs.
There are two ways to change this:

The first deals with the BASIC program icon. You can edit this icon
using the icon editor after you finish developing the program. Assign
this new icon to the finished program and copy it into the correct direc­
tory. The trick is to set the delete flag in the info file so that the info
file cannot be deleted. This ensures that the icon doesn't get overwritten
the next time you save the program.

There is a simpler method when it comes to data files. These data files
should have an icon relating to the program (e.g., text files written in
Notepad have a note icon). First you draw the desired icon with the icon
editor. This icon is stored in the same directory as the main program.
Then you read the icon at the beginning using the function
GetDiskObject. Every time you save a file this icon gets saved
under the same name. The result: Your icon replaces the AmigaBASIC
icon. Here is an example program that gives a BASIC program the
Shell icon, you will have to change the drawer and disk names
(T &T2:Chapterl) for your own setup:

REM IconInstall in Chapterl drawer on disk named T&T2
LIBRARY "T&T2:bmaps/icon.library" :REM use ConvertFD
DECLARE FUNCTION GetDiskObject& LIBRARY
DECLARE FUNCTION PutDiskObject& LIBRARY
FileName$ = "SYS:Shell"+CHR$(O)
DiskAdr& = GetDiskObject&(SADD(FileName$))
File$ = "T&T2:Chapterl/IconInstall"
File$ = File$+CHR$(O)
status = PutDiskObject&(SADD(File$), DiskAdr&

You should try to use modular program structure whenever possible.
This makes the listing easier to follow and modify. Another advantage
is that many of these modules can be merged into later programs that
you write. This saves alot of work. You have two possibilities which
you can apply to merge modules into other listings:

The first is to load the BASIC interpreter and copy the module from the
source program into the clipboard. This clipboard can then be pasted
into a second BASIC program. Load the second program and paste this
stored section back into the listing using the Paste function.

ABACUS

#13:
Changing
window and
screen names

#14:
More memory

1.2 TIps FOR AMIGABASIC

The second method requires that you save the program block to a file.
Be careful that you use ASCII format-you cannot use the other
formats for this method. You can then merge the new block into a
program with:

MERGE Filename

This saves a lot of work and allows you to build a library of
independent function modules.

In AmigaBASIC you can specify a window name when opening a new
window, but you can't change the window name later on. The Intuition
library offers a solution.

Open the library at the beginning of the program. This lets you specify
both window and screen names by calling SetWindowTitleO. The
following demonstration program renames your BASIC window to
test and your Workbench screen to Screen. Please notice that the
variables used to pass parameters to the CALL must be ended with null
bytes, (Chr$ (0».

REM WindowTitle
LIBRARY "T&T2:bmaps/intuition.library":'set path name for
'wherever you have intuition library stored
CALL SetTitle("test", "Screen")
END

SUB SetTitle(WinNam$, ScrNam$) STATIC
winNam$ = WinNam$ + CHR$(O)
ScrNam$ = ScrNam$ + CHR$(O)
CALL SetWindowTitles(WINDOW(7), SADD(WinNam$),

SADD (ScrNam$))
END SUB

Normally Clear allocates more memory in AmigaBASIC. But this
command often doesn't work if it can't fmd the desired memory (a bug
in AmigaBASIC). First it tries to provide new memory and then it tries
to release old memory. When you want to change your memory only a
little, you must have double the amount needed available, which is
often not the case. There is only one method to achieve this goal­
simply set the area to the smallest size, then enter the desired number:

CLEAR ,1024
CLEAR ,500000

We don't recommend this method when you're in program mode instead
of direct mode. Use the following in program mode:

CLEAR ,25000-FRE(0) 'only the necessary program memory
CLEAR ,FRE(-1)-50000 'entire free memory - security

9

1. NEW TRICKS AND TIPS MORE TRICKS & TIPS

#15:
Editing
BASIC
programs

#16:
Faster
AmigaBASIC

The BASIC editor is a nuisance sometimes. It scrolls horizontally with
difficulty and scrolls up or down slowly. In addition, you cannot search
for commands because no search function exists. AmigaBASIC offers
some help. You can save programs as ASCII text with Save
"name",a and then edit the program using a word processor such as
TextPro or BeckerText from Abacus. The programs can also be trans­
ferred to other computers in this manner.

Word processors allow many more editing features than the Amiga­
BASIC editor. Since the Amiga is multitasking, the word processor and
BASIC can be running at the same time. This lets you quickly move
the edited program to AmigaBASIC for easy testing.

AmigaBASIC could be faster. Consider this; when you start Amiga­
BASIC from the Workbench, the task priorities are not optimally set
for AmigaBASIC operation.

Two functions in Exec.library offer a cure for this problem.
Set TaskP riO allows you to view the priorities of your tasks and
BASIC. You can choose a value from 1 to 127. The larger the number,
the faster AmigaBASIC runs. That means that other programs (tasks)
receive less processor time. This method works especially well for
calculations that take a lot of time, and for graphic output

First you access Exec.library. Then the task is found with
FindTaskO and changed with SetTaskPriO. When the BASIC
program ends, it is important that the priority be reset so other pro­
grams can run. Here are the program segments:

Program start LIBRARY "T&T2:bmaps/exec.library"
DECLARE FUNCTION FindTask& LIBRARY
BASICTask& = FindTask&()

Program end

#17:
No overflow
in line buffer

#18:
Reset

10

CALL SetTaskPri(BASICTask&, 80)

CALL SetTaskPri(BASICTask&, 0)

Do you recognize this? The AmigaBASIC editor occasionally won't let
you go back over a line using <Backspace>. It responds with the error
message "line buffer overflow". You can easily get around this. Select a
space with the mouse and then cut it with <Amiga><X>. Now the
editor will work correctly again.

When you would like your BASIC program to reset the Amiga, use the
following code (with caution):

bye = 16515072
CALL bye

ABACUS

1.3

#19:
Changing
printers
without
Preferences

#20:
Indirect
printing pays
off

1.3 PRINTER TIPS

Printer tips

Very few people know that the printer driver is a standalone program
and can be started by itself. It's not handled as a program in the usual
sense, so you can't access it through the CLIo The Workbench knows
where the driver must be placed in memory. Copy the necessary driver
from the DEVS: Printers directory into the main directory of the
Workbench disk. Then you need a Tool type icon like the clock or the
CLI icon. Give the one of these icons the same names as the printer
drivers. When you click on the icon from the Workbench the
corresponding printer driver initializes. Here are the CLI commands for
the Epson printer driver:

1> copy sys:devs/printers/epson sys:epson
1> copy CLI.info Epson.info

When you would like to use the functions of your printer in a BASIC
program, most people access the printer directly by using the PAR: or
SER: device. Normally, all printer output should occur over the printer
device PRT:.

Commodore-Amiga implements generic sequences that control printer
effects. The corresponding printer driver converts the sequences that are
necessary for that particular printer. This ensures that the print routines
for one printer can run on all others as well. The following table lists
the command codes that can help you to achieve all different print
styles. All sequences begin with <Esc>. It is best to define this with a
string, as in the example below:

ESC$=CHR$ (27)

The above CHR$ (27) signifies the <Esc> key. This character string
tells the printer to prepare for special codes to control the printer or
other device.

11

1. NEW TRICKS AND TIPS M ORE TRICKS & Tips

12

The following is a table of type styles and escape sequences:

Typestyle SeQuence
Italic on: ESC [3m

off: ESC [23m
Bold on: ESC [1m

off: ESC [22m
Underlined on: ESC [4m

off: ESC [24m
Elite on: ESC [2w

off: ESC [lw
Compressed type on: ESC [4w

off: ESC [3w
Wide type on: ESC [6w

off: ESC [5w

NLQ on: ESC [2"z
off: ESC [1" z

Proportional type on: ESC [2p
off: ESC [lp

Superscript on: ESC [2v
off: ESC [1 v

Subscript on: ESC [4v
off: ESC (3v

A command sequence can be sent together with the text to the printer
with LPRINT:

LPRINT ESC$;"[4m";Text$;ESC$;" [24m"

ABACUS

1.4

#21:
Faster, faster,
faster

#22:
Stop!

#23:
DiskDoctor
First aid

#24:
One Guru less

#25:
More of the
same

1.4 Tips FOR WORKING WITII THE AMIGA

Tips for working with the
Amiga

It helps speed up the Amiga during long computation times if you
close all unnecessary screens. That way the graphic processor and the
entire system runs faster.

Pressing the left mouse button stops text output. When you release the
mouse button, the text output can continue. This is especially useful
when text is scrolling past rapidly in some CLI commands (e.g., the
Dir, List and Type commands).

Have you ever deleted a file that you really didn't want deleted? If you
act promptly, you can recover the file. The Amiga doesn't really delete
files. It simply resets the directory entry and the disk's bitmap.

You don't need a disk monitor to rescue the file, just the
DiskDoctor program. DiskDoctor replaces deleted files providing
that you haven't written to the disk since you deleted the files.

When you start a program from the Workbench, it runs without hesita­
tion. When you start it from the CLI, it takes five seconds longer to
execute. Why? Many Amiga users have asked this question, so here's
the answer: On a multitasking computer every program has its own
stack where a return address is stored. When a program starts from the
Workbench, this stack is created using the value in the Info file.

It's different in the CLI. Here the CLI'S stack value comes into play
instead of the stack value of the info file. This is usually rather small.
Remember when you start a program from the CLI, it takes on the
current CLI stack size. This may not be enough memory, and you may
end up getting a Guru Meditation. If that's the case you should enlarge
the stack before running the program. The stack size needed for a
program can be seen by selecting Info in the Workbench menu.

The file System-Configuration can be found in the devs:
directory of any given boot disk. This file contains all the parameters
set by Preferences. Copy this file onto each boot disk you have. This
gives you the same Preferences setting on all your boot disks. Here's a
sample CLI command:

1> copy sys:devs/system-configuration df1:devs

13

1. NEW TRICKS AND TIPS MORE TRICKS & TIPS

1.5

#26:
Secret
greeting in
the Kickstart

#27:
A love story

14

Secrets and hidden messages

Many pieces of hardware and software contain extra messages
conveying greetings to users, names of developers, political attitudes,
love affairs, etc. These hidden texts go under a number of titles: "Easter
eggs," "wasted memory", and others. Here are a collection of some of
the little-known extra messages hiding in your equipment

The Amiga developers are like most inventive people: If they see an
opportunity to put their "signatures" in their software or hardware for
the sake of immortality, they'll do it. For example, the insides of some
Amiga cases actually have the hardware development team's signatures
embossed in the case.

The internal hardware contains a greeting that you can't access directly
through the Workbench.

The following BASIC program displays the hidden message after you
enter the start and end addresses needed. Use the correct values for the
version of Kickstart you have.

Addresses:
'V1.1 16653596 16653672 (early 1000's)
'V1.2 16649670 16649747 (500's and 2000's)
INPUT "Start address";Start
INPUT "End address";Finish
PRINT
FOR i = Start to Finish

PRINT CHR$(PEEK(i»;
NEXT i

Here we encourage you to browse through a bit of memory by entering
other values. Maybe you'll find this text or a similar one in another
location. If you find another message, write us with the start and end
addresses: We'd like to know about your discovery.

Have you seen the secret text in the Preferences program of Workbench
1.2? You must execute a somewhat complicated procedure to see the
message in the window's title bar.

Start Preferences 1.2 (this displays the Preferences screen). On the right
you see the two mouse icons. Both mouse icons have two buttons.
Move your mouse pointer to the leftmost button of the leftmost mouse
icon. Click on it, and move the pointer to the next mouse button.
Click on that and move the pointer to the left button of the rightmost
mouse icon. Click on that button, then click on the rightmost button.
Go from the left to the right a total of four times, and each time click
once on each button. Once you have clicked all four buttons four times

ABACUS

#28:
A secret
message

1.5 SECRETS AND HIDDEN MESSAGES

(sixteen mouse clicks), click on the Change Printer gadget. Click on
the up arrow gadget by the printer window until you get to the top
entry. Now click on the arrow one last time to see the love story text
in the title bar.

Hold down both the <Shift> and <Alt> keys and any function key
during a printout, and eject a disk from any drive at the same time.
Another message appears on the Workbench screen.

Insert the disk again and you either get the same message again or
perhaps another text. This other text only appears in older versions.
When you want to see it on newer versions you must insert a disk
whose disk icon is already on the Workbench screen. Then there will be
enough time to display the new text.

15

2.
AmigaBASIC
tricks and tips

ABACUS

2.

2.1

2. AMIGABASIC TRICKS AND TIPS

AmigaBASIC tricks and
tips

This chapter shows how AmigaBASIC programmers can make their
programs extremely user-friendly. The days of the "user-obnoxious"
home computer are long past. The earliest computers had to be rewired
to perform a different program from that already set. Later computers
had switches that you had to operate to enter or receive data (keyboards
came still later). If you owned a C64 or other Commodore computer
before buying your Amiga, you'll remember the difficulties you might
have had even with that operating system as a beginner (e.g., typing
LOAD"filename",8 just to load a file from disk).

There's no excuse for unfriendly user interfacing in Amiga pro­
gramming. When dealing with a graphically-oriented computer like the
Amiga, user-friendliness should affect every aspect of interacting with
the user (i.e., all input options, selections and displays be programmed
for user-friendliness).

The goal of user-friendliness can be achieved through a variety of
methods. Almost all of these methods involve accessing Intuition and
its graphic user interface. The use of icons, gadgets, string gadgets and
requesters make a beginning user feel more comfortable with the com­
puter, and help speed the intermediate user's productivity in the applica­
tion that uses this type of interface.

Much of this chapter deals with maximizing this quality of user-friend­
liness, by focusing on input, selection and control. With this thought
in mind, most of your programming for user response should use the
mouse as the primary input device.

An Intuition window

Not everything needed for program control can be accomplished using
menus, so we must look for alternatives. What are those alternatives?
See the Workbench disk for some examples. Preferences is a good
example of alternatives to drop-down menus. When you open
Preferences all the possible options can be easily selected, and is
therefore user-friendly. The Preferences program uses normal gadgets,
sliders, filled gadgets and even scrolling tables to allow the user to
make his selections.

19

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIps

20

Sliders control colors, key repeat delay, key repeat speed and the time
between the clicks of a double-click. Filled gadgets indicate the number
of characters per line and the status of Workbench interlace mode.
Scrolling tables in the Change Printer section help the user select the
correct printer driver. Normal gadgets on the main screen execute an
action such as Save, Use or Cancel, by clicking on them.

The following programs show examples of all the above user-friendly
gadgets. For openers, we need an output window to display these
gadgets. AmigaBASIC usually opens a window directly after loading it
However, BASIC windows have some limitations, so we'll directly
open a window using the Intuition library. The Amiga operating sys­
tem libraries offer much more control than standard BASIC program­
ming.

The first example program does nothing more than open an Intuition
window on the Workbench screen. We call the file named
intuition.library for this, which will also be used in the other
example programs in this section. This program requires both
intuition.library and exec.library to function. Use the
ConvertFD BASIC program in the BASICDemos drawer on the
Extras disk to create the exec.library and int ui tion.
library files. When running the ConvertFD program be sure to
correctly enter the complete disk identifier, pathname and filename at
the prompt. If you don't, the ConvertFD program won't find the
correct file. Here is an example run of the ConvertFD program, for
Workbench 1.3 users that creates the exec. bmap file on a RAM disk:

Enter name of .fd file to read> "Extras 1.3:FD1.3/exec_lib.fd"
Enter name of .bmap file to produce> ram:exec.bmap

The example programs require the exec . library (exec_lib.FD),
the int ui tion.library (int ui tion lib.fd) and the
graphics.library (graphics_lib.fd) to operate.

The optional disk available for this book, named T&T2:, contains the
.bmap files in a drawer named bmaps, therefore the example programs
that follow "look" in this drawer for the .bmap files. If your .bmap
files are on a disk with a different name, or in a different drawer, alter
the LIBRARY commands so the . bmap files can be opened.

The example programs that follow contain some BASIC lines that
must be entered as one line in AmigaBASIC, even though they appear
on two lines in this book. Formatting the program listings to fit into
this book has split some long BASIC lines into two lines. An end-of­
paragraph (~) character shows where a BASIC line actually ends. When
you see this character, press the <Return> key in the BASIC editor.
For example, the following line appears as two lines in this book, but
the 11 marker indicates that it must be entered as one line in
AmigaBASIC:

ABACUS 2.1 AN INTUITION WINDOW

WinDef NWindow, 100, 50, 460, 150, 32+64+512&, 15&+4096&,
0&, Title$'ll

The ~ shows the actual end of the BASIC line. Here is our first exam­
ple program, which opens an Intuition window on the Workbench
screen:

1********************************,
,* *'ll
,* Open Window under Intuition *'l!
'* ---------------------------- *'l!
'* *'l[
'* Author: Wolf-Gideon Bleek *'l[
,* Date May 22 '88 *'ll
,* Version: 1.1 *'1
'* Operating system:V1.2 & V1.3 *'l[
'* Name : Intuition-window *'l[
'* *'lI
I********************************~

'll

OPTION BASE 1'l[
DEFLNG a-z'l[

, Bmaps located on disk named T&T2,yours may differ'l[
LIBRARY "T&T2:bmaps/exec.library"'I[
DECLARE FUNCTION AllocMem LIBRARY'I[
LIBRARY "T&T2:bmaps/intuition.library"'I[
DECLARE FUNCTION Open Window LIBRARY'I[
'I[
MList
'I[

MainProgram:'l[

0&'1[

GOSUB OpenAIl'll
'I[

, Main part'll
FOR i = 1 TO 10000
'lI
GOSUB CloseAll'l[
'I[

END'I[
OpenAII:'l!

NEXT i'l[

Title$ = "My first BASIC-Window"'1[
WinDef NWindow, 100, 50, 460, 150, 32+64+512&, 15&+4096&,

0&, Title$'l[
WinBase = OpenWindow(NWindow)'l!
IF Win Base = 0 THEN ERROR 7'l[

RETURN'I[
CloseAll:'l[

CloseWindow(WinBase)'l[
CALL UnDen

RETURN 'I[
'--'ll
SUB DefChip(Buffer, Size) STATIC'll

SHARED MList'l[
Size=Size+8'1[

21

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

Program
description

22

Buffer=AllocMem(Size,65538&)~

IF Buffer>O THEN~
POKEL Buffer,MList~
POKEL Buffer+4,Size~
MList=Buffer~

Buffer=Buffer+8~

ELSE~

ERROR 7~
END IF'll

END SUB~
SUB UnDef STATIC~

SHARED MList~
undef.loop:~

IF MList>O THEN~
Address = PEEKL(MList)~
ListSize = PEEKL(MList+4)~
FreeMem MList, ListSize~

MList = Address'll
GOTO undef.loop'll

END IF'll
END SUB ~

~
SUB WinDef(bs, x%, y%, b%,

Size = 48+LEN(T$)+1'll
DefChip bs,Size'll

h%, IDCMP, f, gad, T$) STATICi

POKEW bs ,x%
POKEW bs+ 2,y%
POKEW bs+ tJ,b%
POKEW bs+ 6,h%
POKEW bs+ 8,65535&
POKEL bs+l0,IDCMP
POKEL bs+14, f
POKEL bs+18,gad
POKEL bs+26,bs+48

I Left Corner~
I Top Corner~
I Width~

I Height ~
I Detail- BlockPen'll
, IDCMP Flags'll
I Flags'll
I First Gadget'll
I Title'll

POKEW bs+46,1 ' ScreenType ~
FOR i%=l TO LEN(T$)'ll

POKE bs+47+i%,ASC(MID$(T$,i%,1»'ll
NEXT~

END SUB'll

The most important elements of the example program appear at the end
of the program. Here you'll find the three subprograms which fulfill the
three tasks required to open our Intuition window. DefChipO requests
a memory area of the desired size. This is reserved using AllocMemO.
an operating system function of exec.library. The routine stores
two values in the first eight bytes (a list of the allocated memory).
UnDefO releases the allocated memory. Mlist releases all memory
areas one after another.

The first two subprograms are initialization routines. The WinDefO
subprogram holds the most importance here. since it places the speci­
fied data in a NewWindow structure. Intuition needs this data before it
can open a new window. WinDefO only places the data in a new

ABACUS

2.1.1

2.1 AN INTUITION WINDOW

memory area. Everything else is considered a subroutine of the main
program.

Now that we know the task of the subprograms, let's look at the main
program. First the Intui tion and Exec libraries open. The program
uses functions from both. The main section jumps to the OpenAll
subroutine. The definition of a NewWindow structure using WinDefO
is called here. This structure passes to Intuition by means of
OpenWindowO. A correctly opened new window returns a pointer to
the Window structure; if an error occurs it returns a O. The new struc­
ture contains all the data necessary to create our own Intuition window.

After returning from the OpenAll subroutine, the program pauses
using a FOR/NEXT loop so you can see the window for a moment.
Then the BASIC interpreter jumps to another subroutine called
CloseAll. This routine closes our window and releases the allocated
memory.

Now we have a basis for our own user-friendly professional programs.
Using this Intuition window, we can insert the user-friendly input facil­
ities similar to those found in the Preferences program. Let's look at
the first of these-gadgets.

Gadgets

The first user-friendly gadgets that we see in the Preferences program
perform a direct action after the user selects them with the mouse. By
moving the pointer onto one of these gadgets and pressing the left
mouse button, you select different choices such as Change Printer, Edit
Pointer or Cancel.

These gadgets can be accessed through BASIC programming. Amiga­
BASIC pulls its gadget data from Intuition. Our new gadgets can easily
be merged into the Intuition window program you read about in the
preceding segment. The following subprogram defines a new gadget
field (remember that the ~ character tells you when to press the
<Return> key). You can either save it as a separate BASIC program
and append it later, or type it in at the end of the Intuition window
program you entered previously:

SUB GadgetDef(bs,nx,x%,y%,b%,h%,f%,a%,T%,i,txt,si,n%)
STATIC'll

DefChip bs,44&
POKEL bs ,nx
POKEW bs+ 4,x%
POKEW bs+ 6,y%

, Gadget-Structure length'll
'*NextGadget'll
, LeftEdge'll
, Top Edge'll

23

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

24

POKEW bs+ 8, b%
POKEW bs+10,h%
POKEW bs+12,f%
POKEW bs+14,a%
POKEW bs+l6, T%
POKEL bs+18, i
POKEL bs+26, txt
POKEL bs+34, s1
POKEW bs+38,n%

END SUBi

, Widthi
, Heighti
, Flagsi
, Activationi
, GadgetTypei
, GadgetRenderi
'*GadgetText'l[
, Speciallnfo'l[
, GadgetID'l[

This routine places the correct values necessary for a gadget in an area
of memory. The variable bs contains the base address of our memory
area. It also handles the return value of the memory allocation routine.
nx marks the starting address of the next free gadget area, allowing us
to use more than one gadget. We'll make use of this value later to add
more gadgets to the window. x%, y%, b% and h% define the dimensions
of the gadget.

Two flags, which we will discuss later, are defined with f % and a %. t %
sets the gadget type (set at 1 in this first example-later on we'll add
other gadget types). i and txt contain additional graphic information.
i allows you to define the type of border to be displayed. txt defines
the text inside the gadget. Finally, we place an identification value in
n%. This value helps the program to determine which gadget was
selected by the user.

Insert the GadgetDef subprogram from above at the end of the
Intuition window example program, and enter the following line in the
OpenAll subroutine:

GadgetDef Gadget,O&,50,50,90,15,O,1,1,O&,O&,O&,1

This call to GadgetDef defines our new gadget. This causes the fol­
lowing results:

• The address of the gadget structure is found after the close of the
routine in Gadget

• Only one gadget is used; no more gadgets are contained in the
gadget structure

• The position is 50,50

• The gadget is 90 pixels wide and 15 pixels high

• It is handled as a gadget that reacts to a mouse click

• The gadget is of boolean type and can only be activated

• There are no border graphics and no text inside the gadget (an
invisible gadget)

ABACUS 2.1 AN INTUITION WINDOW

• No additional Structure is needed

• The gadget is accessed by number 1

This defmed gadget structure interfaces with the new window structure
using the following command sequence:

WinDefNWindow, 100, 50,460, 150, 32+64+512&, 15&+4096&,
Gadget, Title$i

Do not start the program yet. You k2llli1, but we wouldn't advise it.
The program contains no routines for gadget checking. Since the
gadget structure contains no graphic border the gadget is invisible. If
you enter RUN now, the window appears. After doing some clicking,
you might or might not find the region allocated for the gadget defini­
tion. Clicking the gadget produces no reaction. We must write another
subroutine that jumps from the main program when it encounters some
information.

The new program section below reads a gadget and gets a new Intuition
message from the information port of the Intuition window. Then it
branches to a new subroutine, IntuitionMsg, which reads and deter­
mines the result of the message:

GADGETDOWN - 32&i
GADGETUP = 64&i
CLOSEW - 512&i

i
MList
Info
i

= 0&'][
a

MainProgram:i
GOSUB OpenAIU
, Main parti
MainLoop:'ll

'll

IF Info = 1 THEN'll
IntuiMsg = GetMsg(UserPort)'ll
IF IntuiMsg > 0 THEN GOSUB IntuitionMsg'J[
GOTO MainLoopi

END IF 'i

GOSUB CloseAll'll
'll

END'll

The GetMsgO function makes it possible to test the message port of a
window for a message. This message port lies in the window structure
that OpenWindowO returned to us. In this routine a new variable must
be initialized to read the message port:

UserPort = PEEKL(WinBase+86)'J[

25

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

26

Now we can add the subroutine which controls the handling of the
newly received message. It first determines the type of the message,
since different actions on our window will return different messages.
One message that we can handle is the CloseWindow message. This
message returns when the user clicks on the window's close gadget.
Our subroutine also displays the gadget number on the screen which
was written in the gadget structure.

IntuitionMsg: i
MsgTyp ~ PEEKL(IntuiMsg+20)~

Item ~ PEEKL(IntuiMsg+28)~

GadgetNr% ~ PEEK(Item+39)i
CALL ReplyMsg(IntuiMsg)~
'II
IF (MsgTyp = GADGETDOWN) THEN~

'activatedi
PRINT "DOWN Gadget-Nr.:";GadgetNr%~

END IFi
'II
IF (MsgTyp ~ GADGETUP) THEN~

'rel verify modei
PRINT "UP Gadget-Nr.:";GadgetNr%~

END IFi
'lI
IF (MsgTyp ~ CLOSEW) THEN~

'System-Gadget Window closer'll
PRINT "CLOSE WINDOW"'ll
Info = O'll

END IFi
RETURN'll

Assemble the program sections and start the program. The Intuition
window appears on the Workbench screen. Now for our first test. Click
in the upper left quarter of the screen until you find the invisible
gadget. It's invisible because no border or text definition exists in the
Gadget structure (the gadget lies at screen location 50,50). When you
click on it with the mouse, the new gadget becomes visible. After
releasing the mouse button it disappears, and the gadget number appears
in the AmigaBASIC Output window.

For the second test of our intuition message subroutine click on the
close gadget of the window. First the text appears in the Output
window, then the window closes. We have just completed the ground­
work required for using gadgets.

Here is the complete program:

'**********************************'ll
'* * 'II
,* Gadgets with Intuition *'ll
'* ------------------------------ *'ll
, *
'* Author
'* Date

Wolf-Gideon Bleek
May 23 '88

*'ll
*~
*'ll

ABACUS 2.1 AN INTUITION WINDOW

'* Name Gadget-one
'* Version: 1.2
'* System: Vl.2 & Vl.3
'*

*'11
*'11
*'11
*'11

'**********************************i
OPTION BASE I'll
DEFLNG a-z'll
'II

, Bmaps located on disk named T&T2,yours may differ'll
LIBRARY "t&T2:bmaps/exec.library"'l!
DECLARE FUNCTION AllocMem LIBRARY'l!
DECLARE FUNCTION GetMsg LIBRARY'l!
LIBRARY "t&t2:bmaps/intuition.library"'l!
DECLARE FUNCTION OpenWindow LIBRARY'l!
GADGETDOWN 32&'J[
GADGET UP 64&'l!
CLOSEW 512&'l!

'l!
MList
Info
'II

0&'][
1'l!

MainProgram:'11
GOSUB OpenAll'l!
, Main part'l!
MainLoop:'l!

'l!

IF Info = 1 THEN'l!
IntuiMsg = GetMsg(UserPort)'l!
IF IntuiMsg > 0 THEN GOSUB IntuitionMsg'l!
GOTO MainLoop'l!

END IF 'l!

GOSUB CloseAll'l!
'l!

END'l!
'II
OpenAll:'l!

GadgetDef Gadget, 0&, 50, 50, 90, 15, 0, 1, 1, 0&, 0&, 0&, 1'l!

Title$ = "The invisible gadget"'l!
WinDef NWindow, 100, 50, 460, 150, 32+64+512&, 15&+4096&,

Gadget, Title$'ll
WinBase OpenWindow(NWindow)'l!
IF WinBase = 0 THEN ERROR 7'l!
UserPort PEEKL(WinBase+86)'l!

RETURN'l!
'l!
CloseAll:'l!

CALL CloseWindow(WinBase)'l!
CALL UnDef'][

RETURN'l!
'l!
IntuitionMsg: 'II

MsgTyp % PEEKL(IntuiMsg+20)'l!
Item PEEKL(IntuiMsg+28)'l!

27

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

28

GadgetNr% = PEEK(Item+39)i
CALL RepIyMsg(IntuiMsg)i
'll
IF (MsgTyp = GADGETDOWN) THEN'll

'activated'll
PRINT "DOWN Gadget-Nr.:";GadgetNr%i

END IF':I[
'll
IF (MsgTyp = GADGETUP) THEN'll

'reI verify mode'll
PRINT "UP Gadget-Nr.:";GadgetNr%'ll

END IFi
'll
IF (MsgTyp = CLOSEW) THENi

'System-Gadget Window closeri
PRINT "CLOSE WINDOW"i
Info = 0'1[

END IH
RETURN ':I[
,--'1[
'll
SUB DefChip(Buffer,Size)STATIC'll

SHARED MList'll
Size=Size+8'll
Buffer=AIIocMem(Size,65538&)'ll
IF Buffer>O THENi

POKEL Buffer,MList'll
POKEL Buffer+4,Size'll
MList=Buffer'll
Buffer=Buffer+8'll

ELSE'll
ERROR 7'll

END IF'll
END SUB'!
i
SUB UnDef STATIC'll

SHARED MListi
undef.Ioop:i

IF MList>O THEN'll
Address = PEEKL(MList)'ll
ListSize = PEEKL(MList+4)'ll
FreeMem MList, ListSize'll
MList = Address'll
GOTO undef.Ioop'll

END IFi
END SUB 'll
'll
SUB WinDef(bs, x%, y%,

Size = 48+LEN(T$)+li
DefChip bs,Size'll
POKEW bs ,x%
POKEW bs+ 2,y%
POKEW bs+ 4,b%
POKEW bs+ 6, h%
POKEW bs+ 8,65535&
POKEL bs+l0,IDCMP

b%, h%, IDCMP, f, gad, T$) STATIC'll

, Left Corner'll
, Top Corner'll
, Width'll
, Height'll
, DetaiI- BIockPen'll
, IDCMPFIags'll

ABACUS

2.1.2

2.1 AN INTUITION WINDOW

POKEL bs+14,f
POKEL bs+18,gad
POKEL bs+26,bs+48
POKEW bs+46,1

FOR i%=l TO LEN(T$)'ll

, Flags'll
I First Gadget'll
I Title'll
I Screen Type CJ

POKE bs+47+i%,ASC(MID$(T$,i%,1))'lI
NEXT'll

END SUB'll
<J!

SUB GadgetDef(bs, nx, x%, y%, b%, h%, f%, a%, T%, i, txt, si,
n%) STATIC'll

DefChip bs,44&
POKEL bs ,nx
POKEW bs+ 4,x%
POKEW bs+ 6,y%
POKEW bs+ 8,b%
POKEW bs+10,h%
POKEW bs+12, f%
POKEW bs+ 14, a%
POKEW bs+16,T%
POKEL bs+18,i
POKEL bs+26,txt
POKEL bs+34,si
POKEW bs+38,n%

END SUB'll
'lI

, Gadget-Structure
'*NextGadget'll
, LeftEdge'll
, TopEdge'll
, Width'll
, Height'll
I Flags'll
I Activation'll
I GadgetType'll
, GadgetRender'll
, *Gadget Text'll
, SpecialInfo'll
I GadgetID'll

Gadget borders and text

length'll

A very important feature has been missing from our gadgets: visibility.
You had to hunt around for this gadget, and could only see it when you
clicked on it.

Let's clear up this small problem. In the description of the subprogram
GadgetDef we learned about the variables txt and i. GadgetDef
uses these variables to enter the basic graphic elements of Intuition. We
can define an IntuiText structure for the gadget with txt, and
define a graphic or line border with i.

First, let's look at the text. For this we need the I n t u i T ext
structure. It defines the position, color, character set, character size, and
the text. The following subprogram allocates an area of memory and
fills this allocated area with the required data:

SUB IntuiText(bs, c1%, x%, y%, T$, nx) STATIC'll
Size=20+LEN (T$) +1 I Structure length+ Text length+

Nullbyte'll

29

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

30

DefChip bs,Size~
POKE bs ,cl%
POKE bs+ 2,1

• FrontPen~
• DrawMode~

POKEW bs+ 4,x% • Left corner~
POKEW bs+ 6,y% • Top corner~
POKEL bs+12,bs+20 • IText~
POKEL bs+16,nx • NextText~
FOR i%=l TO LEN(T$)~

POKE bs+19+i%,ASC(MID$(T$,i%,l))~
NEXU

END SUB~

Following the starting address of the structure we insert the character
color of the text and the text's starting position in pixels. We then
supply a pointer to the text. Since the pointer is allowed more text,
you can supply a pointer to another In t ui Text structure as the
ending value.

The routine itself sets the drawing mode to JAM2 (i.e., foreground and
background colors are "jammed" into the selected area). This ensures
that the drawing mode overwrites the background, so you can clearly
read the text later. You can adjust the second color to some degree by
increasing a value in the parameter list and POKE the new color value
into bs+l!. To insert text in the gadget, first you must put a text into
the subroutine and then append the text to the Gadget definition
routine as follows:

TestTxt$ - "Test-Text .. ~
IntuiText Text, 2, 10, 2, TestTxt$, 0& ~
GadgetDef Gadget, 0&, 50, 50, 90, 15, 0, 1, 1, Edge, Text,O&, 1~

Next we should be concerned with border lines. Their main purpose is
to create a border for the mouse click. In addition, border lines supply
underlining for texts that need it. Because the edges are also passed in
the gadget structure, we can create a separate structure. This structure
needs a coordinate table, the color and the position, which can be treated
as a normal border structure. The coordinates appear in memory
following the structure.

We have developed a somewhat different subprogram for the border
structure. It inserts the value into memory. Not only that; it also calcu­
lates the values of the coordinates needed by the table. This makes it
very simple to define a box around a gadget. Here is the complete
function:

SUB Border (bs, x%, y%, c%, b%, h%) STATIC~

DefChip bs,48& • Structure length+Coordinate table~
POKEW bs ,x% • Left corner~
POKEW bs+2,y% • Top corner~
POKE bs+4,c% • FrontPen~
POKE bs+7,8 • Count~
POKEL bs+8,bs+16 '*XY~

FOR 1%=0 TO 1 ~

ABACUS 2.1 AN INTUITION WINDOW

POKEW bs+22+i%*4,h%-li
POKEW bs+24+i%*4,b%-li
POKEW bs+32+i%*4,l~
POKEW bs+38+i%*4,h%-li
POKEW bs+40+i%*4,b%-2i

NEXT~

END SUBi

The routine above contains the corresponding values needed to define
the border. Then we insert the base address of the structure in the defini­
tion of the gadget, as we did in the In t ui Text structure. Now the
Border structure combines with the Gadget structure. Here is an
example:

Border Edge, 0, 0, 3, 90, lSi
GadgetDef Gadget, 0&, 50, 50, 90, IS, 0, I, I, Edge, Text, O&,li

The gadget now contains text and is surrounded by a border. This border
can be enlarged if you wish.

We would now like to show the complete listing. This program listing
contains all of the subroutines and definitions mentioned above. You
can use this to determine whether you have made any errors in putting
the modules together:

.**********************************~

'* *i
,* Boolean-Gadgets with Intuition *~
,* ------------------------------ *i
'* *i
,* Author Wolf-Gideon B1eek *i
,* Date May 23 '88 *i
, * Name Gadgets *i
,* Version: 1.2 *'1[
,* System : V1.2 & V1.3 *i
'* *i
'**********************************i

OPTION BASE Ii
DEFLNG a-zi
i

, Bmaps located on disk named T&T2,yours may differi
LIBRARY "t&T2:bmaps/exec.library"i
DECLARE FUNCTION A110cMem LIBRARYi
DECLARE FUNCTION GetMsg LIBRARYi
LIBRARY "t&t2:bmaps/intuition.library"i
DECLARE FUNCTION Open Window LIBRARYi
GADGETDOWN 32&'1[
GADGETUP 64&~

CLOSEW 512&i
i

MList O&i
Info li
i

31

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIps

32

MainProgram:'ll
GOSUB OpenAll'll
, Main part'll
MainLoop:'ll

'II

IF Info = 1 THEN'll
IntuiMsg = GetMsg(UserPort)'ll
IF IntuiMsg > 0 THEN GOSUB IntuitionMsg'll
GOTO MainLoop'll

END IF 'II

GOSUB CloseAll'll
'II

END'll
'II
OpenAll:'ll

Border Edge, 0, 0, 3, 90, IS'll
TestTxt$ = "Test-Text"'ll
IntuiText Text, 2, 10, 2, TestTxt$, 0& 'II
GadgetDef Gadget, 0&, 50, 50, 90, 15, 0, 1, 1, Edge, Text, 0&,

1 'II
Title$ = "My first complete gadget"'ll
WinDef NWindow, 100, 100, 460, 100, 32+64+512&, 15&+4096&,

Gadget, Title$'ll
WinBase OpenWindow(NWindow)'II
IF WinBase = 0 THEN ERROR 7'll
RastPort
UserPort

RETURN'll

PEEKL(WinBase+50)'II
PEEKL(WinBase+86)'II

'II
CloseAll:'ll

CALL CloseWindow(WinBase)'II
CALL UnDef'l]

RETURN'll
'II
IntuitionMsg: 'II

MsgTyp PEEKL(IntuiMsg+20)'II
Item PEEKL(IntuiMsg+28)'II
GadgetNr% PEEK (Item+39) 'II
CALL ReplyMsg(IntuiMsg)'ll
'II
IF (MsgTyp = GADGETDOWN) THEN'll

'immediately activated'll
PRINT "DOWN Gadget-Nr.:";GadgetNr%'ll

END IF'l[
'II
IF (MsgTyp = GADGETUP) THEN'll

'verify mode'll
PRINT "UP Gadget-Nr.:";GadgetNr%'ll

END IF'l[
'll
IF (MsgTyp = CLOSEW) THEN'll

'System-Gadget Window close'll
PRINT"CLOSE WINDOW"'ll
Info = O'l[

END IF'll
RETURN'll

ABACUS 2.1 AN INTUITION WINDOW

·--i
'll
SUB DefChip(Buffer,Size)STATICi

SHARED MListi
Size=Size+8i
Buffer=AllocMem(Size,65538&li
IF Buffer>O THEN~

POKEL Buffer,MListi
POKEL Buffer+4,Size'll
MList=Buffer~

Buffer=Buffer+8'll
ELSE~

ERROR 7'll
END IFi

END SUB'll
SUB UnDef STATIC'll

SHARED MListi
undef.loop:i

IF MList>O THEN~
Address = PEEKL(MListli
ListSize = PEEKL(MList+41'll
FreeMem MList, ListSizei
MList = Address'll
GOTO undef.loop'll

END IFi
END SUB 'll
SUB WinDef(bs, x%, y%,

Size = 48+LEN(T$1+1~
DefChip bs,Sizei
POKEW bs ,x%
POKEW bs+ 2,y%
POKEW bs+ 4,b%
POKEW bs+ 6,h%
POKEW bs+ 8,65535&
POKEL bs+10,IDCMP
POKEL bs+14,f

b%, h%, IDCMP, f, gad, T$) STATIC'll

POKEL bs+18,gad
POKEL bs+26,bs+48

• Left Corneri
• Top Corneri
• Width'lI
• Height'lI
• Detail- BlockPen~

, IDCMP Flags~
, Flags'll
, First Gadget'll
, Title'll

POKEW bs+46,1 ' Screen Type'll
FOR i%=l TO LEN(T$)'ll

POKE bs+47+i%,ASC(MID$(T$,i%,1»i
NEXT~

END SUB'll
SUB GadgetDef (bs, nx, x%, y%, b%, h%,
n%) STATIC'll

f%, a%, T%, i, txt, si,

DefChip bs,44&
POKEL bs ,nx
POKEW bs+ 4,x%
POKEW bs+ 6,y%
POKEW bs+ 8,b%
POKEW bs+10,h%
POKEW bs+12, f%
POKEW bs+14,a%
POKEW bs+16,T%

, Gadget-Structure
• *NextGadget 'll
• LeftEdge'lI
• TopEdge'll
, Width'll
• Height'll
• Flags'll
I Activation'll
I GadgetType'll

length'lI

33

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

2.1.3

34

POKEL bs+1B,i
POKEL bs+2 6, txt
POKEL bs+34,si
POKEW bs+3B,n%

END SUB'll
'll

, GadgetRender'll
'*GadgetText'll
, SpecialInfo'll
, GadgetID'll

SUB IntuiText(bs, c1%, x%, y%, T$, nx) STATIC'll
Size=20+LEN(T$)+1 'Structurelength+Textlength+

Nullbyte'll
DefChip bS,Size'll
POKE bs ,c1%
POKE bs+ 2,1
POKEW bs+ 4,x%
POKEW bs+ 6,y%
POKEL bs+12,bs+20

, FrontPen'll
, DrawMode'll
, Left corner'll
, Top corner'll
, IText'll

POKEL bs+16,nx ' NextText'll
FOR i%=1 TO LEN(T$)'ll

POKE bs+19+i%,ASC(MID$(T$,i%,1»'ll
NEXT'll

END SUB'll
'll
SUB Border(bs, x%, y%, c%, b%, h%) STATIC'll

DefChip bs,4B& ' Structure length+ Coordinate table'll

POKEW bs ,x%
POKEW bs+2,y%
POKE bs+4,c%
POKE bs+7,B
POKEL bs+B,bs+16
FOR i%=O TO 1 'll

, Left corner'll
, Top corner'll
, FrontPen'll
, Count'll
'*XY'll

POKEW bs+22+i%*4,h%-1'lI
POKEW bs+24+i%*4,b%-1'lI
POKEW bs+32+i%*4,1'lI
POKEW bs+3B+i%*4,h%-1'lI
POKEW bs+40+i%*4,b%-2'll

NEXT'll
END SUB'll

User-friendly gadgets

Let's define four gadgets that are used in many programs. The gadgets
we will define are OK, Cancel, Reset, and Undo-these should all look
familiar to you. OK would be used to continue a program, and Cancel
would stop a function. Reset could be programmed to reset variables to
their original status. Undo could be coded to reset the variable that was
changed last

We'll do this in a specific order. First we'll show you the gadget, text,
and border definitions. Then we'll list the reading routines with empty

ABACUS 2.1 AN INTUITION WINDOW

subroutines. Selecting one of the four gadgets calls one of the subrou­
tines.

The gadget defmitions:

Border Bord, -1, -1, 1,67,14i
IntuiText OKTxt, 1, 26, 2, "OK", O&i
IntuiText CancelTxt, 1, 10, 2, "Cancel", O&i
IntuiText ResetTxt, 1, 14, 2, "Reset", O&i
IntuiText UndoTxt, 1, 20, 2, "Undo", O&'ll
GadgetDef UndoGad, 0&, 380, 52, 65, 12, 0, 1, 1, Bord,

UndoTxt, 0&, 1i
GadgetDef ResetGad, UndoGad, 380, 68, 65, 12, 0, 1, 1,

Bord, ResetTxt, 0&, 2 i
GadgetDef OKGad, ResetGad, 380, 84, 65, 12, 0, 1, 1, Bord,

OKTxt, 0&, 3'll
GadgetDef CancGad, OKGad, 380, 100, 65, 12, 0, 1, 1, Bord,

Cancel Txt, 0&, 4 'll
Title$ = "An example of four user friendly Gadgets"'ll
WinDef NWindow, 100, 50, 460, 150, 32+64+512&, 15&+4096&,

CancGad, Title$i

The reading routines:

'The check routines:'ll
IF (MsgType = GADGETDOWN) THENi

'activation'll
PRINT "DOWN Gadget-Nr.:";GadgetNr%'ll

END IF'][
'll
IF (MsgType = GADGETUP) THENi
'reI verify mode'll
PRINT "UP Gadget-Nr.:";GadgetNr%'ll
IF GadgetNr% = 1 THEN'll

GOSUB Undo 'put in old value'll
END IF'll
IF GadgetNr% = 2 THEN'll

GOSUB ResetRoutine 'all values back to original'll
END IF'll
IF GadgetNr% = 3 THENi

GOSUB Ok • end value entry'll
END IF'll
IF GadgetNr% 4 THENi

GOSUB Cancel 'interrupt value entry'll
END IF'll

END IF'll
'll
IF (MsgType = CLOSEW) THENi

'close system Gadget windowi
PRINT "CLOSE WINDOW"'ll
Info = O'll

END IF'][
'll
RETURN'll

35

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

36

'Il
Undo:'Il

PRINT "The UNDO gadget was selected"'Il
RETURN 'll
'Il
ResetRoutine:'Il

PRINT "The RESET gadget was selected"'Il
RETURN 'Il
'Il
Ok: 'l!

PRINT "The OK gadget was selected"'l!
RETURN 'll
'Il
Cancel:'l!

PRINT "The CANCEL gadget was selected"'ll
RETURN 'll

Here is a listing of the complete program with the new gadget defini­
tions added:

'**********************************'l!
'* *'ll
,* Friendly-Gadgets with Intuition*'ll
'* ------------------------------ *'ll
'* *'l!
'* Author Wolf-Gideon Bleek *'ll
'* Date May 23 '88 *'ll
'* Name Friendly-Gadgets *'ll
,* Version: 1.2 *'ll
'* System : V1.2 & Vl.3 *'ll
'* *'ll
'**********************************i

OPTION BASE l'll
DEFLNG a-z'll

, Bmaps located on disk named T&T2,yours may differ'll
LIBRARY "t&T2:bmaps/exec.library"'ll
DECLARE FUNCTION AllocMem LIBRARY'll
DECLARE FUNCTION GetMsg LIBRARY'll
LIBRARY "t&t2:bmaps/intuition.library"'ll
DECLARE FUNCTION OpenWindow LIBRARY'll
GADGETDOWN 32&'ll
GADGET UP 64&'ll
CLOSEW 512&'ll

'lI
MList 0& 'II
Info 1'll
'll

MainProgramm:'ll
GOSUB OpenAll'll
, Main part'll
MainLoop:'ll

IF Info = 1 THEN'll
IntuiMsg = GetMsg(UserPort)'l!
IF IntuiMsg > 0 THEN GOSUB IntuitionMsg'll
GO TO MainLoop'll

END IF 'II

ABACUS 2.1 AN INTUITION WINDOW

'll
GOSUB CloseAll'll
'll

END'll
'll
OpenAll:'ll
'll

Border Bord, -1, -1, 1,67,14'll
IntuiText OKTxt, 1, 26, 2, "OK", O&'ll
IntuiText CancelTxt, 1, 10, 2, "Cancel", O&'ll
IntuiText ResetTxt, 1, 14, 2, "Reset", O&'ll
IntuiText UndoTxt, 1, 20, 2, "Undo", O&'ll
GadgetDef UndoGad, 0&, 380, 52, 65, 12, 0, 1, 1, Bord,

UndoTxt, 0&, I'll
GadgetDef ResetGad, UndoGad, 380, 68, 65, 12, 0, 1, 1, Bord,

ResetTxt, 0&, 2 'll
GadgetDef OKGad, ResetGad, 380, 84, 65, 12, 0, 1, 1, Bord,

OKTxt, 0&, 3'll
GadgetDef CancGad, OKGad, 380, 100, 65, 12, 0, 1, 1, Bord,

Cancel Txt , 0&, 4 'll
Title$ = "An example of four user friendly Gadgets"'ll
WinDef NWindow, 100, 50, 460, 150, 32+64+512&, 15&+4096&,

CancGad, Title$'ll
WinBase OpenWindow(NWindow)'lI
IF Win Base = ° THEN ERROR 7'll
RastPort PEEKL(WinBase+50)'ll
UserPort PEEKL(WinBase+86)'ll

RETURN'll
'll
CloseAll:'ll

CALL CloseWindow(WinBase)'ll
CALL UnDef'll

RETURN'll
'll
IntuitionMsg: 'll

MsgType PEEKL(IntuiMsg+20)'lI
Item PEEKL(IntuiMsg+28)'ll
GadgetNr% PEEK(Item+39)'ll
CALL ReplyMsg(IntuiMsg)'lI

'The check routines:'ll
IF (MsgType = GADGETDOWN) THEN'll

'activation'll
PRINT "DOWN Gadget-Nr.:";GadgetNr%'ll

END IF'll
'll
IF (MsgType = GADGETUP) THEN'll
'rel verify mode'll
PRINT "UP Gadget-Nr.:";GadgetNr%'ll
IF GadgetNr% = 1 THEN'll

GOSUB Undo 'put in old value'll
END IF'll
IF GadgetNr% = 2 THEN'll

GOSUB ResetRoutine 'all values back to original'll
END IF'll

37

2. AMIGABASIC TRICKS AND TIPS M ORE TRICKS & TIPS

38

IF GadgetNr% = 3 THENi
GOSUB Ok 'end value entryi

END IFi
IF GadgetNr% 4 THENi

GOSUB Cancel 'interrupt value entryi
END IFi

END IFi
i
IF (MsgType = CLOSEW) THENi
'close system Gadget windowi
PRINT "CLOSE WINDOW"i
Info = Oi

END IFi
i
RETURNi
i
Undo:i

PRINT "The UNDO gadget was selected"i
RETURN i
i
ResetRoutine:i

PRINT "The RESET gadget was selected"i
RETURN i
i
Ok: i

PRINT "The OK gadget was selected"'l!
RETURN i
i
Cancel:'lI

PRINT "The CANCEL gadget was selected"i
RETURN 'lI
'lI
'--i

'lI
SUB DefChip(Buffer,Size)STATIC'l!

SHARED MList'lI
Size=Size+8'lI
Buffer=AllocMem(Size,65538&)i
IF Buffer>O THEN'lI

POKEL Buffer,MListi
POKEL Buffer+4,Sizei
MList=Buffer'lI
Buffer=Buffer+8i

ELSEi
ERROR 7'lI

END IF'll
END SUB'lI
SUB UnDef STATICi

SHARED MList'lI
undef.loop:'lI

IF MList>O THENi
Address = PEEKL(MList)i
ListSize = PEEKL(MList+4)i
FreeMem MList, ListSize'lI
MList = Address'll
GOTO undef.loopi

ABACUS 2.1 AN INTUITION WINDOW

END IF'll
END SUB 'll
SUB WinDef(bs, x%, y%, b%, h%, IDCMP, f, gad, T$) STATIC'll

Size = 48+LEN(T$)+1'll
DefChip bs,Size'll
POKEW bs ,x%
POKEW bs+ 2,y%
POKEW bs+ 4, b%
POKEW bs+ 6,h%
POKEW bs+ 8,65535&
POKEL bs+l0,IDCMP
POKEL bs+14, f
POKEL bs+18, gad
POKEL bs+26,bs+48

, Left Corner'l[
, Top Corner'l[
, width'l[
, Height'll
, Detail- BlockPen'll
, IDCMP Flags'll
, Flags'l[
, First Gadget'll
, Title'l[

POKEW bs+46,1 ' Screen Type'll
FOR i%=l TO LEN(T$)'lI

POKE bs+47+i%,ASC(MID$(T$,i%,1»'l[
NEXT'll

END SUB'lI
SUB GadgetDef (bs, nx, x%, y%, b%, h%, f%, a%, T%, i, txt, si,
n%) STATIC'lI

DefChip bs,44& ' Gadget-Structure length'll
POKEL bs ,nx '*NextGadget'l[
POKEW bs+ 4,x% ' LeftEdge'l[
POKEW bs+ 6,y% ' TopEdge'll
POKEW bs+ 8,b% ' width'l[
POKEW bs+l0,h% ' Height'll
POKEW bs+12,f% ' Flags'll
POKEW bs+14,a% ' Activation'l[
POKEW bs+16,T% ' GadgetType'l[
POKEL bs+18,i ' GadgetRender'l[
POKEL bs+26,txt '*GadgetText'l[
POKEL bs+34,si ' SpecialInfo'l[
POKEW bs+38,n% ' GadgetID'l[

END SUB'l[
'l[
SUB IntuiText(bs, c1%, x%, y%, T$, nx) STATIC'lI

Size=20+LEN(T$)+1 'Structure length+ Text length+
Nullbyte'll

DefChip bs,Size'l[
POKE bs ,c1% ' FrontPen'l[
POKE bs+ 2,1 ' DrawMode'l[
POKEW bs+ 4,x% ' Left corner'l[
POKEW bs+ 6,y% ' Top corner'll
POKEL bs+12,bs+20 'IText'l[
POKEL bs+16,nx ' NextText'll
FOR i%=l TO LEN(T$)'lI

POKE bs+19+i%,ASC(MID$(T$,i%,1»'l[
NEXT'l[

END SUB'l[
'l[
SUB Border(bs, x%, y%, c%, b%, h%) STATIC'l[

DefChip bs,48& ' Structure length+ Coordinate
table'l[

39

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

2.1.4

Selection
tables

40

POKEW bs ,x%
POKEW bs+2,y%
POKE bs+4, c%
POKE bs+7, 8

• Left corner'l!
• Top corner'l!
• FrontPen'l!
• Count'l!

POKEL bs+8,bs+16 '*XY'l!
FOR i%=0 TO 1'l!

POKEW bs+22+i%*4,h%-1'l!
POKEW bs+24+i%*4,b%-1'l!
POKEW bs+32+i%*4,1'l!
POKEW bs+38+i%*4,h%-1'l[
POKEW bs+40+i%*4,b%-2'l[

NEXT'l!
END SUB'I

Filled gadgets

When you create gadgets for a window, you should make it a habit to
create groups of gadgets that represent specific actions and responses.
Filling a window with individual gadgets is inadvisable. This ensures
that only a group of gadgets can be selected. For example, let's consider
the selection of a font. Only one font can be active at a time. Filled
gadgets have a built-in limiting factor. When you click on the desired
status, this action negates the previously clicked filled gadget (Le., the
new gadget becomes filled and the old gadget becomes "plain").

The programming involved in making filled gadgets is somewhat
different from that required for normal gadgets. You create structures,
graphics and text as usual. But after activating a gadget, the screen area
occupied by the clicked gadget must change color (the fIlling). Intuition
tests the gadget status. If the user selects a filled gadget, the background
area of the gadget changes color. We use graphics.library to fIll
and unfill (empty) our filled gadgets. This library file contains the
two commands SetDrMd (SetDrawingMode) and RectFill
(RectangleFill). When calling this file, you should be sure that
the line lists the correct DOS path. The following example goes into
the T&T2 disk's bmaps: directory to access graphics . library:

LIBRARY "T&T2:bmaps/graphics.library"

Be sure to rename any LIBRARY call paths to suit the directories
you're using.

In addition, our evaluation routine must clear (unfill) a gadget that was
chosen previously. Here are our example gadgets:

Border Bord, -1, -1, 1, 100, 14'l[
IntuiText T060, 1, 10, 2, "Topaz 60", 0&'1
IntuiText T080, 1, 10, 2, "Topaz 80", O&'l[

ABACUS 2.1 AN INTUITION WINDOW

IntuiText PC60, 1, 26, 2, "PC 60", 0&'
IntuiText pe80, 1, 26, 2, "PC 80", 0&'

GadgetDef T060Gad, 0&, 80, 61, 9B, 12, 0, 1, 1, Bord, T060, 0&,
11
GadgetDef T080Gad, T060Gad, BO, 74, 9B, 12,0,1,1,Bord,ToBO,
0&, 2'1[
GadgetDef PC60Gad, ToBOGad, BO, B7, 9B, 12,
0,1, l,Bord,PC60,0&, 3'1[
GadgetDef PC80Gad, PC60Gad, BO,100, 9B, 12,
0,l,l,Bord,PC80,O&,4'1[
Title$ = "Font choice"'I[
WinDef NWindow, 100, 50, 460, 150, 32+64+512&, 15&+4096&,
PC80Gad, Title$'I[

All gadgets use the same Border structure which was used to create a
table similar to the paper size table in the Preferences program. The
first four texts in the program above specify four different fonts. The
program then creates a pointer to the gadget list. The program places
this list in the window definition area along with the window's title.

After starting the program we see a set of gadgets in the window, from
which you can select the desired font. To signify the active font, we
must click on the gadget box to fill it. The following new reading
routine for the Intuition message will perform this change of gadget
appearance (fill.unfill):

IF (MsgTyp = GADGETUP) THEN'
'reI verify mode'l[
PRINT "UP Gadget-Nr.:";GadgetNr%'I[
IF active THEN'I[

SetDrMd RastPort, 2'1[
RectFillRastPort, 80&, 13*active+48&, 177&,

13*active+59&'1[
SetDrMd RastPort, 1'1[

END IF'l[
active = GadgetNr%'I[
SetDrMd RastPort, 2'1[
RectFil1 RastPort, 80&, 13*active+4B&, 177&, 13*active+59&'1[

SetDrMd RastPort, 1'1[
END IF'I[

The reading routine ensures that the program knows the variables
chosen by the font. Selecting a different font fills in the current gadget
and unfills the previously selected gadget.

Next we analyze the new font chosen by the user. The program calcu­
lates the border coordinates and displays the border graphically. Then
the routine ends and returns to the main program.

Tables for many different purposes can be built using this method. The
programmer must prepare the corresponding number of gadgets and

41

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIps

42

handle the calculations involved with inverting the graphic. This should
pose no problem because all of the gadgets in the table are of the same
size and are easy to calculate.

Here's the complete listing, with all subprograms, library calls and
variables:

1**********************************'
,* *'ll
,* Fill-Gadgets with Intuition *'ll
,* ------------------------------ *'ll
'* *'ll
,* Author Wolf-Gideon Bleek *'ll
,* Date May 23 '88 *'ll
'* Name Fill-Gadgets *'ll
,* Version: 1.2 *'ll
'* System : V1.2 & V1.3 *'ll
,* *'ll
'**********************************~

OPTION BASE I'll
DEFLNG a-z'll

, Bmaps located on disk named T&T2,yours may differ'll
LIBRARY "t&T2/bmaps/exec.library"'ll
DECLARE FUNCTION AllocMem LIBRARY'll
DECLARE FUNCTION GetMsg LIBRARY'll
LIBRARY "t&t2/bmaps/intuition.library"'ll
DECLARE FUNCTION Open Window LIBRARY'll
LIBRARY "t&t2/bmaps/graphics.library"'ll
'll
GADGET DOWN 32&'ll
GADGETUP 64&'ll
CLOSEW 512&'lI

'll
MList O&'ll
Info I'll
'll

MainProgramm:'ll
GOSUB OpenAll'll
, Main part'll
MainLoop:'l[

'll

IF Info = 1 THEN'll
IntuiMsg = GetMsg(UserPort)'ll
IF IntuiMsg > 0 THEN GOSUB IntuitionMsg'll
GOTO MainLoop'1l

END IF 'll

GOSUB CloseAll'll
'll

END'll
'll
OpenAll:'lI

Border Bord, -1, -1, 1, 100, 14'll
IntuiText T060, 1, 10, 2, "Topaz 60", O&'ll
IntuiText T080, 1, 10, 2, "Topaz 80", O&'ll
IntuiText PC60, 1, 26, 2, "PC 60", O&'ll

ABACUS 2.1 AN INTUITION WINDOW

IntuiText PCSO, 1, 26, 2, "PC 80", O&!
GadgetDef T060Gad, 0&, SO, 61, 9S, 12, 0, 1, 1, Bord, T060,

0&, I!
GadgetDef ToSOGad, T060Gad, 80, 74, 98, 12, 0, 1, 1, Bord,

ToSO, 0&, 2'11
GadgetDef PC60Gad, ToSOGad, 80, 87, 98, 12, 0, 1, 1, Bord,

PC60, 0&, 3'11
GadgetDef PCSOGad, PC60Gad, 80, 100, 98, 12, 0, 1, 1, Bord,

PCSO, 0&, 4!
Title$ = "Font choice"'
WinDef NWindow, 100, SO, 460, ISO, 32+64+S12&, lS&+4096&,

PC80Gad, Title$'11
WinBase OpenWindow(NWindow)!
IF WinBase = 0 THEN ERROR 7'
RastPort
UserPort

RETURN!

PEEKL(WinBase+SO),
PEEKL(WinBase+S6)!

,
CloseAll:'11

CALL CloseWindow(WinBase)!
CALL UnDen

RETURN'
!
IntuitionMsg: ,

,

MsgTyp PEEKL(IntuiMsg+20)!
Item PEEKL(IntuiMsg+2S)!
GadgetNr% PEEK(Item+39)!
CALL ReplyMsg(IntuiMsg)! ,
IF (MsgTyp = GADGETDOWN) THEN!

'immediately activated'
PRINT "DOWN Gadget-Nr.:";GadgetNr%!

END IF'

IF (MsgTyp = GADGETUP) THEN!
'reI verify mode'
PRINT "UP Gadget-Nr.:";GadgetNr%!
IF active THEN'
SetDrMd RastPort, 2'
RectFil1 RastPort, 80&, 13*active+48&, 177&,

13*active+S9&'11
SetDrMd RastPort, I'll

END IF'
active = GadgetNr%!
SetDrMd RastPort, 2'
RectFil1 RastPort, 80&, 13*active+48&, 177&,

13*active+S9&'l!
SetDrMd RastPort, I'll

END IF!
!

IF (MsgTyp = CLOSEW) THEN'
'System-Gadget Window close!
PRINT"CLOSE WINDOW",
Info = O!

43

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

44

END IF'I[
RETURN'J[
.--'1[
'l[
SUB DefChip(Buffer,Size)STATIC'J[

SHARED MList'J[
Size=Size+8'J[
Buffer=AllocMem(Size, 65538&)'l[
IF Buffer>O THEN'J[

POKEL Buffer,MList'J[
POKEL Buffer+4,Size'J[
MList=Buffer'J[
Buffer=Buffer+8'1[

ELSE'J[
ERROR 7'1[

END IF'I[
END SUB'I[
SUB UnDef STATIC'J[

SHARED MList'J[
undef .loop: 'J[

IF MList>O THEN'J[
Address = PEEKL(MList)'I[
ListSize = PEEKL(MList+4)'J[
FreeMem MList, ListSize'J[
MList = Address'J[
GOTO undef.loop'J[

END IF'I[
END SUB 'J[
SUB WinDef(bs, x%, y%,

Size = 48+LEN(T$)+1'J[
DefChip bS,Size'J[
POKEW bs ,x%
POKEW bs+ 2,y%

b%, h%, IDCMP, f, gad, T$) STATIC'l[

POKEW bs+ 4,b%
POKEW bs+ 6,h%
POKEW bs+ 8,65535&
POKEL bs+10,IDCMP
POKEL bs+14, f
POKEL bs+18,gad
POKEL bs+26,bs+48

• Left Corner'J[
• Top Corner'J[
• Width'J[
• Height'J[
• Detail- BlockPen'J[
• IDCMP Flags'J[
• Flags'J[
• First Gadget'l[
• Title'J[

POKEW bs+46,1 • Screen Type 'J[
FOR i%=l TO LEN(T$)'J[

POKE bs+47+i%,ASC(MID$(T$,i%,1))'J[
NEXT'J[

END SUB'J[
SUB GadgetDef (bs, nx, x%, y%, b%, h%,
n%) STATIC'J[

f%, a%, T%, i, txt, si,

DefChip bs,44&
POKEL bs ,nx
POKEW bs+ 4,x%
POKEW bs+ 6,y%
POKEW bs+ 8,b%
POKEW bs+10,h%
POKEW bs+12,f%
POKEW bs+14,a%
POKEW bs+16,T%

• Gadget-Structure
• *NextGadget 'J[
• LeftEdge'J[
• TopEdge'J[
• Width'J[
• Height'J[
• Flags'J[
• Activation'J[
• GadgetType'J[

length'J[

ABACUS

2.1.5

2.1 AN INTUITION WINDOW

POKEL bs+18,i
POKEL bs+2 6, txt
POKEL bS+34,si
POKEW bs+38,n%

END SUB'I[
'I[

, GadgetRender'l[
, *Gadget Text 'I[
, SpecialInfo'l[
, GadgetID'I[

SUB IntuiText(bs, c1%, x%, y%, T$, nx) STATIC'I[
Size=20+LEN(T$)+1 'Structure length+ Text 1ength+

Nullbyte'l[
DefChip bs,Sizei
POKE bs ,c1% ' FrontPen'l[
POKE bs+ 2,1
POKEW bs+ 4,x%
POKEW bs+ 6,y%
POKEL bs+12,bs+20
POKEL bs+16,nx
FOR i%=1 TO LEN(T$)'I[

, DrawMode'l[
, Left corner'l[
, Top corner'l[
, IText'l[
, NextText'l[

POKE bs+19+i%,ASC(MID$(T$,i%,1»'I[
NEXT'![

END SUB'I[
'I[
SUB Border(bs, x%, y%, c%, b%, h%) STATIC'I[

DefChip bs,48& ' Structure length+ Coordinate table'l[
POKEW bs ,x% ' Left corner'l[
POKEW bs+2,y% ' Top corner'l[
POKE bs+4,c% ' FrontPen'l[
POKE bs+7,8 ' Count 'I[
POKEL bs+8,bs+16 '*XY'I[
FOR i%=O TO 1'1[

POKEW bs+22+i%*4,h%-1'1[
POKEW bs+24+i%*4,b%-1'l[
POKEW bs+32+i%*4,1'1[
POKEW bs+38+i%*4,h%-1'l[
POKEW bs+40+i%*4,b%-2'1[

NEXT'![
END SUB

Scrolling tables

A large number of selections or an undefined number of elements can
be difficult to program using filled gadgets. Scrolling tables are a
logical choice. A scrolling table allows you to see only a small part of
the complete table, which can be moved up or down.

You've seen scrolling tables at work if you've ever selected the Change
Printer gadget in the Preferences program. When you click Change
Printer, the Change Printer screen appears. This screen has a scrolling
table of printer drivers in the upper right hand comer of the screen. This

45

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIps

46

type of table is used because of its flexibility-it doesn't matter how
many printer drivers are on a disk, you can view and select them all.
You control the selection by clicking on the up and down arrows to the
left of the list of printers.

Our program will need to create a table to display the possible choices
and two gadgets, one for each arrow. Clicking on the arrow gadgets
alters the display of possible choices. The following listing defines our
scrolling table with two arrow gadgets and three display areas:

OpenAll:'ll
Border Bord, -1, -1, 1, 200, 14'll
Border Box, 0, -1, 1, 50, 21'll
GadgetDef Higher, 0&, 51, 60, 48, 18, 0, 1, 1, 0&, 0&, 0&, I'll

GadgetDef Lower, Higher, 51, 80, 48, 18, 0, 1, 1, 0&, 0&, 0&,
2'll

TitleS = "Scrolling-Table"'ll
WinDef NWindow, 100, 50, 460, 150, 32+64+512&,

15&+4096&, Lower, TitleS'll
WinBase = OpenWindow(NWindow)'
IF Win Base = 0 THEN ERROR 7'll
RastPort = PEEKL(WinBase+SO)'l[
UserPort = PEEKL(WinBase+86)'l[
DrawBorder RastPort, Bord, 100&, 60&'l[
DrawBorder RastPort, Bord, 100&, 73&'l[
DrawBorder RastPort, Bord, 100&, 86&'ll
DrawBorder RastPort, Box, 50&, 60&'l[
DrawBorder RastPort, Box, 50&, 79&'ll
'll
x = 50

'x-
x(l) =17+x
x(3) =34+x
x(5) =34+x
x(7) =40+x
x(9) =25+x
x (11) =10+x
x(13)=17+x
x(15)=17+x
'l[

y = 60'll
y- value'll
x(2) =16+y'll
x(4) =16+y'll
x(6) =10+y'll
x(8) =10+y'll
x (10)=2+y'll
x(12)=10+y'll
x(14)=10+y'll
x(16)=16+y'll

Move RastPort, 17+50&, 16+60&'lI
PolyDraw RastPort, 8&, VARPTR(x(l»'lI
'lI
y = 62'll

'y- Value'll
x(2) =20+y'll
x(4) =20+y'll
x(6) =26+y'll
x(8) =26+y'll
x(10)=34+y'll
x (12)=26+y'll
x(14)=26+y'll
x(16)=20+y'll
'lI

ABACUS 2.1 AN INTUITION WINDOW

Move RastPort, 17+50&, 20+62&~
PolyDraw RastPort, 8&, VARPTR(x(1»~
~
FOR i = 1 TO 5~

READ Table$(i)~
IntuiText ITxt(i), 1, 0, 0, Table$(i), O&~

NEXT i~
TabOut Active'll

RETURN~

CloseAll:'1
CALL CloseWindow(WinBase)~
CALL UnDen

RETURN~

Mter the window opens and the gadgets are drawn. DrawBorderO
draws the boxes that are to contain our choices. PolyDrawO uses the
graphics.library to draw a polygon. This function allows coor­
dinate tables to be created in only a few lines of code. Here we use the
PolydrawO routine to draw the up and down arrow graphics next to
the scrolling table.

Following that, OpenAll reads five texts from DATA statements,
which will later be used in our table. The TabOut subroutine handles
the output of our choices.

Below we've printed the entire program with this new output routine
and the DATA statements:

'***********************************~
.* *~

'* Scrolling-Table-Gadgets *~

'* ----------------------- *~
.* *~
.* Author : Wolf-Gideon Bleek *~

'* Date May 31 '88 *~
,* Name Scroll-Gadgets *'11
'* Version: 1.2 *'11
'* System : V1.2 & V1.3 *'lI
'* *'11
'***********************************'ll

OPTION BASE 1'll
DEFLNG a-w'll
DEFINT x'I

, Bmaps located on disk named T&T2,yours may differ~
LIBRARY "t&t2:bmaps/exec.library"~
DECLARE FUNCTION AllocMem LIBRARY'll
DECLARE FUNCTION GetMsg LIBRARY'll
LIBRARY "t&t2:bmaps/intuition.library"'l[
DECLARE FUNCTION Open Window LIBRARY'lI
LIBRARY "t&t2:bmaps/graphics.library"'lI
'l!
GADGET DOWN 32&'lI
GADGETUP 64&'lI

47

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIps

48

CLOSEW 512&i
i

MList O&i
Info 11
Active 2'l1
<[
DIM x(16) 'lI
DIM SHARED Table$(5), ITxt(5)i
'lI

MainProgramm:<[
GOSUB OpenAll'll
, Main parti
MainLoop:i

IF Info = 1 THEN'll
IntuiMsg = GetMsg(UserPort)i
IF IntuiMsg > 0 THEN GOSUB IntuitionMsg'll
GOTO MainLoop'll

END IF 'lI
'lI
GOSUB CloseAll'll
'lI

END'lI
OpenAll:i

Border Bord, -1, -1, 1, 200, 14'l1
Border Box, 0, -1, 1, 50, 21i
GadgetDef Higher, 0&, 51, 60, 4S, IS, 0, 1, 1, 0&, 0&, 0&, I'll

GadgetDef Lower, Higher, 51, SO, 48, IS, 0, 1, 1, 0&, 0&, 0&,
2'l1

Title$ = "Scrolling-Table"'lI
WinDef NWindow, 100, 50, 460, 150, 32+64+512&, 15&+4096&,

Lower, Title$i
WinBase OpenWindow(NWindow)'lI
IF WinBase = 0 THEN ERROR 7'l1
RastPort = PEEKL(WinBase+50)'lI
UserPort = PEEKL(WinBase+S6)'lI
DrawBorder RastPort, Bord, 100&, 60&'lI
DrawBorder RastPort, Bord, 100&, 73&i
DrawBorder RastPort, Bord, 100&, S6&i
DrawBorder RastPort, Box, 50&, 60&'lI
DrawBorder RastPort, Box, 50&, 79&i
'lI
x = 50 Y = 60'll

'x- y- valuei
x(l) =17+x x(2) =16+y'll
x(3) =34+x x(4) =16+y'll
x (5) =34+x x(6) =10+y'll
x(7) =40+x x(8) =10+yi
x (9) =25+x x (10) =2+yi
x(1l)=10+x x(12)=10+y'll
x(l3)=17+x x(14)=10+y'll
x(15)=17+x x(16)=16+y'll
'lI
Move RastPort, 17+50&, 16+60&'lI
PolyDraw RastPort, S&, VARPTR(x(I»i
<[

ABACUS 2.1 AN INTUITION WINDOW

y = 62'l!
'y- Value'll
x(2) =20+y'll
x(4) =20+y'll
x(6) =26+y'll
x(8) =26+y'll
x(10)=34+y'l!
x(12)=26+y'll
x(14)=26+yCJ[
x(16)=20+y'll
!
Move RastPort, 17+50&, 20+62&'l!
PolyDraw RastPort, 8&, VARPTR(x(l»'l!
'll
FOR i = 1 TO 5'll

READ Table$(i)'ll
IntuiText ITxt(i), 1, 0, 0, Table$(i), O&'l!

NEXT i'l!
TabOut Active'll

RETURN'l!
CloseAll:'ll

CALL CloseWindow(WinBase)!
CALL UnDef'll

RETURN'I
IntuitionMsg: 'J[

MsgTyp = PEEKL(IntuiMsg+20)'l!
Item = PEEKL(IntuiMsg+28)'I
GadgetNr% = PEEK(Item+39)'ll
CALL ReplyMsg(IntuiMsg)'l!
'lI
IF (MsgTyp = GADGETDOWN) THEN'l!

'activated'll
PRINT "DOWN Gadget-Nr.:";GadgetNr%'ll

END IF'll
!
IF (MsgTyp = GADGETUP) THEN'll

'verify modeCJ[
PRINT "UP Gadget-Nr.:";GadgetNr%'ll
IF GadgetNr% = 1 AND Active<>4 THEN Active=Active+l

TabOut(Active)'ll
IF GadgetNr% = 2 AND Active<>l THEN Active=Active-l

TabOut(Active)Cf
END IF'll
'J[

IF (MsgTyp = CLOSEW) THEN'll
'System-Gadget Window closer'll
PRINT "CLOSE WINDOW"'ll
Info = O'll

END IF'll
RETURN'll
'--'ll
SUB DefChip(Buffer,Size)STATIC'll

SHARED MList'll
Size=Size+8'll

49

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & Tips

so

Buffer=AllocMem(Size,65538&)1
IF Buffer>O THEN1

POKEL Buffer,MList1
POKEL Buffer+4,Size1
MList=BufferCj[
Buffer=Buffer+S1

ELSE1
ERROR 71

END IF'll
END SUB1
SUB UnDef STATIC'll

SHARED MList'll
undef.loop:1

IF MList>O THEN'll
Address = PEEKL(MList)!
ListSize = PEEKL(MList+4)'lI
FreeMem MList, ListSize'll
MList = Address'll
GOTO undef.loop'll

END IF1
END SUB CJ
SUB WinDef(bs, x%, y%, b%, h%, IDCMP, f, Gad, T$) STATIC'll

Size = 4S+LEN(T$)+1'll
DefChip bs,Size1
POKEW bs ,x%
POKEW bs+ 2,y%
POKEW bs+ 4, b%
POKEW bs+ 6, h%
POKEW bs+ 8,65535&
POKEL bs+10,IDCMP
POKEL bs+ 14, f
POKEL bs+1S,Gad
POKEL bs+26,bs+48
POKEW bs+46,1
FOR i%=l TO LEN(T$)1

, LeftEdge1
, TopEdge1
, Width'll
, HeightCJi
, Detail- BlockPen'll
, IDCMPFlags'!
, Flags'J[
, FirstGadget1
, Title1
, Screen Type 'll

POKE bs+47+i%,ASC(MID$(T$,i%,1»1
NEXT1

END SUB'll
SUB GadgetDef (bs, nx, x%, y%, b%, hi, f%, at, T%, i, txt, si,
n%) STATIC1

DefChip bs,44& ' Gadget-Structure length1
POKEL bs ,nx '*NextGadget1
POKEW bs+ 4,x% , LeftEdge1
POKEW bs+ 6,y% ' TopEdge1
POKEW bs+ 8,b% ' Width1
POKEW bs+10,h% , Height'!
POKEW bs+12,f% , Flags1
POKEW bs+14, a% ' Activation1
POKEW bs+16,T% ' GadgetType1
POKEL bs+18,i ' GadgetRender1
POKEL bs+26, txt '*GadgetText'll
POKEL bs+34,si ' SpecialInfoCJi
POKEW bs+38,n% ' GadgetID'll

END SUB'J[
SUB IntuiText(bs, c1%, x%, y%, T$, nx) STATIC'll

ABACUS 2.1 AN INTUITION WINDOW

Size=20+LEN(T$)+1
Nullbyte':l[

DefChip bs,Size':l[
POKE bs ,c1%
POKE bs+ 2,1
POKEW bs+ 4,x%
POKEW bs+ 6,y%
POKEL bs+12,bs+20

, Structurelength+Textlength+

, FrontPen':l[
, DrawMode'J[
, LeftEdge'J[
, TopEdge':l[
I IText':l[

POKEL bs+16,nx I NextText':l[
FOR i%=l TO LEN(T$)':l[

POKE bs+19+i%,ASC(MID$(T$,i%,1»'J[
NEXT':l[

END SUB':l[
y%, C%, b%, h%) STATIC'J[SUB Border(bs, x%,

DefChip bs,4B&
POKEW bs ,x%
POKEW bs+2,y%
POKE bs+4,C%
POKE bs+7,B
POKEL bs+B,bs+16
FOR 1%=0 TO l':l[

, Structure length+ coordinate table':l[
, LeftEdge':l[
, TopEdge':l[
, FrontPen'J[
, Count'J[
'*XY'll

POKEW bs+22+i%*4,h%-1':l[
POKEW bs+24+i%*4,b%-1':l[
POKEW bs+32+i%*4,1':l[
POKEW bs+3B+i%*4,h%-1':l[
POKEW bs+40+i%*4,b%-2':l[

NEXT':l[
END SUB':l[
'exchange returned in PropInfo':l[
SUB STRINGINFO(bs,max%,buff$) STATIC':l[

IF LEN(buff$»max% THEN':l[
nmax%=LEN(buff$)':l[

ELSE':l[
nmax%=max%':l[

END IF':l[
IF (nmax% AND 1) THEN nmax%=nmax%+l':l[
Size=36+2*(nmax%+4)':l[
DefChip bs,Size':l[
POKEL bs,bs+36':l[
POKELbs+4,bs+40+nmax%':l[
POKEW bs+10,max%+1':l[
IF buff$<>""THEN':l[

FOR i%=l TO LEN(buff$)':l[
POKE bs+35+i%,ASC(MID$(buff$,i%,1»':l[

NEXT':l[
END IF'll

END SUB ':l[
SUB TabOut(Active) STATIC':l[
SHARED RastPort'll

COLOR O,O'll
FOR i = 0 TO 2'll

SetAPen RastPort, O'll
RectFill RastPort, 101&, 13*i+60&, 296&, 13*i+71&':l[

NEXT i':l[

51

- - -------------------

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

2.1.6

52

COLOR 1,O'll
FOR i = Active-l TO Active+l'll

IF i>O AND i<5 THEN'll
POKEW ITxt(i)+6, 62+(i-Active+1)*13'll
PrintIText RastPort, ITxt(i), 110&, O&'ll

END IF'll
NEXT i'll
SetDrMd RastPort, 2'll
RectFill RastPort, 101&, 73&, 296&, 84&'ll
SetDrMd RastPort, I'll

END SUB'll
DATA Scroll-Table'll
DATA Closer'll
DATA Table'll
DATA Gadget'll
DATA System gadgets'll

Proportional gadgets

Proportional gadgets (also called sliders) allow the user to enter values
that change in a proportional manner. Setting screen colors in the
Preferences program is a good example of proportional gadgetry. Each
controller can accept a value between 0 and 15, with each number
representing the intensity of a color from no intensity (0) to high
intensity (15).

You could also add three string gadgets into which a number may be
entered, but for this kind of selection a proportional gadget is much
more convenient than a string gadget. You can change the red, green
and blue values by selecting the knob in the desired proportional gadget
and moving the mouse pointer to the left or right, thus moving the
knob.

The intuition.library file provides help in programming pro­
portional gadgets. The container in a proportional gadget is the region
containing the knob. This container sets the borders in which the pro­
portional gadget's knob may be moved. This movement can be in the
horizontal direction, vertical direction, or in both directions at the same
time. The user defines the knob graphic, or the proportional gadget
routine uses the default Intuition knob graphic. The container usually
has a visible border to allow easy selection by the user.

The Gadget structure must be enlarged to contain a PropInfo struc­
ture. This structure has connections to the SpecialInfo pointer.
For this we have a subprogram which places the parameters in
memory.

ABACUS 2.1 AN INTUITION WINDOW

SUB PropInfo (bs, Flags%, HPot%, VPot%, HBody%, VBody%)
STATIC'll

DefChip bs,22&'11
POKEW bs , Flags%'11
POKEW bs+ 2,HPot%'l[
POKEW bs+ 4,VPot%'11
POKEW bs+ 6,HBody%'ll
POKEW bs+ 8,VBody%'ll

END SUB'll

We should address the values we added to the Info structure first.
Flags here define whether the knob should move horizontally (2) or
vertically (4). The autoknob (1) flag informs Intuition that no
graphic exists for the knob, and that Intuition should use the default
knob graphic available from Intuition. HPot and VPot define the
knob's position. 0 indicates the lower right axis while &HFFFF indi­
cates the upper left axis. After the user moves the knob he can read the
new position from here. HBody and VBody return the step increment
of the knob. Both values are calculated as part of the whole (&HFFFF).
Intuition inserts all further values found in the structure-these values
don't have to be defined by the program.

Autoknob graphically defines the knob. Autoknob requires an
eight-byte memory area which contains the knob's position (X and Y
coordinates) and width. If all four values are unset, the initialization
routine sets them. We still need two more structures to complete our
proportional gadget:

PropInfo PropI, 1+2, 0, 0, &HFFF, 0'11
IntuiText, Text, 2, -80, 2, "Mover:", O&'ll
DefChip Buffer, 8&'l[
GadgetDef Gadget, 0&, 150, 30, 100, 10, 0, 1+2, 3, Buffer,

Text, PropI, 1'][

We can construct complete proportional gadgets from these few pieces
of data. As an example, we have a listing that uses three such gadgets
in a window. These three proportional gadgets allow the user to change
the value of the corresponding color register when selected with the
mouse.

1***********************************,
,* *'ll
,* Proportional-Gadgets *'lI
, * -------------------- *'ll
,* *'ll
, * Author : Wolf-Gideon Bleek *'][
,* Date :May 23 '88 *'ll
'* Name : Proportional-Gadgets *'lI
'* Version: 1.2 *'lI
'* System : V1.2 & V1.3 *'ll
'* *'ll
'***********************************~

S3

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

54

OPTION BASE 1'1[
DEFLNG a-z'l[
CJI

LIBRARY "T&T2:bmaps/exec.library"'ll
DECLARE FUNCTION AllocMem LIBRARY'll
DECLARE FUNCTION GetMsg LIBRARY'll
LIBRARY "T&T2:bmaps/intuition.library"'I[
DECLARE FUNCTION OpenWindow LIBRARY'I[
GADGETDOWN 32&'ll
GADGET UP 64&'1[
CLOSEW 512&'ll

'll
MList '"' O&'ll
Info 1'll
CJI

MainProgramm:'I[
GOSUB OpenAll'l[
I Main part'l[
MainLoop:'I[

'I[

IF Info = 1 THEN'I[
IntuiMsg = GetMsg(UserPort)'ll
IF IntuiMsg > 0 THEN GOSUB IntuitionMsg'll
GOTO MainLoop'l[

END IF 'I[

GOSUB CloseA1H
'I[

END 'I[
OpenAll:'I[

IntuiText RedTxt, 2, -BO, 2, "Red", 0& 'll
IntuiText GrnTxt, 2, -BO, 2, "Green", 0& 'll
IntuiText BluTxt, 2, -80, 2, "Blue", 0& 'I[
PropInfo Prop1, 1+2, 0, 0, &HFFF, 0'1[
PropInfo Prop2, 1+2, 0, 0, &HFFF, 0'1[
PropInfo Prop3, 1+2, 0, 0, &HFFF, 0'1[
DefChip Buffer(l), 8&'1[
DefChip Buffer(2), 8&'1[
DefChip Buffer(3), B&'I[
GadgetDef RedGad, 0&, ISO, 30, 114, 10, 0, 1+2, 3,

Buffer (1), RedTxt, Prop1, 1'1[
GadgetDef GrnGad, RedGad, ISO, 45, 114, 10, 0, 1+2, 3,

Buffer(2), GrnTxt, Prop2, 2'1[
GadgetDef BluGad, GrnGad, ISO, 60, 114, 10, 0, 1+2, 3,

Buffer(3), BluTxt, Prop3, 3'1[
Title$ = "Color initialization"'ll
WinDef NWindow, 100, 50, 460, ISO, 32+64+512&,

15&+4096&, BluGad, Title$'I[
WinBase OpenWindow(NWindow)'I[
IF WinBase = 0 THEN ERROR 7'1[
RastPort
UserPort

RET URN 'I[
'll
CloseAll :'1[

PEEKL(WinBase+50)'I[
PEEKL(WinBase+86)'I[

CALL CloseWindow(WinBase)'I[
CALL UnDef'l[

ABACUS 2.1 AN INTUITION WINDOW

RETURN'll
'll
IntuitionMsg: 'll

MsgTyp PEEKL(IntuiMsg+20)'ll
Item PEEKL(IntuiMsg+28)'ll
GadgetNr% PEEK(Item+39)'ll
CALL ReplyMsg(IntuiMsg)'ll
'll
IF (MsgTyp = GADGETDOWN) THEN'll

'activated'll
PRINT "DOWN Gadget-Nr.:";GadgetNr%'ll

END IF'll
'll
IF (MsgTyp = GADGETUP) THEN'll

'verify mpode'll
PRINT "UP Gadget-Nr.:";GadgetNr%;'ll
PRINT" Pos:";PEEKW(Buffer(GadgetNr%))'ll
Red PEEKW(Buffer(l))'ll
Grn = PEEKW(Buffer(2))'ll
Blu = PEEKW(Buffer(3))'ll
PALETTE 1, Red/100, Grn/lOO, Blu/lOO'll

END IF'll
'll
IF (MsgTyp = CLOSEW) THEN'll

'System-Gadget Window closer'll
PRINT "CLOSE WINDOW"'ll
Info = O'll

END IF'll
RETURN'll
'--'ll
SUB DefChip(Buffer,Size)STATIC'll

SHARED MList'll
Size=Size+8'll
Buffer=AllocMem(Size, 65538&) 'll
IF Buffer>O THEN'll

POKEL Buffer,MList'll
POKEL Buffer+4,Size'll
MList=Buffer'll
Buffer=Buffer+8'll

ELSE'll
ERROR 7'll

END IF'll
END SUB'll
SUB UnDef STATIC'll

SHARED MList'll
undef.loop:'ll

IF MList>O THEN'll
Address = PEEKL(MList)'ll
ListSize = PEEKL(MList+4)'ll
FreeMem MList, ListSize'll
MList = Address'll
GOTO undef.loop'll

END IF'll
END SUB 'll

55

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

S6

SUB WinDef(bs, x%, y%,
Size = 48+LEN(T$)+1~
DefChip bs,Size~
POKEW bs ,x%
POKEW bs+ 2,y%
POKEW bs+ 4, b%
POKEW bs+ 6,h%
POKEW bs+ 8,65535&
POKEL bs+10,IDCMP
POKEL bs+14,f
POKEL bs+18,Gad
POKEL bs+26,bs+48
POKEW bs+46,1
FOR i%=l TO LEN(T$)~

b%, h%, IDCMP, f, Gad, T$) STATIC'![

• Left corner~
• Top corner~
• Width~
• Height~
• Detail- BlockPen~

• IDCMP Flags'll
• Flags'![
• First Gadget~
• Title'![
• Screen Type ~

POKE bs+47+i%,ASC(MID$(T$,i%,1))~
NEXT~

END SUB'![
SUB GadgetDef (bs, nx, x%, y%, b%, h%, f%, a%, T%, i, Txt, si,
n%) STATIC'll

DefChip bs,44&
POKEL bs , nx
POKEW bs+ 4,x%
POKEW bs+ 6,y%
POKEW bs+ 8,b%
POKEW bs+10,h%
POKEW bs+12,f%
POKEW bs+14,a%
POKEW bs+16,T%
POKEL bs+18,i
POKEL bs+26,Txt
POKEL bs+34,si
POKEW bs+38,n%

END SUB~

• Gadget-Structure length~
'*NextGadget~

• Left corner~
• Top corner~
• Width~
• Height~
• Flags~
• Activation~
• GadgetType~
• GadgetRender~
'*GadgetText~

• SpecialInfo~
• GadgetID'll

SUB IntuiText(bs, c1%, x%, y%, T$, nx) STATIC~

Size=20+LEN(T$)+1 • IntuiText-Structure length + Text
length+ Nullbyte'll

DefChip bs,Size'![
POKE bs ,c1%
POKE bs+ 2,1
POKEW bs+ 4,x%
POKEW bs+ 6,y%
POKEL bs+12,bs+20
POKEL bs+16,nx
FOR i%=l TO LEN(T$)'![

• FrontPen~
• DrawMode~
• Left corner~
• Top corner'll
• IText~
• NextText'll

POKE bs+19+i%,ASC(MID$(T$,i%,1))~
NEXT'll

END SUB'll
SUB Border(bs, x%, y%, c%, b%, h%) STATIC~

DefChip bs,48& • Border-Structure length+
coordinates'll

POKEW bs ,x%
POKEW bs+2,y%
POKE bs+4,c%
POKE bs+7,8
POKEL bs+8,bs+16
FOR i%=O TO 1 'll

• Left corner'll
• Top corner'll
• FrontPen'll
• Count'll
'*XY'll

ABACUS

Looking
toward the
future

2.1 AN INTUITION WINDOW

POKEW bs+22+i%*4,h%-1!
POKEW bs+24+i%*4,b%-1~
POKEW bs+32+i%*4,1~
POKEW bs+38+i%*4,h%-1~
POKEW bs+40+i%*4,b%-2~

NEXT~

END SUB~
SUB PropInfo (bs, Flags%, HPot%, VPot%, HBody%, VBody%)
STATIC'll

DefChip bs,22&'ll
POKEW bs ,Flags%~

POKEW bs+ 2,HPot%~
POKEW bs+ 4,VPot%'ll
POKEW bs+ 6,HBody%~
POKEW bs+ 8,VBody%~

END SUB'll
'll

You should be able to develop many user-friendly programs from all of
the information in this section. We have tried to develop procedures
that allow easy access to the operating system, especially Intuition. All
the programs presented here are in modular form, and make it possible
to easily add these modules to your own programs. This is done the
following way:

Write each subprogram in a one directory as an ASCII file (save
"program_name",A). Put comments listing the required parameters
before each routine. When you need to use an Intuition call, then load
the subprogram using Merge and put the Intuition call in the
OpenAll subroutine.

57

2. AMIGABASIC TRICKS AND TIPS M ORE TRICKS & TIPS

2.2

S8

A file monitor

Now that we know the fundamentals of programming gadgets and
accessing Intuition, we'd like to show you a program that uses even
more Intuition calls. Accessing the screen displays using the operating
system is 10 times faster than in BASIC. Not only that, displaying
data on the screen through the operating system is many times faster
than in BASIC.

The file monitor in this section permits you to view any disk file in
hexadecimal and ASCII text formats. It also allows you to change or
edit the file. The file monitor uses an Intuition screen so gadgets
control the program.

The example program that follows contain a few BASIC lines that
must be entered on one line in AmigaBASIC, even though they appear
on two lines in this book. Formatting the program listings to fit into
this book has split some long BASIC lines into two lines of text. To
show where a BASIC line actually ends, we added an end-of-paragraph
marker (~). This character shows when you should press the <Return>
key at the end of a line. For example, the following line appears as two
lines below but must be entered as one line in AmigaBASIC:

WinDef NWindow, 100, 50, 460, 150, 32+64+512&, 15&+4096&, 0&,
Title$'ll

The ~ shows the actual end of the BASIC line.

Here is the file monitor program listing:

'REM DISKMON~
OPTION BASE 1~

DEFLNG a-z'll
ON ERROR GOTO FAILED ;REM remove after testing'll

DECLARE FUNCTION ALLOCMEM LIBRARY'll
DECLARE FUNCTION GETMSG LIBRARY~
LIBRARYIT&T2:bmaps/exec.library"~

LIBRARYIT&T2:bmaps/graphics.library"'ll
DECLARE FUNCTION OPENSCREEN LIBRARY'll
DECLARE FUNCTION OPENWINDOW LIBRARY'll
LIBRARY"T&T2:bmaps/intuition.libraryll~

DECLARE FUNCTION LOCK LIBRARY'll
DECLARE FUNCTION EXAMINE LIBRARY'll
DECLARE FUNCTION EXNEXT LIBRARY~
DECLARE FUNCTION IOERR LIBRARY'll
DECLARE FUNCTION XOPEN LIBRARY'll
DECLARE FUNCTION XREAD LIBRARY~
DECLARE FUNCTION XWRITE LIBRARY'll
DECLARE FUNCTION SEEK LIBRARY'll

ABACUS 2.2 A FILE MONITOR

LIBRARY"T&T2:bmaps/dos.library"i
LPRINT :REM used to load printer driver at startupi

PRINT"----------FILE MONITOR-Vl.O----------"i
PRINT") '88 by DATA BECKER (w) '88 by S. M. "i
PRINT 'll
PRINT"Program starts in a few seconds."'ll
PRINT"Please stand by ••• (no Multitasking"'ll
PRINT"during initialization!)"'ll
DIM SHARED borders(14),itxt(25),gadgets(24),sinfo(2)i
bfecOl=12577793&'ll
clearentry$=SPACE$(30)i
clearstring$=STRING$(80,O)i
INITIALIZE'l!
DIRECTORY'll
start%=-l'll
blocked%=Oi
WHILE (-l)'ll

qualifier%=PEEK(bfecOl)i
IF (qualifier%>&H60)AND(qualifier%<&H68)THEN'll

IF qualifier%AND 1 THEN GOSUB keypressed'll
END IF i
intuimsg=GETMSG(userport)i
IF intuimsg>O THEN GOSUB IntuitionMsgi

WEND 'J[

IntuitionMsg:'lI
MsgTyp=PEEKL(intuimsg+20)'ll
IF MsgTyp=2097152& THEN'll

IF start% THEN RETURN'll
ascii.i%=PEEKW(intuimsg+24)'ll
IF ascii.i%>O GOTO keypressed'll

END IF'll
Item=PEEKL(intuimsg+28)'lI
GadgetNr%=PEEK(Item+39)'ll
IF MsgTyp=32 THEN'll

IF (GadgetNr%=lO) OR (GadgetNr%=14) THEN blocked%=-l'll
RETURN'll

END IF 'll
IF MsgTyp<>64 THEN RETURNi
blocked%=O'l[
IF GadgetNr%<O THEN ERROR 255'1[
IF GadgetNr%<5 THEN'I[

COPYMEM SADD(clearstring$),sinfo(1)+36,80'll
POKEL sinfo(1)+36,CVL("DF"+CHR$(47+GadgetNr%)+":")'ll
lasttype%=O'll
DIRECTORYi

ELSEIF GadgetNr%<lO THEN'll
SETFILEACTDIR'lI
IF lasttype%=l THEN'I[

STATUS "Loading Block"'ll
OPENFILE'I[
IF oldhandle>O THEN :STATUS "Edit"i
RETURN'I[

END IF'll
DIRECTORYi

ELSEIF GadgetNr%=lO THEN'll
blocked%=O'l[

59

2. AMIGABASIC TRICKS AND TIPS M ORE TRICKS & TIPS

60

DIRECTORY'll
RETURN'll

ELSE IF GadgetNr%=ll THEN!
IF dirstart%>4 THEN dirstart%=dirstart%-5:DISPLAYDIR'll

ELSE IF GadgetNr%=12 THEN'll
IF number%>dirstart%+5 THEN'll

dirstart%=dirstart%+5'll
DISPLAYDIR'll

END IF 'll
ELSEIF GadgetNr%=13 THEN'll

DIRECTORY'll
ELSE IF GadgetNr%=14 THEN!

bloeked%=O'll
newoffset=PEEKL(sinfo(2)+28)*488'll
IF (newoffset>=newflen)OR(newoffset<O) THEN'll

POKEL sinfo(2)+36,CVL("O"+MKI$(O)+CHR$(O))'ll
STATUS "illegal Input"'ll
DISPLAYBEEP serbase'll
RETURN'll

END IF'll
oldpos=SEEK(oldhandle,newoffset,-l)'ll
eurrentoffset=newoffset'll
STATUS "reading Bloek"'ll
READBLOCK'll
RETURN'll

ELSEIF oldhandle=O THEN'll
POKEL sinfo(2)+36,CVL("O"+MKI$(O)+CHR$(O))'ll
STATUS "no File seleeted"'ll
DISPLAYBEEP serbase'll
RETURN'll

ELSE IF GadgetNr%=15 THEN'll
COPYMEM fundo,fbuffer,488'll
DISPLAYBUFFER'll

ELSE IF GadgetNr%=16 THEN'll
STATUS "reading again"'ll
oldpos=SEEK(oldhandle,-amtread,O)'ll
READBLOCK'l!

ELSEIF GadgetNr%=17 THEN'll
IF eurrentoffset<newflen-488 THEN'l!

STATUS "reading next See"'ll
eurrentoffset=eurrentoffset+488'll
READ BLOCK'll

END IF'll
ELSE IF GadgetNr%=18 THEN'll

IF eurrentoffset>487 THEN'll
STATUS "reading last See"'ll
eurrentoffset=eurrentoffset-488'll
oldpos=SEEK(oldhandle,-amtread-488,O)'ll
READ BLOCK'll

END IF'll
ELSEIF GadgetNr%=19 THEN'll

STATUS "writing Buffer"'ll
oldpos=SEEK(oldhandle,-amtread,0) 'll
wr=XWRITE(oldhandle,fbuffer,amtread)'l!

ELSE IF GadgetNr%=20 THEN'll
DUMPFILE 'l!

ABACUS 2.2 A FILE MONITOR

ELSEIF GadgetNr%=21 THEN~
DUMPBUFFER~

ELSE IF GadgetNr%=22 THEN~
edmode%=O~

STATUS "switched to HEX"~
DISPLAYBUFFER~

ELSEIF GadgetNr%=23 THEN~
edmode%=l~

STATUS "switched to ASCII"~
DISPLAYBUFFER~

ELSEIF GadgetNr%=24 THEN~
STATUS "ARE YOU SURE? Y/N"i
t%=O~

WHILE (t%<>&HD4)AND(t%<>&H93)i
t%=PEEK(bfecOl)~

WEND~

IF t%=&HD4 THEN ~

STATUS "You ARE sure! BYE"~
GOTO FAILEDi

END IF ~

END IF~

STATUS "OKAY"~
RETURN~

keypressed:'ll
ascii$=UCASE$(CHR$(ascii.i%»~

IF edmode%=l GOTO ASCIImode~
value%=INSTR("0123456789ABCDEF",ascii$)-H
IF qualifier%=&H67 THEN~

offset%=offset%-32 :'REM PAL uses 24~
IF offset%<O THEN offset%=amtread-l:nibble%=l'l[
CURSOROFF~

CURSORON~

RETURN'll
ELSEIF qualifier%=&H65 THEN~

offset%=offset%+32 : REM PAL uses 24~
IF offset%>=amtread THEN offset%=O:nibble%=O~
CURSOROFF'll
CURSORON'll
RETURN'll

ELSEIF qualifier%=&H63 THEN~
IF nibble%=O THEN~

nibble%=l~

ELSE~

nibble%=O'll
offset%=offset%+l~

IF offset%>=amtread THEN offset%=O~
END IF'll
CURSOROFF'll
CURSORON~

RETURN~

ELSE IF qualifier%=&H61 THEN~
IF nibble%=l THEN~

nibble%=O
ELSE~

nibble%=l~

offset%=offset%-l~

61

2. AMIGABASIC TRICKS AND TIPS M ORE TRICKS & TIPS

62

IF offset%<O THEN offset%=amtread-li
END IFi
CURSOROFFi
CURSORONi
RETURNi

END IF i
IF value%>=O THENi

IF nibble%=O THEN andi%=15:muls%=16:GOTO mki
andi%=240i
muls%=li

mk: a%=(PEEK(fbuffer+offset%)AND andi%)+value%*muls%i
POKE fbuffer+offset%,a%i

~

CURSOROFn
MOVE rastport,o.x%,o.y%+6~
SETAPEN rastport,l~
SETBPEN rastport,Oi
TEXT rastport,SADD(n0123456789ABCDEF n)+value%,a

, PAL systems can display both ascii and hexi
MOVE rastport, (o.b%+54)*8,o.y%+6i
SETAPEN rastport,Oi
SETBPEN rastport,li
TEXT rastport,fbuffer+offset%,l~

IF nibble%=O THEN nibble%=l:GOTO mk2~
nibble%=Oi
offset%=offset%+li
IF offset%>=amtread THEN offset%=Oi

mk2:i
CURSORONi
RETURNi

END IF'll
RETURN ~

ASCIImode:'lI
IF qualifier%=&H67 THENi

offset%=offset%-32 :'PAL uses 24i
IF offset%<O THEN offset%=amtread-l:nibble%=l~
CURSOROFn
CURSORONi
RETURNi

ELSE IF qualifier%=&H65 THEN~
offset%=offset%+32 :'PAL uses 24'lI
IF offset%>=amtread THEN offset%=O:nibble%=O~
CURSOROFFi
CURSORON'll
RETURNi

ELSEIF qualifier%=&H63 THENi
offset%=offset%+l:IF offset%>=amtread THEN offset%=O~
CURSOROFFi
CURSORONi
RETURNi

ELSEIF qualifier%=&H61 THEN~
offset%=offset%-li
IF offset%<O THEN offset%=amtread-li
CURSOROFF'll
CURSORON'll

ABACUS 2.2 A FILE MONITOR

RETURN'll
END IF 'll
IF ascii$<>CHR$(O) THEN'll

value%=ascii.i%'ll
POKE fbuffer+offset%,value%'ll
CURSOROFF'll
'll

, PAL Systems can be adapted to display both ASCII and hex'll
MOVE rastport,o.x%+(o.m%=O)*nibble%,o.y%+6'll
SETAPEN rastport,l'll
SETBPEN rastport,O'll
TEXT rastport,SADD(RIGHT$("O"+HEX$(value%),2»,2'll

'll
SETAPEN rastport,O'll
SETBPEN rastport,l'll

'REM PAL orginal: MOVE rastport, (o.b%+54)*8,o.y%+6'll
MOVE rastport,o.b%*8,o.y%+6'll
TEXT rastport,fbuffer+offset%,l'll
'll
'll
offset%=offset%+l'll
IF offset%>=amtread THEN offset%=O'll
CURSORON'll
RETURN'll

END IF'll
RETURN 'll
'll

FAILED:'ll
UNDEF'll

'lI

IF scrbase>O THEN'll
IF winbase>O THEN'll

CLOSEWINDOW winbase'll
IF oldhandle>O THEN :XCLOSE oldhandle'll

END IF'll
CLOSESCREEN scrbase'll

END IF'll
LIBRARY CLOSE'll
END'll

SYSTEM 'll

SUB DUMPBUFFER STATIC'll
SHARED fbuffer,HEXBUFF,currentlongs,currentoffset'll

outstring$=SPACE$(1134)'ll
HEXBUFF currentlongs-l,fbuffer,SADD(outstring$)'ll
STATUS "printing"'ll
FOR i%=O TO 20'll

LPRINT RIGHT$("
"+STR$(currentoffset+i%*20),8);": ";'ll

LPRINT MID$(outstring$,i%*54+1,54)'ll
NEXT'll
LPRINT'll

END SUB'll
SUB DUMPFILE STATIC'll

SHARED amtread,oldhandle,currentoffset'll
savedoffset=currentoffset'll
oldpos=SEEK(oldhandle,O,-l)'ll

63

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

64

currentoffset=O~

df.loop:~

READ BLOCK'll
DUMPBUFFER~

currentoffset=currentoffset+488~

IF amtread=488 GOTO df.loop~
currentoffset=savedoffset~

oldpos=SEEK(oldhandle,currentoffset,-l),
READBLOCK~

END SUB'll
~

SUB CURSORON STATIC~
SHARED o.x%,o.y%,edmode%,o.m%,rastport,offset%,nibble%'l[
SHARED o.b%~

z%=INT(offset%/32)'lI
o.b%=offset%-z%*32'lI
l%=INT(0.b%/4)'l[
0.x%=(0.b%*2+1%-(edmode%=O) *nibble%) *8'l[
o.y%=z%*8+2~

SETAPEN rastport,3'll
SETDRMD rastport,3'll
'l[

IF edmode%=O THEN RECTFILL rastport,o.x%,0.y%,0.x%+7-
(edmode%=1)*8,0.y%+7'll
'REM orginal PAL :RECTFILL rastport,0.x%,0.y%,0.x%+7-
(edmode%=1)*8,0.y%+7'l[

'lI
IF edmode%=l THEN RECTFILL

rastport, (o.b%)*8,o.y%, (0.b%)*8+7,0.y%+7'l[
'REM orginal PAL: RECTFILL
rastport, (0 .b%) *8, ° .y%, (0 .b%) *8+7, 0. y%+ 7~

'll
SETDRMD rastport,l,
o.m%=edmode%~

END SUB'll
'lI
SUB CURSOROFF STATIC'll

SHARED o.x%,o.y%,o.m%,o.b%,rastport'lI
SETAPEN rastport,3'll
SETDRMD rastport,3'll
'lI
IF o.m%=O THEN RECTFILL rastport,0.x%,0.y%,0.x%+7-

(0.m%=1)*8,0.y%+7'll
'REM orginal PAL: RECTFILL rastport,0.x%,0.Y%,o.x%+7-
(0.m%=1)*8,0.y%+7'll
'lI

IF o.m%=l THEN RECTFILL
rastport, (o.b%) *8,o.y%, (o.b%) *8+7, 0.y%+7'lI
'REM orginal PAL: RECTFILL
rastport, (o.b%+54)*8,0.y%, (o.b%+54)*8+7,0.y%+7'll
'lI

SETDRMD rastport,l'lI
END SUB 'lI:
'l[
SUB OPENFILE STATIC'll

SHARED oldhandle,scrbase,currentoffset,actdir,newflen 'lI

ABACUS 2.2 A FILE MONITOR

SHARED numblocksi
IF oldhandle>O THEN :XCLOSE oldhandle~
oldhandle=XOPEN(actdir,100S)i
IF oldhandle=O THENi

STATUS "File Open Error"i
DISPLAYBEEP scrbasei
EXIT SUBi

END IF'll
numblocks=newflen/488i
w=CVL(RIGHT$(" "+STR$(numblocks),4»'I[
POKEL itxt(12)+20,wi
currentoffset=O'll
READBLOCK'I[

END SUBi
SUB READ BLOCK STATIC'J[

SHARED oldhandle,fbuffer,fundo,amtread,currentlongs'J[
SHARED currentoffset'll

amtread=XREAD(oldhandle,fbuffer,488)'J[
IF amtread<488 THEN'I[

v$=STRING$(488-amtread,0)'J[
COPYMEM SADD(v$),fbuffer+amtread,LEN(v$)'ll

END IF'll
x=currentoffset/488'll
w=CVL(LEFT$(MID$(STR$(x),2)+MKL$(0),4»'I[
POKEL sinfo(2)+36,wi
currentlongs=(amtread+3)/4'll
COPYMEM fbuffer,fundo,488 'll
DISPLAYBUFFER'I[

END SUB 'J[
SUB DISPLAYBUFFER STATIC'I[

SHARED HEXBUFF,currentlongs,fbuffer,rastport,amtread'll
SHARED start%,offset%,nibble%,edmode%'J[

ASClIbuffer$=SPACE$(1134)'I[
HEXBUFF currentlongs-1,fbuffer,SADD(ASCIIbuffer$)i
SETAPEN rastport,Oi
RECTFILL rastport,0,0,639,140'J[
SETAPEN rastport,l'll
SETBPEN rastport,O'll
IF edmode%=O THEN'J[
1%=72'1[
FOR i%=O TO 15'1[

MOVE rastport,0,i%*8+8'1[
IF i%=15 THEN 1%=17'1[
TEXT rastport,SADD(ASCllbuffer$) +i%*72, 1%'1[

NEXT 'I[
END IF'J[
SETAPEN rastport,Oi
SETBPEN rastport,l'1[
1%=32i
IF edmode%=l THENi
FOR 1%=0 TO lSi

MOVE rastport,0,i%*8+8'1[
IF i%=15 THEN 1%=8i
TEXT rastport,fbuffer+i%*32,1%i

NEXT'![
END IF'll

65

2. AMIGABASIC TRICKS AND TIPS M ORE TRICKS & TIPS

66

start%=O'll
oifset%=O'll
nibb1e%=O'll
CURSORON'll

END SUB 'll
SUB SETFILEACTDIR STATIC'll

SHARED GadgetNr%,actdir,scrbase,c1earstring$,newf1en'll
SHARED dirstart%,dirbuff,lasttype%'ll

comparel$=STRING$(31,O)'ll
compare2$=STRING$(80,O)'ll
COPYMEM actdir,SADD(compare2$),79'll
COPYMEM itxt(GadgetNr%)+20,SADD(comparel$),30'll
12%=INSTR(compare2$,CHR$(O»-1'll
11%=INSTR(comparel$,CHR$(O»-1'll
IF 1asttype%=1 THEN'll

12%=INSTR(compare2$,":")'ll
path.loop:'ll

l3%=INSTR(12%+1,compare2$,"/")'ll
IF 13%>12% THEN 12%=13%:GOTO path.loop'll

END IF 'll
IF(11%+12%»78 THEN'll

STATUS "FileName Too Long"'ll
DISPLAYBEEP scrbase'll
EXIT SUB'll

END IF'll
v$=LEFT$(compare2$,12%)'ll
IF (lasttype%>l) AND (RIGHT$ (v$,l)<>":")THEN v$=v$+"/"'ll
1asttype%=PEEK(dirbuff+(dirstart%+GadgetNr%-5)*36+31)'ll
v$=LEFT$(v$+comparel$+c1earstring$,79)'ll
COPYMEM SADD(v$) ,actdir, 79'll
newflen=PEEKL(dirbuff+(dirstart%+GadgetNr%-5) *36+32) 'll

END SUB 'll
SUB DISPLAYDIR STATIC'll

SHARED dirstart%,number%,c1earentry$,dirbuff,winbase'll
FOR i%=5 TO 9'll

COPYMEM SADD(clearentry$),itxt(i%)+20,30'J[
NEXT'll
i%=O'll
IF number%<=dirstart% GOTO displaydir.show'll
REFRESHGADGETS gadgets(23),winbase,O'll

displaydir.loop:'ll
a=dirbuff+(i%+dirstart%)*36'll
COPYMEM a,itxt(i%+5)+20,30'll
POKE itxt(i%+5),PEEK(a+31)'ll
i%=i%+l'll
IF (i%<S) AND (number%> (dirstart%+i%)) GO TO displaydir.loop'll

displaydir.show: 'll
REFRESHGADGETS gadgets(23),winbase,O'll

END SUB'll
SUB DIRECTORY STATIC'll

SHARED number%,dirstart%,actdir,lasttype%'ll
SHARED fi1einfo,c1earentry$,dirbuff,newf1en'll

STATUS "Examining Entry"'ll
dir1ock=LOCK(actdir,-2)'ll
IF dirlock=O THEN'll

ABACUS 2.2 A FILE MONITOR

STATUS "File not found"'ll
EXIT SUB'll

END IF'll
e=EXAMINE(dirlock,fileinfo)'ll
IF e=O THEN'll

UNLOCK dirlock'll
STATUS "Examine Error"'ll
EXIT SUB'll

END IF'll
IF PEEKL(fileinfo+120)<O THEN'll

newflen=PEEKL(fileinfo+124)'ll
UNLOCK dirlock'll
OPENFILE'll
lasttype%=l'll
EXIT SUB'll

END IF'll
lasttype%=3'll
number%=O'll
dirstart%=O'll
FOR i%=5 TO 9'll

COPYMEM SADD(clearentry$),itxt(i%)+20,30'll
NEXT'll
STATUS "reading Directory" 'll

directory.loop:'ll
e=EXNEXT(dirlock,fileinfo)'ll
IF e=O THEN'll

e=IOERR'll
IF e<>232 THEN'll

STATUS "Directory invalid"'ll
number%=O'll

ELSE'll
STATUS "Okay"'ll

END IF'll
UNLOCK dirlock'll
DISPLAYDIR'll
EXIT SUB'll

END IF'll
a=dirbuff+number%*36'll
COPYMEM fileinfo+8,a,30'll
IF PEEKL(fileinfo+120)<0 THEN c%=l ELSE c%=3'll
POKE a+31,c%'ll
POKEL a+32,PEEKL(fileinfo+124)'ll
number%=number%+l'll
IF number%<72 GOTO directory.loop'll
UNLOCK dirlock'll
STATUS "Okay"'ll
DISPLAYDIR'll

END SUB'll
SUB INITIALIZE STATIC'll

SHARED HEXBUFF,fbuffer,fundo,nscreen,dirbuff,fileinfo'll
SHARED actdir,scrbase,winbase,viewport,rastport'll
SHARED userport'll

FORBID'll
DEFCHIP HEXBUFF,60&'ll
DEFCHIP fbuffer,488&'ll
DEFCHIP fundo,488&'ll

67

2. AMIGABASIC TRICKS AND TIPS M ORE TRICKS & TIPS

i

68

DEFCHIP nscreen,88&~
DEFCHIP dirbuff,2592&~
DEFCHIP fileinfo,252&~

DEFCHIP shows,68&~
borders(13)=shows+28~

borders(14)=shows+48~

FOR i%=0 TO 14~
READ i$'l[
POKEW HEXBUFF+i%*4,VAL("&H"+LEFT$(i$,4»~
POKEW HEXBUFF+i%*4+2,VAL("&H"+RIGHT$(i$,4»~

NEXn
FOR i%=O TO 6~

READ i$'l[
POKEW shows+i%*4,VAL("&H"+LEFT$(i$,4»~
POKEW shows+i%*4+2,VAL("&H"+RIGHT$(i$,4»~

NEXT~

POKE shows+29,10~
POKE shows+31,3i
POKE shows+33,7~
POKE shows+35,7i
POKE shows+37,li
POKEW shows+42,256i
COPYMEM shows+28,shows+48,20i
FOR i %=0 TO Ii

POKEL shows+i%*20+38,shows+1%*14~
NEXTi
FOR i%=l TO 12~

READ a%,b%,c%,d%,e%,f%i
BORDER borders(1%),a%,b%,c%,d%,e%i
IF f%>O THEN POKEL borders(i%)+12,borders(f%)i

NEXn
FOR 1%=1 TO 4i

INTUITEXT itxt(i%),1,6,3,"DF"+CHR$(47+i%)+":",0&i
NEXT~

FOR i%=5 TO 9~
INTUITEXT itxt(i%),1,8,0,SPACE$(30),0&~

NEXTi
FOR i%=10 TO 25i

READ a%,b%,c%,d$,e%~
IF e%>O THEN f=itxt(e%) ELSE f=Oi
INTUITEXT itxt(i%),a%,b%,c%,d$,fi

NEXn
STRINGINFO sinfo(1),79,"DFO:"i
STRINGINFO sinfo(2),4,"0"+STRING$(15,0)i
actdir=sinfo(1)+36~

d=Oi
FOR i%=l TO 24i

READ e%,f%,G%,h%,j%,k%,l%,m%,n%,o%~

f%=f%-56 :REM NTSC FIX **************************~

IF 0%>0 THEN a=sinfo(o%) ELSE a=Oi
IF n%>O THEN b=itxt(n%) ELSE b=Oi
IF m%>O THEN c=borders(m%) ELSE c=Oi
GADGET gadgets(i%),d,e%,f%,G%,h%,j%,k%,l%,c,b,a,i%~
d=gadgets(i%)i

ABACUS 2.2 A FILE MONITOR

NEXT'll
POKEL nscreen+4,41943296&'ll
POKE nscreen+9,2'll
POKE nscreen+12,192'll
POKEW nscreen+14,&HIOF'll
nwindow=nscreen+32'll
POKEL nwindow+4,41943296&'ll
POKEW nwindow+8,2S9'll
POKE nwindow+ll,32'll
POKE nwindow+13,96'll
POKE nwindow+1S,1'll
POKE nwindow+16,24'll
POKEL nwindow+1S,d'll
POKE nwindow+47,lS'll
POKEW nscreen+S2,&HFFF'll
POKE nscreen+84,lS'll
POKEW nscreen+S6,&HFDO'll
PERMIT'll
scrbase=OPENSCREEN(nscreen)'ll
IF scrbase=O THEN ERROR 7'll
POKEL nwindow+30,scrbase'll
winbase=OPENWINDOW(nwindow)'ll
IF winbase=O THEN ERROR 7'll
rastport=PEEKL(winbase+50)'ll
viewport=scrbase+44'll
userport=PEEKL(winbase+S6)'ll
LOADRGB4 viewport,nscreen+SO,4'll

END SUB'll
SUB STATUS(t$)STATIC'll

SHARED winbase'll
t$=LEFT$(t$+SPACE$(17),17)'ll
COPYMEM SADD(t$),itxt(22)+20,17'll
REFRESHGADGETS gadgets(23),winbase,O'll

END SUB 'll
SUB DEFCHIP(Buffer,size)STATIC'll

SHARED MList'll
size=size+8'll
Buffer=ALLOCMEM(size,6553S&)'ll
IF Buffer>O THEN'll

POKEL Buffer,MList'll
POKEL Buffer+4,size'll
MList=Buffer'll
Buffer=Buffer+S'll

ELSE'll
ERROR 7'll

END IF'll
END SUB'll
SUB UNDEF STATIC'll

SHARED MList'll
undef.loop:'ll

IF MList>O THEN'll
Buffer=PEEKL(MList)'ll
size=PEEKL(MList+4)'ll
FREEMEM MList,size'll
MList=Buffer'll
GOTO undef.loop'll

69

2. AMIGABASIC TRICKS AND TIPS M ORE TRICKS & TIPS

70

END IF'll
END SUB 'll
SUB GADGET(bs,nx,x%,y%,b%,h%,f%,a%,t%,i,txt,si,n%)STATICi

DEFCHIP bs,44&'ll
POKEL bs,nx'll
POKEW bs+4,x%'ll
POKEW bs+6,y%'l[
POKEW bs+8,b%'1
POKEW bs+10,h%'ll
POKEW bs+12, f%'ll
POKEW bs+14,a%'ll
POKEW bs+16,t%'ll
POKEL bS+18,i'll
POKEL bs+26,txt'l[
POKEL bs+34,si'll
POKEW bs+38,n%'ll

END SUB'l[
SUB INTUITEXT(bs,cl%,x%,y%,t$,nx)STATIC'll

size=20+LEN(t$)+l'll
DEFCHIP bs,size'l[
POKE bs,cl%'l[
POKE bs+2,l'll
POKEW bs+4, x%'l!
POKEW bs+6, y%'l!
POKEL bs+12,bs+20'll
POKEL bs+l6,nx'll
COPYMEM SADD(t$),bs+20,LEN(t$)'ll

END SUB'll
SUB BORDER(bs,x%,y%,c%,b%,h%) STATIC'll

DEFCHIP bs,48&'ll
POKEW bs,x%'ll
POKEW bs+2, y%'l!
POKE bs+4,c%'ll
POKE bs+7,8'I
POKEL bs+8,bs+l6'll
FOR i%=O TO l'll

POKEW bs+22+i%*4,h%-l'l!
POKEW bs+24+i%*4,b%-1'll
POKEW bs+32+i%*4,1'll
POKEW bs+38+i%*4,h%-1'll
POKEW bs+40+i%*4,b%-2'll

NEXT'll
END SUB'll
SUB STRINGINFO(bs,max%,buff$)STATIC'll

IF LEN (buff$) >max% THEN nmax%=LEN (buff$) ELSE nmax%=max%'ll
IF(nmax%AND l)THEN nmax%=nmax%+l'll
size=36+2*(nmax%+4)'l!
DEFCHIP bs,size'll
POKEL bs,bs+36'll
POKEL bs+4,bs+40+nmax%'ll
POKEW bs+lO,max%+l'll
IF buff$<>""THEN'll

COPYMEM SADD(buff$),bs+36,LEN(buff$)'l!
END IF'll

END SUB 'l!

ABACUS 2.2 A FILE MONITOR

DATA 48E7FOCO,4CEF0308,OOlC5303,22187407,E9991001,
0200000F'lI
DATA06000030,OC00003A,65040600,000712CO,51CAFFE6,
12FC0020'lI
DATA 51CBFFDA,4CDF030F,4E750000,10003800,7COOFEOO,
38003800'lI
DATA 38003800,38003800,FE007COO,38001000'lI
DATA O,O,2,43,13,O,-6,-3,2,268,45,0,-6,-3,3,268,13,O'lI
DATA O,O,2,28,13,O,0,-45,2,28,13,4,O,-15,2,28,13,5'lI
DATA -62,-3,2,172,13,O,O,0,2,65,13,O,O,O,2,109,13,0'lI
DATA 0,15,2,218,13,9,O,O,2,60,13,0,0,0,2,43,28,0'lI
DATA 3,-56,O,"Block:",O,3,40,O,"of:",10,1,72,0," 0",11 'lI
DATA 3,6,3,"OK",O,1,6,3,"UNDO",0,1,6,3,"PRINT BUFFER",O'll
DATA 1,6,3,"PRINTFILE",0,1,17,3,"READ",0,1,17,3,
"NEXT",O'll
DATA 1,17,3, "BACK", 0, 1, 13, 3, "WRITE", 0, 3, 6, 18,
"Status: ",15'l1
DATA 1,70,18,"reading Directory",21,1,9,3,"ASCII",0'lI
DATA 1,9,3," HEX",0,1,6,10,"QUIT",0'll
DATA 0,198,43,13,0,3,1,1,1,0,O,213,43,13,0,3,1,1,2,O'll
DATA O,228,43,13,0,3,1,1,3,O,0,243,43,13,O,3,1,1,4,0'll
DATA 52,201,256,8,0,3,1,2,5,0,52,209,256,8,0,3,1,O,6,0'll
DATA 52,217,256,8,O,3,1,O,7,0,52,225,256,8,O,3,1,O,8,O'lI
DATA 52,233,256,8,O,3,1,O,9,0,52,246,256,8,O,3,4,3,0,1'll
DATA 317,198,28,13,4,3,1,13,O,O'll
DATA 317,228,28,13,4,3,1,14,O,O'll
DATA 317,243,28,13,0,3,1,6,13,O'll
DATA 416,201,40,8,0,2051,4,7,12,2'lI
DATA 529,198,43,13,1,3,1,1,14,0'll
DATA 575,198,65,13,0,3,1,8,17,O'lI
DATA575,213,65,13,0,3,1,8,18,0'll
DATA 575,228,65,13,O,3,1,8,19,0'll
DATA575,243,65,13,0,3,1,8,20,O'll
DATA 354,213,109,13,0,3,1,9,16,0'lI
DATA 354,228,l09,13,O,3,1,10,22,O'll
DATA 466,213,60,13,0,3,1,11,24,O'll
DATA 466,228,60,13,0,3,1,11,23,0'll
DATA 529,213,43,28,128,3,1,12,25,O'll

71

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS &TIPS

2.2.1

Using the
gadgets

72

Using the file monitor

This monitor uses a large amount of chip RAM. This means that you
should only run one task when on a monitor session-the file monitor.
If you run a second program while the file monitor is running, you
may run out of chip RAM. The LPRINT at the beginning of the
program ensures that the printer driver loads into memory before the
program's memory allocation takes place. If you aren't using a printer
you may delete this line.

The four gadgets which list the most frequently accessed drives may be
changed by editing the corresponding DATA statements. These gadgets
are used by the directory routine. To select a drive simply click on the
proper gadget

The default drives for the program range from drive DFO: through drive
DF3:. If you want to enter other drives in the gadgets, change the
DATA statements with the corresponding names, and make sure that the
name is no longer than four characters (including the ending colon).
You can also assign the desired drives with the drive labels DFO:
through DF3: by using Assign before loading this monitor.

The four gadgets on the left border of the screen help speed up the selec­
tion of the drive and directories. Simply click on the DFO: gadget to see
the main directory of the internal drive.

The file list displays up to five directory entries. Files and programs
appear in white text and directories are shown as yellow text. Clicking
on a directory name opens and displays the contents of that directory.
When you click on a file, the first data block of the desired file loads
into memory and then appears on the screen. This data block can be
edited in hexadecimal or ASCII form.

The string gadget under the file list displays the current directory or
filename. When you click on it a cursor appears. You can now enter
your own paths/filenames from the keyboard. This is useful when you
want to enter a long path, or if you want to access a drive not listed in
the four disk drive gadgets.

The scroll arrows to the right of the file list let you scroll up and down
the file list and view all the available names. The directories scroll by
five entries at a time.

The OK gadget updates the entry in the string gadget (this is the same
as pressing the <Return> key when you're done editing the string
gadget).

ABACUS 2.2 A FILE MONITOR

The line Block #U# of: U## shows you the current data block
number on display of the active file, and the total number of blocks in
that file. The first block number is handled as an integer gadget, which
allows you to enter the desired data block number by clicking on the
gadget. This displays the desired block.

Both Print gadgets allow you to output either the editor buffer or the
entire file on a printer in hexadecimal format. After the printing process
ends, the last block edited reappears on the screen. The Status display
shows all of the errors and the current operations. If all is well, the
Status display says OK.

The ASCII and HEX gadgets make it possible to select hexadecimal
display or ASCII display. This is a valuable option for changing text
(e.g., customizing the AmigaBASIC menus). The Quit gadget, with a
confirming requester, ends this program.

The READ, NEXT and BACK gadgets let you read the current block,
next block and previous block of the file. The Write gadget writes the
editor's buffer to the disk. No requester appears (this speeds up the oper­
ation). If you write a block by mistake, select the Undo gadget and
select the Write gadget again.

The Undo buffer contains the original contents of the data currently on
display. The Undo gadget takes the contents of the Undo buffer and
places it in the editor buffer (the buffer containing the data currently
displayed).

The editor accepts any characters that can be entered from the keyboard,
including the cursor keys. PAL system users can display both hexadec­
imal and ASCII modes on the screen at once, since the PAL screen has
a larger display. The program code above contains comments on what
must be changed to run the full display on a PAL system.

The program can multi task, although we don't recommend it (see the
beginning of this segment). The key combinations left <Amiga><M>
and left <Amiga><N> toggle between the file monitor and Workbench
screen.

One last item: The file monitor can only read disk paths up to two
directory levels deep. Should you desire more flexibility here, you must
dimension the directory buffer correspondingly and adjust the directory
subprogram. You can access each file with direct input into the string
gadget.

73

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS &TIPS

2.2.2

2.2.3

Warning:

74

Patching files with the monitor

Patching means changing an existing program by manipulating certain
bytes of that program. This makes it possible to customize any pro­
gram to suit your own needs.

There is one thing you should bear in mind, however: Changing copy­
right messages or copying commercial programs, patched or otherwise,
is against~law. To stay on the side of law and order, patch any
commercial programs for your own use. Don't alter copyright messages
or use this file monitor for illegal purposes.

Patching AmigaBASIC

Using the fIle monitor you can customize your copy of AmigaBASIC.
You can change the menus and error messages to give your Amiga­
BASIC interpreter a personal touch.

Whenever you patch any program or edit any file using the file moni­
tor, make sure you patch a copy of a program or me. Never patch the
original program or fIle!

To patch AmigaBASIC, start by copying AmigaBASIC to another
disk. Run the me monitor program and select the ASCII mode. Next
insert the disk that contains the copy of AmigaBASIC (NOT the orig­
inal!). Select AmigaBASIC and press the <Return> key.

Once the fIle is done loading, click on the Block gadget, enter 28 and
press <Return>. Now use the Next and Back gadgets to page through
AmigaBASIC until you find the menus. Use the cursor keys to posi­
tion the cursor, then edit the me to customize AmigaBASIC. Click on
the Write gadget to save your changes. If you made a mistake, click
Undo, fix the problem and click the Write gadget again. Click on the
Quit gadget and press <Y> to quit the program.

You may need a few clues on what to do to change your menus. Here
are some examples of what we did to change our AmigaBASIC menus
using the file monitor program:

ABACUS

Original menus:

Project
New
Open
Save
Save as
Quit

Edited menus:

Stuff
Oops it
Load it
Save it
Save as
System

Edit
Cut
Copy
Paste

Edit
Cut
Copy
Paste

Run
Start
Stop
Continue
Suspend
Trace on
Step

Run
Go
Break
Keep on
Whoa
Trace on
Step

2.2 A FILE MONITOR

Windows
Show List
Show Output

Screens
List
BASIC

7S

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & Tips

2.3

Note:

File access

76

Accessing AmigaDOS from
AmigaBASIC

The Amiga operating system consists of many small functions which
combine to perform larger tasks. One of the most important tasks is
disk access. Every time you perform any disk management, the Amiga
accesses disk routines in the operating system. This also occurs in
AmigaBASIC; when AmigaBASIC performs disk access, the end result
stems from the operating system routines.

Few users realize how easily they can use these disk routines in
AmigaBASIC. The first step is to open the dos . library file,
which makes the Device Operating System available to the user. To
use any of the programs in this section, you'll need to convert the
dos_lib. fd file stored in the FD directory of your Extras disk into a
.bmap file. The FDConvert program (in the BasicDemos
directory of the Extras disk) converts 1 ib . f d files into do s . bma p
files. The operating system can read the dos lib. fd file as is, but
AmigaBASIC cannot read the information in that form. However, the
converted . bmap file converts the DOS function data into a form that
AmigaBASIC can understand.

We used version 1.3 of the operating system for selecting our. bmap
files; you may be able to use version 1.2, but we recommend that you
purchase Workbench 1.3 and Extras 1.3 if you don't have them.

The command sequence for accessing this fIle from AmigaBASIC is:

LIBRARY "dos.library"

Notice the name. The file stored on the disk for access should be
dos . bmap, the filename used for AmigaBASIC access must be
dos . library.

Let's take a closer look at the dos . library file's contents before we
begin programming. Here's a listing of the most important commands:

xOpen(name, accessMode)
Close (file)
xRead(file, buffer, length)
Write (file, buffer, length)
Seek (file, position, offset)
Lock (name, type)
UnLock (lock)
DupLock(lock)

ABACUS

File control

Process
handling

2.3.1

2.3 ACCESSING AMIGADOS FROM AMIGABASIC

DeleteFile(name)
Rename (oldName,newName)
Examine (lock, filelnfoBlock)
ExNext(lock, fileinfoBlock)
Info(lock, parameterblock)
CreateDir(name)
CurrentDir(lock)
Set Comment (name, comment)
Set Protection (name, mask)
DateStamp(date)
ParentDir(lock)

CreateProc(name, pri, segList, stackSize)

Exit (returnCode)
LoadSeg(fileName)
UnLoadSeg(segment)
IsInteractive(file)
Execute (string, file, file)
DeviceProc(name)
Delay (timeout)

The above list is far from complete-these are the ones of most interest
to us as BASIC programmers. Also, the process handling functions
aren't really that easy to access from BASIC. Thus, we shall pay most
attention to the first two groups.

The file access group lists the commands used when AmigaBASIC
accesses either sequential or relative files. This group seems to have
more functions than BASIC actually uses-we'll be accessing some of
these functions soon.

The file control group lists functions for maintaining disk structure.
This structure includes directories, file data and file changes.

File access through AmigaDOS

Look carefully at the file access group of dos . library functions.
You'll see that AmigaDOS has functions named Open () and
Close (). However, these apparently normal functions use a
completely different set of arguments. Let's take a closer look at how
they work.

The following program uses the first three (and most important)
AmigaDOS functions in dos . library. It loads the first 200 bytes
of any ASCII file into a buffer and displays the data as ASCII text.
Enter the program and save it in ASCII format as follows:

SAVE "xopendemo",a

77

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

Command
description

78

Run the program. It will read itself and display the fIrst 200 bytes of
itself on the screen. Here's the listing:

'*********************************i
,* xOpendemo *'j[
'* xOpen () function test *'j[
'* ----------------------------- *'j[
, * *'j[
'* Author : Wolf-Gideon Bleek *'j[
'* Date July 9, 1988 *'j[
'* Version: 1.0 *'j[
,* Operating system:V1.2 & V1.3 *'l!
,* *'l!
'*********************************!
I libraries located on T&T2 disk , your may differ'j[
LIBRARY "T&T2:bmaps/dos.library"'j[
'l[

DECLARE FUNCTION xOpen& LIBRARY'j[
DECLARE FUNCTION xRead& LIBRARY'j[

DIM Memory%(lOO)'l!
'j[
WIDTH 70'll
'l!

xClose'j[

File$ = "xOpendemo"+CHR$ (0) 'l!
Handle& xOpen&(SADD(File$), l005)'j[
Amount& - xRead&(Handle&, VARPTR(Memory%(O», 200&)'j[
'l!
CALL xClose(Handle&)'ll
'l!
FOR i = 0 TO 200'l!

PRINT CHR$(PEEK(VARPTR(Memory%(O»+i»;'ll
NEXT i'll
'l!
LIBRARY CLOSE'll

The xOpen () function corresponds to the AmigaBASIC OPEN
statement However, the functions have two different names to keep the
programmer from confusing them. xOpen () requires an argument of a
pointer to a string consisting of the fIlename and the mode number.
This supplies us with the file handle needed for fIle access. If an error
occurs, the function returns a null value.

With the help of the handle we can access the open file using the
xRead () function. Again, this function is named differently in the
. bmap file to avoid confusing it with the READ function in BASIC.
xRead () waits for the handle passed by the xOpen () function. This
handle tells xRead () which fIle to access, since more than one file
can be open at a time. This is similar to the logical file numbers used
in AmigaBASIC.

Next we must pass the address of a buffer into which the data can be
read. We dimensioned a simple array that can hold 200 bytes. This array

ABACUS 2.3 ACCESSING AMIGADOS FROM AMIGABASIC

can accept 100 integer variables of two bytes apiece. The last argument
represents the number of bytes to be read. This value should be no
larger than the size of the buffer, otherwise the data could be placed in
memory being used for other tasks, possibly resulting in a system
crash.

Once the function executes, it places the first 200 bytes of the open me
into the buffer. The xClose () function closes the file, and the
program ends by displaying these 200 bytes on the screen.

You may still be wondering what these three me functions can do for
you. Here's an example. A program handles many algorithms as one
group. An array containing 100 x 100 elements is used to store these
algorithms. We should be able to save this algorithmic data for later
recall, since calculation time could take up to five hours. Therefore,
you must design a save routine to store the algorithms on disk. You
can either write single numbers using PRINT#, or save the memory
address of the array in question for saving to disk using the xwri te ()
function. This latter method lets you reload all the values using the
xRead () command.

The following sample program handles a 10 x 10 numerical array and
demonstrates the procedures listed above:

I*********************************~

'* *'ll
'* xwritedemo *'11
'* Saving data with xWrite () *'ll
'* ----------------------------- *'ll
'* *'ll
,* Author : Wolf-Gideon Bleek *'ll
'* Date July 10,1988 *'ll
,* Version: 1.0 *'.1[
,* Operating system: V1.2 & V1.3 *'ll
,* *'ll
'*********************************!
'll
OPTION BASE 1'll
'libraries on T&T2 disk, your may differ'll
LIBRARY "T&T2:bmaps/dos.library"'ll
'J
DECLARE FUNCTION xOpen& LIBRARY'll
DECLARE FUNCTION xRead& LIBRARY'll
DECLARE FUNCTION xWrite& LIBRARY'll

xClose'll
'll
DIM Matrix%(lO,lO)'ll
'll
WIDTH 709/
Cj[

FOR i '" 1 TO 10'll
FOR j '" 1 TO 10'll

Matrix%(i,j) '" RND*lO'll
PRINT Matrix%(i,j)i" "i'll

79

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

Program
description

80

NEXT ji
PRINT'll

NEXT i'l!
PRINT'I
'll
File$ = "Matrix"+CHR$(O)'1
Handle& = xOpen&(SADD(File$), 1006)'1
Amount& - xWrite&(Handle&, VARPTR(Matrix%(l,l», 200&)'l[
'l!
CALL xClose(Handle&)'l[
'l!
FOR i a 1 TO 10'l!

FOR j = 1 TO 10i
Matrix%(i,j) ~ O'l!

NEXT j'll
NEXT i'lI.
'l!
Handle& - xOpen&(SADD(File$), 1005)'l[
Amount& = xRead&(Handle&, VARPTR(Matrix%(l,l», 200&)'1
CALL xClose(Handle&)'l[
'l!
FOR i - 1 TO 10'1

FOR j E 1 TO 10'l!
PRINT Matrix%(i,j);" n;'lI

NEXT j'll
PRINT'.I

NEXT i<l!
PRINT'll

The program fills a 10 x 10 array with random numbers. The
xWrite& function writes this data to disk. The number 1006 in the
flrst xOpen () function line opens the fIle Matrix for writing (1005
opens files for reading).

The program clears the array. Next the xRead () function reads the file
and places the file contents in the Matrix array. The contents of the
array appear on the screen and the program ends.

If you have the time and the inclination, experiment with an array that
has many more elements. Determine the number of bytes to be read and
written, and insert this value in place of the value 200&. Change the
values in the loop to the new values and test the modifled program. If
you're still curious, you can program the entire saving process using
BASIC commands in conjunction with xRead () and xwri te () .

Both of the programs presented, involve data storage in sequential
format. AmgaDOS supports both sequential and random (relative) file
access. Random files involve commands that send the file pointer to a
specfic position in a file. If we compute this position, the pointer
moves to that point in the file and reads the data.

Let's take a closer look at random file access. Enter the following
program and run it. It takes random file information from the DATA
statements and writes this data to a file named addresses. obj:

ABACUS 2.3 ACCESSING AMIGADOS FROM AMIGABASIC

1**********************************!
,* randomgen *CJI
,* *'ll
,* generates random file for use *'ll
'* with seekdemo program *'ll
'* from Abacus' MORE TRICKS AND *'ll
'* TIPS for the Amiga *'ll
'* *'ll
'**********************************!
'll
OPEN "r",#1,"df1:Addresses.obj",100'll
FIELD #1,30 AS nam$,30 AS address$,20 AS city$,12 AS
phoneS,S AS commentS'll
CLS'll
PRINT: PRINT "Now reading data and creating random fi1e."'ll
PRINT:PRINT "Please be patient '1
CJI
viewandwrite:'ll

CJI
READ

xvalue,namedata$,addrdata$,citydata$,phondata$,cmmtdata$
'll
IF xvalue>-l THEN'll
'll

LSET
LSET
LSET
LSET
LSET

nam$=namedata$'Il
address$=addrdata$'ll
city$=citydata$'ll
phone$=phondata$'ll
cornment$=cmmtdata$ 'll

x=xvalue'll
PUT #1, x'll

PRINT "Record "x" ("nam$") stored."'11
GO TO viewandwrite:'ll
END IF'J[
'lI
CLOSE 1'll
PRINT:PRINT "
seekdemo"'ll

END'll
'll

PRINT "

File generated and closed. Now use the

program to read each record."'lI

DATA 1,Jim Oldfield Jr.,5370 52nd Street SE, Grand Rapids
MI, 555-1212,printers'l[
DATA 2 ,Doug D.R. Cotton,P.O. Box 2800,Sparta MI,459-
1212,good bbs'll
DATA 3,Jim D'Haem,5370 52nd Street SE,Grand Rapids
MI,957-4488,landlord'l[
DATA 4 ,Dick Droste,P.O. Box 9999,Youpie MI,555-
1414,graphix<[
DATA 5 ,Gene Traas,RFD 2000,Hastings MI,999-1119,proofer'l[
DATA -1"",'l[

The record length of the generated test file measures 100 bytes. Enter
and run the next program. It opens the addresses. obj file and

81

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIps

82

prompts the user for a record number. When the user enters a number
from 1 to 5 and presses the <Return> key, the file pointer moves to the
number of the file record requested, and displays the record in the screen.
The Seek () function determines the position of the file pointer.

1***********************************~

'*
,* seekdemo

*'l!
*'l!

,* Direct access to relative files *'l!
, * using Seek *'ll
'*---------------------------------*'ll
'* *'l!
,* Author: Wolf-Gideon Bleek *'l!
'* Date July 10, 1988 *'ll
'* Version: 1.0 *~

'* Operating systems: Vl.2 & Vl.3 *'l!
'* *'l!
1***********************************'
'll
'libraries on T&T2 disk, yours may differ'll
LIBRARY "T&T2:bmap/dos.library"'ll
'll
DECLARE FUNCTION xOpen& LIBRARY'l!
DECLARE FUNCTION xRead& LIBRARY'll
DECLARE FUNCTION Seek& LIBRARY'l!

'll
DIM Memory%(100)'ll
'lI
WIDTH 30'll
'll

xClose'll

PRINT "Record no."'l!
INPUT "(1-5):";no&'ll
'l!
File$
'll

"dfl:Addresses.obj"+CHR$(O)'ll

Handle& = xOpen&(SADD(File$), 1005)'l!
'l!

'l!

Position& = Seek& (Handle&, (no&-l) *100&, 0&) 'l!
Amount& = xRead&(Handle&, VARPTR(Memory%(O», 100&)'l!

CALL xClose(Handle&)'l!
'l!
FOR i = 0 TO 99'll

PRINT CHR$(PEEK(VARPTR(Memory%(O»+i»;'l!
NEXT i'll
LIBRARY CLOSE'll

ABACUS

DOS Jock
access

2.3 ACCESSING AMIGADOS FROM AMIGABASIC

Now we come to another form of file access. The abovementioned
methods showed how to read data from files. However, file data can be
transferred as well. AmigaOOS has two commands available for this
task.

The Lock () function selects the filename and the access mode. This
access mode equals -2 if a read access is intended, and -1 if a write
access was intended. Reading allows multiple tasks to be performed on
the open file. However, writing allows only one task per access.

Unlock () serves the same purpose as xClose () : Both file access
and reserved memory are released.

Look at the following program. It accesses any file, selects the access
mode and releases it. We'll need this information for later testing in this
section.

'**********************************~
,* *~

'* lockdemo *~
,* File access through Lock *~

'* ------------------------------ *~

'* *~
,* Author : Wolf-Gideon Bleek *~
,* Date July 11, 1988 *~
,* Version: 1.0 *~
,* Operating systems: Vl.2 & Vl.3 *~
,* *~

'**********************************~

~

~
LIBRARY "libs/dos.library"~
~
DECLARE FUNCTION Lock& LIBRARY~

~
~

PRINT "Please enter a filename."~
PRINT'l[
INPUT "Filename:";File$~
PRINT'l[
CJI

File$
FileL&
~

File$ + CHR$(O)~
Lock&(SADD(File$), -2&)CJI

IF FileL& <> 0 THEN'l[
PRINT "File found, Lock set!"!
UnLock (FileL&) CJI

ELSE!
PRINT "File not found, No lock possible!"~

END IF!

83

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIps

2.3.2

84

File, directory and disk information

Lock can do more than access the fIle handle. We can access directories
and disks using Lock as well.

Once you have control of the Lock function, you have control of
many other functions which execute in conjunction with Lock. The
fIrst one we'll look at together is Examine () . This function takes
information from the file identifIed by a Lock, as you may have seen
in eLI commands. Examine () requires an area of buffer memory
into which the data can be transferred. This task is performed by
AllocMem () , a memory creation function of the exec. bmap file.

The following program examines file data using L 0 c k and
Examine ():

'**************************************i
, *
'* examdemo

*'ll
*'ll

'* File Informationen through Examine *'ll
'* -------------------------------- *'ll
'* *'ll
'* Author: Wolf-Gideon Bleek *'ll
,* Date July 11, 1988 *'ll
,* Version: 1.0 *'ll
'* Operating system: V1.2 & V1.3 *'ll
'* *'ll
'**************************************i

'll
'libraries located in T&T disk, yours may differ'll
LIBRARY "T&T2:bmaps/dos.library"'ll
'll
DECLARE FUNCTION Lock& LIBRARY'll
DECLARE FUNCTION Examine LIBRARY'll
'll
LIBRARY "T&T2:bmaps/exec.library"'ll
'll
DECLARE FUNCTION AllocMem& LIBRARY'll
'll
Typ& = 2~16'll

'll
InfoBlock& = AllocMem&(300&, Typ&)'ll
'll
IF InfoBlock& <> 0 THEN'll
'll

PRINT "Please enter a filename.H'll
PRINT'![
INPUT "Filename:";File$'ll
PRINT'll
'll
File$ File$ + CHR$(O)'ll

ABACUS

Program
description

2.3 ACCESSING AMIGADOS FROM AMIGABASIC

FileL& = Lock&(SADD(File$), -2&)!
!
IF FileL& <> 0 THEN!

PRINT "Lock set!"!
Status = Examine(FileL&, InfoBlock&)!
PRINT "DiskKey ";PEEKL(InfoBlock&)!
PRINT "DirType ";PEEKL(InfoBlock&+4)!
PRINT "Name ";!
FOR i = 8 TO 38!

IF PEEK(InfoBlock&+i) <>0 THEN!
PRINT CHR$(PEEK(InfoBlock&+i»;!
END IF!

NEXT ii
!
UnLock(FileL&)!

ELSE'll
PRINT "No lock possible!"!

END IF'll

CALL FreeMem(InfoBlock&, 300&)!
!

ELSE'll
!

PRINT "No free memory--sorry!"'ll

END IF

Mter both libraries open, our program first looks for a free block of
memory for the later data storage. Next the program prompts the user
for a filename to which he wants the lock assigned. If everything works
so far, Examine () receives the file info block and places this block
in a segment of buffer memory. Then the program displays some
information and the filename and all open channels and libraries are
closed and the program ends.

The ExNext () function can analyze the next entry of a directory, and
even be used to display a directory listing. The lock's name must match
the name of a directory (e.g., Hbs, dfl : , etc.). The program displays
directory entries until the Status variable contains a zero.

'***********************************i
'* *'ll
'* exnextdemo *!
, * Directory display thru ExNext () *!
'* - ----- *'ll
'* *'ll
'* Author Wolf Gideon Sleek *!
, * Date July 11, 1988 *'ll
'* Version: 1.0 *!
'* Operating system: V1.2 & Vl..J *'ll
'* *'ll
'***********************************i

'll
, libraries on T&T disk, your may differ'll
LIBRARY "T&T2:bmaps/dos.library"!

85

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

86

'I[
DECLARE FUNCTION Lock& LIBRARY'I[
DECLARE FUNCTION Examine LIBRARY~
DECLARE FUNCTION ExNext LIBRARY~
~
LIBRARY "T&T2:bmaps/exec.library"'If
~
DECLARE FUNCTION AllocMem& LIBRARY'I[
'l[
Typ& = 2~16'l[

'I[
InfoBlock& = AllocMem&(300&, Typ&)~

~

~
IF InfoBlock& <> 0 THEN~
'I[

PRINT "Please enter the directory name."'1[
PRINT'l[
INPUT "Filename:";Dir$'I[
PRINT'I[
~
Dir$ = Dir~ + CHR$(O)'I[
DirL& = Lock&(SADD(Dir$), -2&)'l[
'l[
IF DirL& <> 0 THEN~

Status = Examine (DirL&, InfoBlock&)'l[
'I[
WHILE (Status<>O)'I[
'I[

i = 8'1[

'I[
WHILE (PEEK(InfoBlock&+i) <>0) 'I[
'I[

PRINT
i =
'l[

WEND 'I[
'l[
PRINT'l[
Status
'l[

WEND'l[
'l[

i
CHR$(PEEK(InfoBlock&+i»;'l[
+ 1'1[

ExNext(DirL&, InfoBlock&)'l[

UnLock (DirL&) 'I[
'I[

ELSE 'I[
'I[

PRINT "No lock possible!"'l[
'I[

END IF'![

CALL FreeMem(InfoBlock&, 300&)'1[
ELSE'I[

PRINT "No free memory--sorry!"'l[

END IF'I[

ABACUS

Program
description

2.3 ACCESSING AMIGADOS FROM AMIGABASIC

This program's operation is similar to the preceding program, except
that this program has a more elaborate main loop. This loop makes it
easy to read the first entry of the directory using Examine. After
entering the directory name, the program enables the lock.

Next the program looks for further entries using the ExNext ()
function. It displays the next directory name on record and repeats the
loop as long as the Stat us variable returns a value unequal to zero. If
the program finds a null value in the S tat us variable, the program
signals the error NO_MORE_EN1RIES and stops.

AmigaDOS has three more functions in the field of directory handling.
The ParentDir () function determines whether a subdirectory exists
in a particular directory. This requires a lock on the current directory.
and returns either a lock to the subdirectory or null (if the program is
already in the root directory). The following program makes use of this
function and displays the current level in the directory tree.

'********************************'
'* parentdir *i
,* List Directory Level *~

'* ---------------------------- *~
'*
'* Author : Wolf-Gideon Bleek

*~

*~
*1)

*'l[
,* Date July 11,1988
'* Version: 1. 0
'* Operating system: Vl.2 & V1.3*CJ
'*
'********************************~

, libraries are in the T&T2 disk, yours may differ'!!
LIBRARY "T&T2:bmaps/dos.library"'ll
'll
DECLARE FUNCTION Lock& LIBRARY'll
DECLARE FUNCTION ParentDir& LIBRARY'
~

~

'lI

PRINT "Please enter the directory name."~
PRINT'll
INPUT "Name:";Dir$~
PRINT~

'!!
Level = O'll
CJI
Dir$ = Dir$ + CHR$(O)'ll
DirL& = Lock& (SADD(Dir$) , -2&)CJI
'lI
IF DirL& <> 0 THEN'll

WHILE(DirL& <> O)'l[
'll
DirL& = ParentDir&(DirL&)'l[
Level = Level + 1'l1
'lI

87

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPs

Program
description

88

WEND'l!
'l!
UnLock(DirL&)'l!

IF Level = 1 THEN'l!
PRINT "» Main directory! «"'ll

END IF'l!
'l!
PRINT "Level: ";Level'll

'll
ELSE'll
'l!

PRINT "No lock possible!"'ll
'll

END IF'l!

The program searches the directory levels until a null is returned, when
it is at the main directory. The call to ParentDir () returns the
directory level. You may enter multiple directories in the path to find
different levels.

Two functions remain which directly apply to directories. The first,
CurrentDir (). is similar to the AmigaBASIC CHDIR command.
The user sets a lock on the directory and accesses this function. The old
lock is returned until the current directory is given. Using this you can
reset directory paths anytime.

Directories can also be accessed from dos .library. The last
function just needs the name of the new directory. The directory will be
treated as a subdirectory of the current directory. Therefore, you must
first use CurrentDir () before accessing any directory. The result is
eq ual to the lock of the new directory.

Now that we've seen how to access directories and get information from
directory files, let's do some more detailed reading of this disk data.
AmigaDOS has a third directory function named Info () . It loads
information about a disk and places this information in a buffer. We
can then read this easily and display important disk information:

I**********************************!
'* *'ll
'* info *'ll
'* Disk information through Info *'l!
'* ----------------------------- *'ll
.* *'l!
.* Author: Wolf-Gideon Bleek *'lI
'* Date July 11,1988 *'l!
'* Version: 1.0 *'l!
'* Operating system: V1.2 & V1.3 *'ll
'* *'l!
I**********************************~

CJI

'l!
LIBRARY "T& T2 : bmaps/ dcs .library·"1

ABACUS 2.3 ACCESSING AMIGADOS FROM AMIGABASIC

'1
DECLARE FUNCTION Lock& LIBRARY')
DECLARE FUNCTION Info LIBRARYi
CJ
LIBRARY "T&T2:bmapsexec.librarY"i
'I
DECLARE FUNCTION AllocMem& LIBRARY')
'I
tyP& = 2"16!
'I
Info& = AllocMem&(300&, tyP&)'l
'I
IF Info& <> 0 THEN!
CJI

PRINT "Please enter a device name."CJI
PRINT!
INPUT "Name:";Dev$'1
PRINT<][
'i
Dev$
DevL&
'i

Dev$ + CHR$(O)'ll
Lock&(SADD(Dev$), -2&)'1

IF DevL& <> 0 THEN!
II
Status = Info(DevL&, Info&)!
II
i = 811
WHILE(PEEK(Info&+i)<>O)'ll

PRINT CHR$(PEEK(Info&+i»;'I
WEND!
!
PRINT<][
'i
PRINT "Soft Errors: ";PEEKL(Info&)'ll
PRINT "Unit Number: ";PEEKL(Info&+4)'ll
PRINT "Disk Status: ". : st& = PEEKL(Info&+8)'I ,
IF st& 80 THEN PRINT "Write protected"'ll
IF st& 81 THEN PRINT "Validated"CJI
IF st& 82 THEN PRINT "Disk ready"!
CJ
PRINT!
PRINT "NumBlocks
PRINT "NumUsed

";PEEKL(Info&+12)'I
";PEEKL(Info&+16)'ll

PRINT "BytespBlock: ";PEEKL(Info&+20)'l
PRINT "DiskType ";: tyP& = PEEKL(Info&+24)'ll
FOR i 3 TO 0 STEP -1 '1

PRINT CHR$«typ& I 256"1) AND 255);'1
NEXT i'lI
'I
PRINT'll
'i
UnLock (DevL&)'I
CJI

ELSE'll
'I

PRINT "Not found, No lock possible!"')

89

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIps

Program
description

2.3.3

90

'll

'll
END IF'll

CALL FreeMem(Info&, 300&)'ll
'J[

ELSE'll
'i

PRINT "No free memory--sorry!"'J[
'll
END IF'll

After placing the lock on a disk entry, the Info () function reads the
disk information. This information is then displayed on the screen.
Then disk access ends and the program releases the memory it allocated.

Direct file control

You'll recognize three out of the next four functions from the CLIo
This segment describes how you can make use of these functions from
AmigaBASIC.

Start by creating three simple test programs in AmigaBASIC and
saving them to the same directory (just a REM or PRINT statement
will do). Name these test files DeleteTest, My Old Name and
P rotect _Me. Enter the three demo programs below and save them to
the same directory as the three programs you just entered (preferably the
main directory).

The DeleteFile () function is completely compatible with the CLI
Delete command. Entering the filename as a string deletes the file.
Notice that DeleteFile () does not automatically delete a file's
matching. info file-the. info file must be deleted separately.
Here's a short demonstration program which deletes the BASIC
program named DeleteTest and the DeleteTest. info file:

, Demo of DeleteFile()'ll
, Deletes existing BASIC file named DeleteTesti
, and its .info file'll
'I
LIBRARY "T&T2:bmaps/dos.library"'ll
'll
DECLARE FUNCTION DeleteFile LIBRARY'll
'll
fileS = "DeleteTest" + CHR$(O)'J[
status = DeleteFile(SADD(file$»'I
'l!
fileS = "DeleteTest.info" + CHR$(O)'J[
status = DeleteFile(SADD(file$»'ll

ABACUS 2.3 ACCESSING AMIGADOS FROM AMIGABASIC

The Rename () function is completely compatible with the eLI
Rename command. The user enters two texts-one representing the
old name and one representing the new name. Here's a brief
demonstration program which renames the program My_Old_Name
and its • info file to The New Stuff:

, Demo of Rename~
I Renames existing BASIC program~
I named My_Old_Name to The_New_Stuff~
I and its info file~
'll
LIBRARY "T&T2:bmaps/dos.library"~
'lI
DECLARE FUNCTION Rename LIBRARY'lI
'lI
OldFile$ "My_Old_Name" + CHR$(O)~
NewFile$ "The_New_Stuff" + CHR$(O)~
OldInfo$ "My_Old_Name.info" + CHR$(O)'ll
NewInfo$ "The_New_Stuff.info" + CHR$(O)~
'I
Status = Rename(SADD(OldFile$), SADD(NewFile$»'1
Status = Rename(SADD(OldInfo$), SADD(NewInfo$»'lI

The last file control function is named SetP rotection () . This
function sets and un sets the protection bits on files in Version 1.2
(which has four protection bits) and in Version 1.3 (which has eight
protection bits). These bits lie in a particular order following a file.
Thus, you can protect some files from being deleted. Here's a short
program to demonstrate (change the filename to suit your own needs):

I Demo of SetProtection'lI
, Sets protection bits on the file named Protect_Me'lI
LIBRARY "T&T2:bmaps/dos.library"'lI
DECLARE FUNCTION SetProtection LIBRARY'll
~
File$ = "Protect_Me"+CHR$(O)'ll
Mask& = 4+8~

status = SetProtection(SADD(File$), Mask&)'lI

The mask& variable can be divided into the following bits:

Bit # Meaning when bit is set

o File cannot be deleted
1 File cannot be executed (not implemented)
2 File cannot be overwritten (not implemented)
3 File cannot be read (not implemented)
4 File stays unchanged after a copy procedure
5 Program file can be made resident
6 File is a script file, and cannot be run using Execute
7 File cannot be listed (not implemented on 1.2)

91

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

2.4

2.4.1

92

Libraries and applications

So far you've seen brief examples of DOS functions accessed from
AmigaBASIC. These programs were enough to demonstrate the
functions, and give you a little knowledge on the subject. We will
conclude this chapter with a larger program that might be of great use
to the BASIC programmer.

You should be able to find many uses for this program. It allows you
to make archival listings of disk directories. It starts by letting you
create directory lists for printing. Once you generate a directory listing,
you can display it and manipulate it to some degree, and even sort the
list in alphabetical order.

Directory manager

This program, which lets you perform directory management, lets you
read a directory and display it in tabular form. This list can be sorted
alphabetically in order of directories and files.

This system works well for program or text disks consisting of many
files, which are normally difficult to read from a normal directory
command because the listing scrolls by so quickly (e.g., files from
AmigaBASIC). Compiling the directory into a list makes it easier to
find a file, and converting the directory to a file lets you read the
directory from a word processor.

'***************************************~
.* dirmanager *~

'* Directory manager in AmigaBASIC *~

.* ----------------------------------- *~
• * *'lI
.* Author: Wolf-Gideon Bleek *~

.* Date July 11, 1988 *'lI
,* Version: 1.0 *~

,* Operating system: V1.2 & V1.3 *~

,* *~
.***************************************~

'lI
'lI
LIBRARY "T&T2:bmaps/dos.library"~
'lI
DECLARE FUNCTION Lock& LIBRARY~
DECLARE FUNCTION Examine LIBRARY~

ABACUS 2.4 LIBRARIES AND APPLICATIONS

DECLARE FUNCTION ExNext LIBRARY~
'll
'll
LIBRARY "T&T2:bmaps/exec.library"'ll
'll
DECLARE FUNCTION AllocMem& LIBRARY'll
'll
Info&
'll
Typ&
MaxSize&
'll
Suffix$
'll

O'll

"no ending"'ll

DIM Dir$(200), File$(200), Size$(200)'ll
'll
Info& = AllocMem&(MaxSize&, Typ&)'ll
OPEN "ram:temporary" FOR OUTPUT AS 255'll
'll
OPEN "RAM:dir-list" FOR APPEND AS I'll
CLOSE I'll
'll
MENU 1,0,1,"Data "'ll
MENU 1,1,1,"Load "'ll
MENU 1,2,1,"Save "'ll
MENU 1,3,1,"Quit "'ll
'll
MENU 2,0,1,"Directory "~
MENU 2,1,1, "Complete "'ll
MENU 2,2,1,"Sort "'ll
MENU 2,3,1,"Display "'ll
MENU 2,4,1,"Delete '''11
'l!
MENU 3,0,1,"Settings"'ll
MENU 3,1, 1, "Filter extensions"'ll
'll
'l!
MENU 4,0,0, '''''l!
'll
ON MENU GOSUB Selects'll
MENU OWl!
'll
WHILE I'll

IF FileMemory& <> 0 THEN'll
FreeMem(FileMemory&, Length&)'ll

END IF'll
'll

SLEEP~

WEND'll
'll
'll
Se1ects:'l!

HM = MENU(O)'ll
MP = MENU (1) 'll
'll
FOR i = I TO 3'll

93

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIps

94

MENU i,D, O'll
NEXT i'll
'll
IF HM = 1 AND MP = 3 THEN'll

MENU RESET'll
CALL FreeMem(Info&, MaxSize&)'ll
CLOSE 255'll
LIBRARY CLOSE'll
END 'll

END IF'll
'll
IF HM = 1 AND MP
IF HM = 1 AND MP
'll
IF HM = 2 AND MP
IF HM = 2 AND MP
IF HM = 2 AND MP
IF HM = 2 AND MP

1 THEN GOSUB LoadIt 'll
2 THEN GOSUB SaveData'll

1 THEN GOSUB GetDir'll
2 THEN GOSUB Sort'll
3 THEN GOSUB DisplayIt'll
4 THEN GOSUB DeleteIt'll

'll
IF HM = 3 AND MP - 1 THEN GOSUB NewSuffix'll
'll
PRINT'll
PRINT "OK"'ll
PRINT'll
'll
FOR i = 1 TO 3'll

MENU i,O,l'll
NEXT i'll

'll
RETURN'll
'll

'll
LoadIt:'ll

PRINT "LOAD file created by dirmanager"'ll
PRINT'll

'll
PRINT "Please enter the filename."'ll
PRINT'll
INPUT "Filename:";SourceFile$'ll

'll
IF SourceFile$ = "" THEN RETURN'll
'll
PRINT'll:
PRINT "Loading file ••• It'll

OPEN "RAM:dir-list" FOR OUTPUT AS 2'll
OPEN SourceFile$ FOR INPUT AS I'll
'll
WHILE(EOF(l)=O)'ll

'll
INPUTtl, Dir$, File$, SizeS'll
PRINTt2, Dir$'ll
PRINU2, File$'ll
PRINU2, SizeS'll

'll
WEND'll

ABACUS 2.4 LIBRARIES AND APPLICATIONS

'll

'll
CLOSE I'll
CLOSE 2'll

RETURN'll
'll
'll

SaveData:'ll

'll

PRINT "SAVE file created by dirmanager"'ll
PRINT'll

'lI
PRINT "Please enter the filename."'ll
PRINT'll
INPUT "Filename:";DestFile$'ll
'll
IF DestFile$ - .". THEN RETURN'll
'll
PRINT'll
PRINT "Saving file •.. "'ll

OPEN "RAM:dir-list" FOR INPUT AS 1'1
OPEN DestFile$ FOR OUTPUT AS 2'l1
'll
WHILE(EOF(l)=O)'ll

'll
INPUT#l, Dir$, File$, SizeS'll
PRINT#2, Dir$'ll
PRINT#2, File$'ll
PRINT#2, SizeS'll

'lI
WEND'll
'll
CLOSE I'll
CLOSE 2'll
'II
RETURN'I
'i

'lI
GetDir:'ll

'II

PRINT "Load directory"'ll
PRINT'll
'lI
PRINT "Please enter the directory path. '''1I
PRINT'll
INPUT "Directory name:";Dir$'ll
'll
IF Dir$ = "" THEN RETURN'll

PRINT'll
PRINT "Reading directory •.. "'ll
PRINT'll
'll
Dir$ Dir$ + CHR$(O)'ll
DirLk& = Lock&(SADD(Dir$), -2&)'ll
'll
IF DirLk& <> 0 THEN'll

95

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIps

96

'll
'll

'll

'll

OPEN "RAM:dir-list" FOR APPEND AS 1'll
'll
Status = Examine(DirLk&, Info&)'ll
PRINT "Directory: ";'ll
CALL Display(Info&, 255, n")'ll
Directories$ = File$'ll
'll
Status = ExNext(DirLk&, Info&)'ll
'll
WHILE (Status<>O) 'll
'll

CALL Display(Info&, 1, Directories$)'ll
Status ~ ExNext(DirLk&, Info&)'ll
'll

WEND'll

CLOSE 1'll
'll

ELSE'll
'll

PRINT "Directory not found!"'ll
'll

END IF'll
'll
RETURN'll

Sort :'ll
'll

'll

PRINT "Sorting directory"'ll
PRINT'll
'll
OPEN "ram:dir-list" FOR INPUT AS 1'll

z = O'll
'll
WHILE(EOF(1)=O)'ll

'll
INPUT#1, Dir$(z), File$(z), Size$(z)'ll
z = z + 1'll
'll

WEND'll
'll
CLOSE 1'll
'll
FOR i = 0 TO z - 2~

k = i'll
FOR j = i TO z - 1'll

IF Dir$(j)+File$(j)<Dir$(k)+File$(k) THEN k j'll
NEXT j'lI
SWAP Dir$(i), Dir$(k)'ll
SWAP File$(i), File$(k)'ll
SWAP Size$(i), Size$(k)'ll

NEXT i'll
'll

ABACUS 2.4 LIBRARIES AND APPLICATIONS

'll

OPEN "ram:dir-list" FOR OUTPUT AS 1'l[

'll
FOR i = 0 TO z - I'll

PRINT#I, Dir$(i)'ll
PRINT#l, File$(i)'ll
PRINT#l, Size$(i)'ll

NEXT i'll
'll
CLOSE I'll
'll
RETURN'll

'll
DisplayIt: 'll
'lI

'll

PRINT "Listing directory"'ll
PRINT'll
'll
OPEN "ram:dir-list" FOR INPUT AS I'll

WHILE(EOF(l)=O)'ll
'll
INPUT#l, Dir$, File$, SizeS'll
PRINT Dir$;TAB(40);File$;TAB(70)iSize$'ll

'll

'll
WEND'll
'll
CLOSE I'll
'll
RETURN'll

'll
DeleteIt:'ll

'll
PRINT "Delete dir-list from RAM"'ll
PRINT'll
PRINT "Do you really want to delete all data?"'ll
'll

'll

INPUT "Y/N<Return>: ";a$'ll
'll
IF a$<>"Y" THEN RETURN'll
'll
KILL "ram:dir-list"'ll

PRINT
PRINT "Directory deleted"'lI

'll
OPEN "ram:dir-list" FOR APPEND AS I'll
CLOSE 1'lI

'll
RETURN'll

'll
'll
NewSuffix:'ll
'll

'll

PRINT "User-defined file extension filter"'ll

97

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

Program
description

98

PRINT'l[
Cj[

PRINT "Please enter an extension (e.g., .ext) "'ll
PRINT "or press <Return> to display all files. "'ll
PRINT'll
Cj[

INPUT "Extension: ";Suffix$'ll
'.II
IF Suffix$ = 1111 THEN Suffix$ - "No ending"'ll
Cj[

RETURN'i
'lI

'll
SUB Display(Mem&, Ch%, Dir$) STATIC'll
SHARED File$, Suffix$'ll
'll

i = 8 : File$-""'ll

WHILE (PEEK (Mem&+i) <>O)'l[
File$ = File$ + CHR$(PEEK(Mem&+i»'l[
i - i + 1 'lI
'll

WEND'll
'll

IF RIGHT$(UCASE$(File$), LEN(Suffix$» -
UCASE$(Suffix$) THEN EXIT SUB'l[

'l[

'll

'l[
PRINT File$;TAB(35);'l[
PRINT#Ch%, Dir$'ll
PRINT#Ch%, File$'ll

'll
IF PEEKL(Mem&+4)<O THEN'l[

PRINT PEEKL(Mem&+124);TAB(45);'ll
PRINT#Ch%, PEEKL(Mem&+124)'ll

ELSE'l[
PRINT II DIR";TAB(45);'ll
PRINT#Ch%, IDIR"'ll

END IF'l[

PRINT'll

END SUB'll
'II

After starting the program, press the right mouse button. Three menu
titles appear in the menu bar-File, Directory and Settings. The File
menu lets the user save directory data to disk, or load previously saved
directory data. If the user selects either item, the program asks for the
name of the file to be saved or loaded. Selecting the Quit item ends the
program.

The Directory menu supplies options for managing directory data. The
Complete item gets the complete directory from disk. The program
prompts the user for the directory name or device number. Enter this
and press the <Return> key to load the directory.

ABACUS

2.4.2

2.4 LIBRARIES AND APPLICATIONS

The Sort item sorts the directory currently in memory into alphabetical
order.

The Display item displays the list of data loaded so far. The program
divides this list into three columns-the disk name, the file/directory
name and the number of bytes used/DIR (for directory).

The Delete item deletes the directory list from the RAM disk. The only
response the computer accepts to delete the RAM file is <Y><Return>.
If you enter a lower case <y>, or any other key, the function aborts.

The Settings menu has only one item-the Filter extensions item.
This can be implemented when you have too many files of one
particular extension on a disk, and these files make the directory hard to
read. For example, if you want to see a directory of BASIC programs
without seeing their. info files, select the Filter extensions item.
Enter the text. info at the prompt and press <Return>. Now if you
select the Complete item from the Directory menu, the program
suppresses the . info filenames from the list.

Program documentation

The program starts by opening the two . bmap files needed:
dos . library, which loads the directories, and exec . library,
which handles memory management. Next the program initializes
variables and pointers, arrays for the Sort routine and memory for the
Examine () function.

A temporary file opens for storing later output (i.e., its data doesn't go
to the screen). Also, the dir-list file opens for appending data
(e.g., more than one disk directory). If dir-list doesn't exist during
program execution, errors can occur. Directory data is kept as a file in
the RAM disk instead of in variable arrays. This offers a good
demonstration of RAM disk usage, as well as keeping more memory
free for the program itself. So the RAM disk always opens for
appending when other data is read. It keeps appending data until no
more memory exists.

The next routine creates the three menus and their items, and removes
them when the program ends. You'll find the menu reading loop in this
same area, which allows you to select a menu item. If the user selects a
menu item, the program jumps to the Selects routine, which
contains the menu numbers and item numbers required.

If a menu item was selected, first the program disables all the menus to
avoid accidentally selecting a second item during execution of the
current item. This routine then branches to the respective subprogram

99

2. AMIGABASIC TRICKS AND TIPS MORE TRICKS & TIPS

100

and executes the task. Once execution of the item ends, a short delay
loop executes and the menus are re-activated.

Here are detailed descriptions of the important routines as they appear in
program order:

The LoadIt routine requests the name of an existing directory file
(created by the SaveData routine). The program adds a lock, opens
the RAM file and adds the new data to the RAM file. First the routine
loads the directory name with path using Examine () . The display of
this file uses an extra SUB program which filters output and transmits
the data to different devices (more on this later). The end of the directory
flle causes the exit from the subroutine.

The SaveData routine prompts the user for a filename. If the user
presses <Return> without any other input, the routine ends. Entering a
filename and pressing <Return> generates two files: a RAM file for
reading and a written file for later data transfer. The data in the RAM
disk matches that data in the written flle, until no new data can be read.
This ends the saving process.

The GetDir subroutine loads a directory. The user enters a directory
name or path and presses <Return>. The program checks for an
existing name. It loads the directory if the name exists, and exits the
routine if not. This will result in an error message-you may want to
add error trapping to this program.

The Sort routine alphabetically sorts directory entries contained in the
RAM disk by filename.

The DisplayIt routine controls all screen display. This assigns a
pointer to the memory range into which the directory data was placed.
This information includes the number of the data channel, which
controls the data output, as well as the disk path itself. First the routine
reads the name of the entry and places it in the File$ variable. Then it
tests whether the filename extension matches the saved extension. If so,
the routine exits without displaying data, since these files and entries
should be skipped.

The DisplayIt routine checks the file and displays all three file
items as a single-line entry (disk name, filename, bytes/DIR). This
routine lists the directory until no more data exists. The end of the
routine jumps back to the main program.

The first two data items appear on the screen: The directory path and the
fllename. Next the program lists the sizes of the files. These values are
read as a FileInfo structure. If the value is less than zero, the
program displays the abbreviation DIR. In any case, the file output
appears on the screen.

ABACUS 2.4 LIBRARIES AND APPLICATIONS

The Deletelt routine deletes the dir-list RAM file and opens
an empty file of the same name. The INPUT statement that determines
whether you want to delete the contents of the RAM file only accepts a
capital Y as a positive response. Any other selection (including a lower
case y) aborts the function.

The NewSuffix routine prompts the user for an extension name for
files you don't want to appear in the list. If the user presses <Return>
without entering an extension, the routine ensures the display of all
filenames.

We hope that these programs offer you a good demonstration of using
libraries for file control in AmigaBASIC.

101

3.
Machine language

ABACUS

3 .

3. MACHINE LANGUAGE

~achine language

AmigaBASIC is a good programming language, but it's definitely not
the fastest. The best language to program in is machine language. The
reason for this is that machine language instructions run a thousand
times faster than BASIC commands. Every feature of the computer can
be accessed from machine language, some that may not be available in
BASIC-system routines can be called at almost any time. True,
machine language is hard to learn, but programming on the Amiga
with a good assembler can be learned relatively quickly. AssemPro
from Abacus is a very good assembler for the beginner.

Let's talk for a moment about the C programming language, which
executes at about a tenth the speed of machine language. You can do
many of the same things in C that you can in machine language.
Unfortunately, many of the unusual routines you might want to call in
C require fairly extensive programming. For all that trouble, you might
as well program in machine language.

You may not know anything about machine language. That's fine­
this chapter doesn't demand that much knowledge from you. However,
for the most effective Amiga programming, we recommend that you
start learning 68000 machine language. Get an elementary book on the
subject (Amiga Machine Language from Abacus is a good text on
68000 machine code on the Amiga) and study. We repeat: You won't
need that knowledge for this chapter-we'll explain the code as
carefully as we can.

This chapter contains many useful machine language programs and
routines. You'll fmd BASIC extensions and unusual demonstrations of
what you can do with the mouse. We've even included a program
designed for zapping viruses (a problem in the Amiga community).

The routines below were written using Abacus' AssemPro assembler.
For those of you who don't have access to an assembler, we've included
BASIC loaders for each program whenever possible.

lOS

3. MACHINE LANGUAGE MORE TRICKS & TIPS

3.1

106

Division by zero handler

Dividing a value by zero may be one of the biggest causes of Guru
Meditations. Let's start by looking at what happens during and after a
division by zero, so we can think about how we can solve this prob­
lem.

The processor itself creates an exception. The Status register from the
68000 passes to a buffer. The processor automatically switches to
supervisor mode. The Trace bit is erased to disable single-step mode.
Now the program counter (PC), Status register, Instruction register (and
its condition when the error occurred), access address and the Superstate
word (which explains the processor's condition) are placed on the
Supervisor stack.

Mter an Exception routine the processor continues working with the
program, which releases the error, the RTE (ReTurn from Exception)
instruction executes. The Exception vector appears at RTE. You can
fmd a variation on this in the eLI SetAlert command, which waits
for error flag settings, then determines from the Superstate word
whether RTE or a Guru follows.

We'd like to clarify the following: When you have a program that has
such a small denominator that it can no longer be represented by a word
(The 68000 commands DIVU and Drvs process words only), the
denominator is rounded off to zero. Here's where the problem crops up:
the 68000 can't divide by zero.

RTE returns us to the program. This return goes to the address after the
command that releases the error. This is good, right? Wrong. Think
about this: What usually happens when you divide by a very small
number, for example .00001? You could get a fairly large number as a
result

The register which held the result now contains a very small value. The
result is that all subsequent calculations must also be wrong as soon
the next Exception is released. The program only returns nonsense,
which is of no help to the user. We can assume that the denominator
was infinitely small instead of just zero. This allows division once
again. We can write the following in place of "infinitely small":

1

Denominator = infinitely_large

For division by this denominator, we get help from the old rule: When
dividing by a fraction, multiply by the inverse:

ABACUS 3.1 DIVISION BY ZERO HANDLER

Counter = x
Inverse denominator = infinitely_large

Result = Counter * Inverse denominator
= x * infinitely_large
= infinitely_large

We insert the largest possible value for infinitely_large which
the commands Drvs and Drvu can process, and the computation is
correct in spite of Exception. We write an Exception routine which
stores the correct values in the corresponding registers before you return
with RTE.

For this reason, you must know which command releases the
Exception because the highest possible value for Drvu is $FFFF, and
for Drvs, $FFF. Furthermore, we must determine in which data
register this value must be transferred. The number of the data register
is found directly in the opcode, as the following table shows:

Command

DIVU
Drvs

Command code bits
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
100 0 x x x 0 1 1 Y Y Y Y Y Y
100 0 x x xlI 1 Y Y Y Y Y Y

Bits 9-11 (x) return the number of the data register where the result is
stored. Bits 0-5 give the addressing type, which you don't need to know
about here. Here's the machine language version of the program:

;Division by Zero - Handler; by SM'S8

Init _Trap:
Move.l 4,A6
Move.l #Div_End-Div,DO

MoveQ #l,D1
Jsr -198 (a6)
Move. I DO, New_Trap

Beq.s rnit_End
Move.l DO,A1
Lea Div,AO

MoveQ #(Div_End-Div)-l,OO
Copy_Code:

Move.b (AO)+, (A1)+
OBra DO, Copy_Code
Move.l New_Trap,20

Init End:
MoveQ #0,00
Oivu 00,01
rts

;Install handler
;ExecBase to A6
;Handler-Length to

;MEMF_Public
;call AllocMem
;get address

;End, when error
;Address to Al
;CodeStart-Address

;CodeLength-1
:Handler copy
;Byte copy
;Next Byte
:New Trap-Vector

;Adieu
;No = 0 !!!

DO

;Go Ahead, Make My Day
;End

107

3. MACHINE LANGUAGE MORE TRICKS & TIPS

108

New_Trap:
dc.l 0

Div:
MoveM.l
Move.l
Move.w
Move.l

Btst
Beq.s
Move. I

GoOn:
Lsr.w
AndI.l

Move.l
MoveM.l
Rte

Div_End:

End

DO-A6, - (sp)
62(sp),AO
-2(AO),DO
#$ffff,Dl

#8,DO
GoOn
#$7fff,Dl

#7,DO
#28,DO

Dl,O(sp,dO.l)
(sp)+,DO-A6

;New Trap-Vector
;1 LongWord

; DivisionByZeroHandler
;AII Register (s.u.)
;get PC from Stack
;get last command
;large value for Divu

;Was it Divu-instruction?
;then continue
;Else Divs-Value

;Data register transfer
;Scroll command bitwise
;Ignore register

;Register and Stack ndern
;Genderte Register laden
;Return from Exception
; Label: SizeOf

You may have been wondering how the new result value arrives in the
data register. After storing the entire register on the stack, which always
stores the highest address register fIrst, the other registers are used in
descending order (see the third line of the program). They are simply
used with four multiplied register numbers as an offset for the stack
access. Should something not function properly, the system does a
Guru.

We released a division by zero Exception after installing the new Trap
vector (division by zero occurs in line 20).

Here is a short BASIC routine that stores the program as a eLI com­
mand (you should call this command using your startup sequence):

OPEN "sys:c/DIVZERO" FOR OUTPUT AS 1
FOR i=1 TO 176

READ a$
a%=VAL ("&H"+a$)
PRINT #1,CHR$(a%);

NEXT
CLOSE 1
KILL "sys:c/DIVZERO.info"
datas:
DATA O,O,3,F3,O,O,O,O,O,O,O,1,O,O,O,O,O,O,0,O
DATA 40,0,0,IB,O,O,3,E9,O,O,O,IB,2C,78,O,4,20,3C,O,O
DATA O,30,72,1,4E,AE,FF,3A,23,CO,O,O,O,36,67,18,22,40,41,F9
DATA O,O,O,3A,70,2F,12,D8,Sl,C8,FF,FC,21,F9,O,0,O,36,O,14
DATA 70,O,82,CO,4E,75,O,O,O,O,48,E7,FF,FE,20,6F,0,3E,30,28
DATA FF,FE,22,3C,O,O,FF,FF,8,O,O,8,67,6,22,3C,O,O,7F,FF
DATA EE,48,2,80,O,O,O,lC,2F,81,8,O,4C,DF,7F,FF,4E,73,0,0
DATA O,O,3,EC,O,O,O,3,O,O,O,O,O,O,O,12,O,O,O,lC
DATA O,O,O,2A,O,O,O,O,O,O,3,F2,O,O,3,F2

ABACUS

3.2

Who's
responsible?

3.2 ATTENTION: VIRUS ALARM!

Attention: Virus alarm!

Computer viruses are a major topic of discussion wherever you hear
computer users talking shop. Some people say that there are no such
things as computer viruses-that it's all media hype, and that viruses
don't really exist. We'll leave the debate up to others. However, we
personally believe in viruses.

Computer viruses spread with amazing speed. The most common
viruses seen on the Amiga are the SeA virus and the Byte Bandit virus.
Once you could simply say, "You're safe as long as you use commer­
cial software." This is no longer true today: We have a problem that
cannot be taken seriously enough.

When viruses come under debate, the first question that crops up is,
"Who's responsible for these programs?" Viruses came from the world
of the software pirate, who cracks the protection on a commercial pro­
gram, and perhaps adds a virus to it. The pirated copies spread viruses
even further, and may even return to the manufacturers from whence the
original programs came. Suddenly original games from the factory have
viruses on them! This has happened to a few game manufacturers. One
highly respected manufacturer of software for another 68000-based
computer was shocked by the fact that a pair of magazine executives
had planted a virus on a fairly expensive and powerful piece of
illustration software.

How does a virus propagate? Generally the virus program hides in the
boot block of a disk. When you boot using this disk, the operating
system loads the boot sectors (the first two sectors of a disk). Usually
these sectors contain the initialization routine for the DOS library. The
Ins tall command writes this routine to disks to make them
bootable. The operating system jumps directly to the boot routine,
which is exactly what the virus wants.

The virus copies itself to an area of memory, changes system vectors
and goes through the DOS initialization. This places them in the
system unnoticed. If you place another boot disk in a drive, one virus
writes itself to the boot block. Another type of virus does this during a
reset.

Unfortunately, many programs start with a loader in the boot block,
which the virus simply overwrites, destroying the disk. Moreover,
infected computers suffer different interruptions caused by the virus.
This is first noticeable when the virus decides that enough disks have
been infected (it keeps track of the number of disks it's infected).

109

3. MACHINE LANGUAGE MORE TRICKS & TIPS

3.2.1

110

The sole enemy of Amiga viruses at the time of this writing is the
Install command, which simply overwrites the infected boot block.
Some known viruses can recognize the use of Ins tall. When the
Install command starts writing to the boot block, the virus sets a
flag somewhere during the write procedure and reformats the disk. A
system infected in such a manner is usually beyond help.

The ultimate virus killer

The following program should be stored in the startup sequence of
every boot disk you have. It examines the system vectors that can be
used by the viruses, and deletes these vectors. The entire boot disk must
be reconfigured using the Install command. By disabling the virus
program in memory this cannot be written back to the disk after
Install.

;VIRUS-KILLER VI.O; by SM'S7

start:
move.l 4,a6
moveq itO,dl
tst.146(a6)
beq. s noSCA
clr.l 46 (a6)
addq.b n,dl

noSCA:
cmpi.w it$FC,14S(a6)
beq.s noVBI
addq.b it2,dl
bra.s ClearTag

noVBI:
tst.1550(a6)
beq.s GoOn
addq.b it4,dl

ClearTag:
clr.l 550 (a6)
clr.l 554 (a6)

GoOn:

;EXECBASE at a6
;Flags: no Virus here

;Test, for distorted Cool-Capture
;Wasn't SCA-Virus
;Cool-Capture clear
;Bit ° set

;Vertical Blank Interrupt normal?
;no?
;Bit I set
;KickTag-Pointer clear

;KickTag-Pointer changed?
;no?
;Bit 2 set

;Pointer cleared
;Pointer cleared

move.b dl,Virusflag ;Flag reserved
lea dosname,al ;Address of Lib names
moveq itO,dO ;Version is the same
jsr -552(a6) ; Open Library
move.l dO,dosbase ;Reserve Library-Base
beq errfix ;Branch on Error
move.l dO,a6 ;Prepare for DOS call
jsr -60(a6) ;Get Output-handle
move.l dO,Outputhandle ;and store
beq err fix ;Branch when error
move.l ittitle,d2 ;Title at d2
move.l ittitleend-title,d3 ;Text-Length

ABACUS 3.2 ATTENTION: VIRUS ALARM!

jsr writeout
tst. b Virus flag
bne.s Virusfound
move.l #clean,d2
move.l #cleanend-clean,d3
jsr writeout
bra errfix

Virus found:
btst #O,Virusflag
beq.s notsca
move.l #scaV,d2
move.l #scaVend-scaV,d3
jsr writeout

notsca:
btst #l,Virusflag
beq. s not vbi
move.l #bbVvbi,d2
move.l #bbVvbiend-bbVvbi,d3
jsr writeout
bra.s bbfound

notvbi:
btst #2,Virusflag
beq.s err fix
move.l #bbVtag,d2
move.l #bbVtagend-bbVtag,d3
jsr write out

bbfound:
move.l #bbv,d2
move.l #bbvend-bbv,d3
jsr writeout

errfix:
move.l 4,a6
move.l dosbase,dO
beq. s quit
move.l dO,a1
jsr -414 (a6)

quit:
moveq #O,dO
rts

writeout:
move.l outputhandle,d1
jmp -48 (a6)

dosname:dc.b "dos.library",O

;Text output
;Virusflag test
;Branch on Virus
;Clear message
; Length
; Text output
;Program end
;Virus is active
;Cool-Capture?
;No
; Message
;Length
;Text output

;VB-Interrupt?
;No
;Message
; Length
;output
;next Message

; Kicktag?
;No
;Message
; Length
; output

; message
; Length
;output

title:dc.b $c,$9b,"1;31;42m - Virus-Killer"
dc.b " V1.0 - ",10,13
dc.b "(c) 1988 by S. Maelger",10,13,10
dc.b $9b,"0;31;40m"

titleend:align
clean:dc.b "No symptoms for Virus"

dc.b "-Infection found !",10,13,10
cleanend:align
scaV:dc.b "Reset-Vector Cool-Capture has"

dc.b " been used!",10,13
dc.b "SCA-Virus suspected !",10,13
dc.b "Virus in memory destroyed.",10,13,10

scaVend:align

111

3. MACHINE LANGUAGE M ORE TRICKS & TIPS

112

bbVvbi:dc.b "Vertical Blank Interrupt has"
dc.b "been used!",10,13

bbVvbiend:align
bbV:dc.b "Byte-Bandit-Virus suspected!",10,13

dc.b "Virus in memory destroyed.", 10, 13, 10
bbVend:align
bbVtag:dc.b "KickTagPointer is no longer"

dc.b " in operating system!",lO,13
bbVtagend: align
dosbase:dc.l 0
outputhandle:dc.l 0
Virusflag:dc.b 0

end

Here is the BASIC loader version of the Virus check program listed
above:

OPEN "sys:c/Virus chk" FOR OUTPUT AS 1
FOR i=l TO 800 -

READ a$
a%=VAL("&H"+a$)
PRINT #l,CHR$(a%);

NEXT
CLOSE 1
KILL "sys:c/Virus_chk.info"
datas:
DATA 0,0,3,F3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0
DATA 0,0,0,A4,0,0,3,E9,0,0,0,A4,2C,78,0,4, 72,0,4A,AE
DATA 0,2E,67,6,42,AE,0,2E,52,1,C,6E,0,FC,0,94,67,4,54,1
DATA 60,8,4A,AE,2,26,67,A,58,1,42,AE,2,26,42,AE,2,2A,13,C1
DATA 0,0,2,8C,43,F9,0,0,1,12, 70,0,4E,AE,FD,D8,23,CO,0,0
DATA 2,84,67,0,0,AA,2C,40,4E,AE,FF,C4,23,CO,0,0,2,88,67,0
DATA 0,9A,24,3C,0,0,1,lE,26,3C,0,0,0,46,4E,B9,0,0,1,8
DATA 4A,39,0,0,2,8C,66,16,24,3C,0,0,1,64,26,3C,0,0,0,2A
DATA 4E,B9,0,0,1,8,60,0,0,6A,8,39,0,0,0,0,2,8C,67,12
DATA 24,3C,0,0,1,8E,26,3C,0,0,0,5E,4E,B9,0,0,1,8,8,39
DATA 0,1,0,0,2,8C,67,14,24,3C,0,0,1,EC,26,3C,0,0,0,29
DATA 4E,B9,0,0,1,8,60,lC,8,39,0,2,0,0,2,8C,67,24,24,3C
DATA 0,0,2,52,26,3C,0,0,0,32,4E,B9,0,0,1,8,24,3C,0,0
DATA 2,16,26,3C,0,0,0,3B,4E,B9,0,0,1,8,2C,78,O,4,20,39
DATA 0,0,2,84,67,6,22,40,4E,AE,FE,62,70,0,4E, 75,22,39,0,0
DATA 2,88,4E,EE,FF,DO,64,6F, 73,2E,6C,69,62, 72,61, 72, 79,0,C,9B
DATA 31,3B,33,31,3B,34,32,6D,20,2D,20,56,69, 72, 75, 73,2D,4B,69,6C
DATA 6C,65,72,20,56,31,2E,30,20,2D,20,A,D,28,63,29,20,20,31,39
DATA 38,38,20,62,79,20,53,2E,20,4D,61,65,6C,67,65, 72,A,0,A,9B
DATA 30,3B,33,31,3B,34,30,60,4E,6F,20, 73, 79,60, 70, 74,6F,60, 73,20
DATA 66,6F, 72,20,56,69, 72, 75,73,2D,49,6E,66,65,63, 74,69,6F,6E,20
DATA 66,6F,75,6E,64,20,21,A,D,A,52,65, 73,65,74,20,56,65,63, 74
DATA 6F, 72,20,43,6F,6F,6C,2D,43,61,70, 74, 75, 72,65,20,68,61,73,20
DATA 62,65,65,6E,20, 75, 73,65,64,21,A,D,53,43,41,2D,56,69, 72, 75
DATA 73,20,73,75,73,70,65,63, 74,65,64,20,21,A,D,56,69, 72, 75, 73
DATA 20,69,6E,20,6D,65,6D,6F, 72, 79,20,64,65, 73, 74, 72,6F, 79, 72,64
DATA 2E,A,D,A,56,65,72, 74,69,63,61,6C,20,42,6C,61,6E,6B,20,49
DATA 6E, 74,65,72, 72,75, 70, 74,20,68,61, 73,20,62,65,65,6E,20, 75, 73
DATA 65,64,21,A,D,0,42, 79,74,65,2D,42,61,6E,64,69, 74,20,56,69
DATA 72,75,73,20,73,75,73,70,65,63, 74,65,64,21,A,D,56,69, 72, 75

ABACUS 3.2 ATTENTION: VIRUS ALARM!

DATA 73,20,69,6E,20,6D,65,6D,6F,72,79,20,64,65,73,74,72,GF,79,65
DATA 64,2E,A,D,A,0,4B,69,63,6B,54,61,67,50,6F,69,6E,74,65, 72
DATA 20,69, 73,20,GE,6F,20,6C,6F,6E,67,65,72,20,69,GE,20,GF,70,65
DATA 72,61,74,69,6E,67,20,73,79,73,74,65,6D,21,A,D,0,0,0,0
DATA 0,0,0,0,0,0,0,0,0,0,3,EC,0,0,0,16,0,0,0,0
DATA 0,0,0,30,0,0,0,36,0,0,0,42,0,0,0,52,0,0,0,5C
DATA 0,0,0,6S,0,0,0,6E,0,0,0,76,0,0,0,S2,0,0,0,SE
DATA 0,0,0,96,0,0,0,A2,0,0,0,AA,0,0,0,B2,0,0,0,BE
DATA 0,0,0,CS,0,0,0,DO,0,0,0,DC,0,0,0,E2,0,0,0,EE
DATA 0,0,0,FS,0,0,1,A,0,0,0,0,0,0,3,F2,0,0,3,F2

113

3. MACHINE LANGUAGE MORE TRICKS & TIPS

3.3

Note:

114

Machine language and BASIC

To call machine language routines in BASIC, a long variable must
transfer the starting address of the routine. We demonstrate this on the
operating system's Reset routine, which begins at memory location
$FCOOOO. Unfortunately, BASIC always causes difficulties when
handling long variables. The BASIC interpreter almost exclusively
computes with floating point variables, and later converts the number
into long values.

The error frequently encountered is that the normal floating point vari­
ables are accurate to only a couple of decimal places. When calculating
in long values, the converted result is low by a value between 1 and 5.
To get around this you must either use machine language routines
which are more accurate in long value arithmetic, or use strings:

SMreset&=CVL(CHR$(O)+CHR$(&HFC)+MKI$(O»

For frequent use of system routines and machine language programs,
you have the option of declaring all variables that have no label as
long:

DEFLNG a-z
SMreset=CVL(CHR$(O)+CHR$(&HFC)+MKI(O»
SMreset

Be careful! When you enter the above example and start it, the BASIC
interpreter jumps to the Reset routine. This is only an example of
jumping into a machine language routine, the routine happens to reset
the computer. If you want to perform a reset in a BASIC program,
there is a much better and faster method available:

POKEL 32,CVL(CHR$(O)+CHR$(&HFC)+MKI$(O»

But we digress-we're supposed to be talking about machine language.
To take the next step in the direction of adding BASIC command
enhancements, we write a short routine which switches the Power LED
on and off. You may remember that this is what the Amiga does when
you reset it (or when it resets on its own). The essential routine looks
like this:

Code Mnemonic
089000100BFE001 BCHG #1, $BFE001 ;switch brightness
4ES RTS ; that is all

Now comes the question of where we can put the code. That's not as
easy as it sounds because the address where the code begins must
always be even, otherwise a Guru #3 occurs (addressing error). The

ABACUS 3.3 MACHINE LANGUAGE AND BAS Ie

68000 processor can only process commands at even addresses, so each
command must be found at an even address. Here BASIC doesn't tell
you what's going on, and places its variables bytewise in the variable
buffer, when enough memory exists. To be absolutely certain that the
address is even, the memory location should be allocated by the system.
That can be done with the Exec routine AllocMem. The following
routine uses AllocMem:

, LED-FLICKER. BASt
DEFLNG a-zt
DECLARE FUNCTION AllocMem LIBRARYt
LIBRARY"t&t2:bmaps/exec.library"t
SMmagic=AllocMem(10,1) '10 bytes, memory area public RAMi
FOR i%=O TO 4'll

READ Power$'ll
POKEW SMmagic+i%*2,VAL("&H"+Power$)i

NEXT'll
DATA 879, 1, BF, E001, 4E75'II
PRINT "Watch the power LED flicker"'ll
FOR i%=l TO 20 'switch 20 times'II

a!=TIMER+.5 'delay 0,5 seconds'II
WHILE a!>TIMER:WEND 'waiti
SMmagic 'call Assembler routine'II

NEXT'II
FreeMem SMmagic,10 'free memory location'II
LIBRARY CLOSE 'close SYS'II

We have no problem with the simple routine, which uses none of its
own registers. Any assembler on the market will accept the following
example:

MOVE.L DO,DataregisterO

DataregisterO:dc.l 0

This routine defines a label within a program, onto which the data
register DO should be placed. When corresponding codes like those in
the Power LED program are poked into memory, the Guru Meditation
is guaranteed to appear in a hurry. The reason is the addressing method
that was used in the above MOVE.L. It is addressed absolutely.

The absolute addressing cannot be used because we never know where
the program will end up in memory once it loads.

The code must first approximate the respective beginning address,
which we want to use. A good assembler has an option for letting the
programmer create program counter relative code (pC realative). In
every case you must write:

LEA dataregisterO(PC),AO
MOVE.L DO, (AO)

115

3. MACHINE LANGUAGE MORE TRICKS & TIPS

3.3.1

116

If you only programmed using PC Realtive code your program could
not use all assembler instruction, and the programming would be very
extensive. We want to show you a way you can use every machine
language instruction, completely avoiding any memory allocations,
bypassing any fancy load routines, and finally, allowing function calls
to C programs.

Assembler and C programs from BASIC

We could just give you the facts about this kind of access. Instead,let's
look at the entire (non-BASIC) program. Whether it's a favorite game,
word processor or BASIC interpreter, programs are absolute addressed,
yet the 68000 requires relative addressing so the program can be placed
anywhere in memory. If you stop to think about this for a while, you
may come to the conclusion that the addresses in the program can be
present only as offsets. Shortly after loading the program the operating
system must calculate the correct addresses so the program can adjust
itself to the addresses it will be loaded at.

The problem: How to anticipate it. The operating system knows which
commands must be coded. This is saved with a Link module, which
contains this information, from the assembler. Usually a saved
assembler program consists of a code segment (your program), a data
segment, and a BSS segment (which reserves free memory locations for
the program directly after loading), as well as one or more link
segments.

You can examine what the operating system does by using the load
routine to start the program (your program should not start by itself).
This is contained in the dos.library and can be called from BASIC
with no problem This routine is called LoadSeg and needs the name
of the program ending with a null byte. Memory allocation and all
other work is done from LoadSeg. The syntax looks like this:

MainSegment=LoadSeg (SADD("Filename" + CHR$(O»)

You need the UnloadSeg routine to release the reserved memory
locations, which must be given the return value from LoadSeg:

UnloadSeg MainSegment

There are difficulties with the value that was received from LoagSeg.
Because AmigaDOS is written in BCPL (a compiler language), the
value is handled as a BCPL value. The BCPL language refers to this
value as the Main or Code segment. For your own use, you must
convert this to an address. DOS does so as if the memory consists of
only long values placed one after another. Consequently, it handles the
number of the long value from the start of memory as the return value.

ABACUS 3.3 MACHINE LANGUAGE AND BASIC

To get a correct address, this value must be multiplied by four (four
bytes per long value). This address is not exactly given in the program.
The BCPL pointer to the next segment is stored in the first long value
of the main segment. This segment begins with another BCPL pointer
to another segment, and so on. The program appears following this
pointer, so use the following routine to access a machine routine:

DEFLNG a-z'll
DECLARE FUNCTION loadseg LIBRARY!
LIBRARY"dos.library"'ll
'change the file name for your machine language program'll
bcpl.segstart=loadseg (SADD ("df1 :asm.prg"+prg"+CHR$ (0))) 'lI
Segment=bcpl.segstart*4'll
Routine=Segment+4'l1
Routine'll
unloadseg bcpl.segstart'll
LIBRARY CLOSE'll

Here's another item. To see the start addresses of the individual
segments, insert the following code preceding the call to Routine:

PRINT "Main program begins at address";Routine
i%=1
WHILE Segment<>O

PRINT i%;". Segment begins at address";Segment+4
Segment=PEEKL(Segment) *4

WEND

Now we come to the parameter statement BASIC deals with assembler
routines in the same way that the C language deals with program
sections. The parameters are stored in long value form on the stack, so
in the following example parameter P 3 goes onto the stack first, then
P2 and finally Plo So, parameter PI becomes the first parameter taken
from the stack in the called program. After the parameters, the routine
jump with JSR (Jump to SubRoutine) takes the code to the last return
jump address on the stack:

Routine Pl,P2,P3

The return jump address of the routine is on the stack:

Stackpointer + 12 = P3 (Long)
Stackpointer + 8 = P2 (Long)
Stackpointer + 4 = P1 (Long)
Stackpointer + 0 = return jump address (using JSR)

When you load a C routine with the above program, you can call it
exactly as you would call an assembler program. When you can, you
should always use machine language because machine code generated
from C is actually slower than "real" machine language. Some BASIC
compilers create code that executes faster than C because the operating
system routines are called exactly the way you write BASIC
commands.

117

3. MACHINE LANGUAGE MORE TRICKS & TIPS

3.3.2

118

Portions of the operating system are programmed in C, which is why
the Amiga is so slow. C requires large amounts of memory for
execution. Only a small percentage of the operating system is written
in C, which comprises the largest section of the memory needed by the
operating system. This explains why the operating system gets smaller
and faster: The developers gradually replace the C routines more and
more with machine language routines as they get the chance to upgrade
the system.

In a C program, the parameters are in the brackets in the same order as
they are given in BASIC. How do you get from machine language to
C? We should start by mentioning that you cannot change any of the
registers without ftrst saving their current values These values should
be be stored at the beginning of the program:

START: MOVEMEM.L DO-A6,-(A7) ;save registers: with that
;you find 15 registers and
;the return jump address on
;the stack.
;the first parameter is
;at SP+(16*4) = 64(SP)

MOVEM.L 64(SP),DO-D2 ;pick up the three

END: MOVEM.L (A7)+,DO-A6
RTS

;parameters

;register taken from stack

You may be wondering how the values returned to the BASIC program
are accessed. With this in mind, we give the address of a variable as a
parameter and access the return values using the VARPTR or Sadd
function. The address is taken from the stack in the machine language
program and written to the return value. When you return mUltiple
values, an address is given to an array variable (be careful with strings
there you get the address of the string descriptor, which consists of 5
bytes).

BASIC enhancement: ColorCycle

To illustrate parameter transfer in a machine language program, here's
an enhancement to AmigaBASIC. It allows you to rotate the colors as
is allowed in DPaint®:

i--i
; BASIC-Extension ColorCycle SMmagic'88;
--, ,

Syntax: AddressRoutine WINDOW(7),from,to
from=Start color; tos=End color
Color always "from" --> "to"
from < to: Rotation up

ABACUS 3.3 MACHINE LANGUAGE AND BASIC

; from> to: Rotation down
;--;

Cycle: MOVEM.L DO-A6,-(SP)
MOVE.L 4,A6
LEA GFXNAME,A1
MOVEQ #O,DO
JSR -552(A6)
TST.L DO

;Reserve register on Stack
:get ExecBase from A6
;Library-Name at Al
;Version is same
:OpenLibrary call
:Test, is Base available

BEQ.S Exit :When not, thend End
MOVE.L DO,A6 ;GfxBase at A6
MOVE.L 64(SP),AO ;WindowBase attended to
MOVE.L 46(AO),AO ;ScreenBase determined
ADD.L #44,AO ;ViewPort of Screens in AO
MOVE.L 4(AO),A1 ;ColorTable to Al
MOVE.L 4(Al),Al ;ColorMap determined
LEA CTab,A2 :User Buffer to A2
MOVEQ #15,DO ;15 Longs (32 Words)

CopyCT: MOVE.L (A1)+, (A2)+ :ColorMap copied
DBRA DO,CopyCT ; (when not changed else
MOVEM.L 68(SP),DO-D1 ;get start- and End color
ANDI.W #31,DO ;should it be more than 31
ANDI.W #31,D1 ;ditto
LSL.B #1,DO ;*2 (use as offset)
LSL.B #1,D1 ;ditto
LEA CTab,Al ;Address of our buffer
MOVE.W (A1,D1.W),D2 ;reserve last color
CMP.B DO,D1 ;determine rotation dir.
BEQ.S CILib ;both colors same ???
BGT.S Up ;colors rotate up

Down: MOVE.W 2(A1,D1.W), (A1,D1.W) ;colors then down
ADDQ.B #2,D1 ;increment Offset
CMP.B DO,D1 ;End reached?
BNE.S Down ;no? then next color
BRA.S SetLC ;close

Up: MOVE.W -2(A1,D1.W), (A1,Dl.W) ;color downward
SUBQ.B #2,D1 ; decrement Offset
CMP.B DO,Dl ;bottom reached?
BNE. S Up ; no? then next color

SetLC: MOVE.W D2, (A1,Dl.W) ;color reserved
MOVEQ #32,DO ;32 cloors set
JSR -192 (A6) ;LoadRGB4 (aO=VP,al=Ctab,dO)

ClLib: MOVE.L A6,Al ;GfxBase at Al
MOVE.L 4,A6 ;get ExecBase
JSR -414(A6) ;Library closed

Exit: MOVEM.L (SP}+,DO-A6 ;Register from Stack
RTS ;end

GFXNAME: DC.B "graphics.library",O,O ;Library-Name
CTab: DS.W 32 :32 Words buffer

END

The code is configured so that you can either assemble it in PC relative
or normal mode. The following BASIC program calls and demonstrates
the ColorCycle routine:

'Load first routine:1

119

3. MACHINE LANGUAGE M ORE TRICKS & TIPS

120

DEFLNG a-z'll
DECLARE FUNCTION loadseg LIBRARY'll
LIBRARY"T&T2:bmaps/dos.library"'ll
a=loadseg(SADD("T&T2:ColorCycle"+CHR$(0»)'ll
prg=a*4+4'll
'A little grafic'll
FOR 1%=0 TO 3'll

LINE (O,i%*40)-STEP(80,40),i%,bf'll
NEXT'll
'Demo: Rotate colors forward and backward'll
FOR i%=O TO SO'll

t!=TIMER+.2'll
WHILE t!>TIMER'll
WEND'll
prg WINDOW(7),1,3'll

NEXT'll
FOR i%=O TO SO'll

t!=TIMER+.2'll
WHILE t! >TIMER'lI
WEND'll
prg WINDOW(7),3,1'll

NEXT'll
'Release memory'll
unloadseg a'll
LIBRARY CLOSE'll

The following BASIC loader generates the ColorCycle me on disk:

OPEN "COLORCYCLE" FOR OUTPUT AS 1
FOR i=1 TO 300

READ a$
a$="&H"+a$
PRINT#1,CHR$(VAL(a$»;

NEXT
CLOSE 1
DATA O,O,3,F3,O,O,O,O,O,O,O,1,O,O,O,o,o,O,O,O,40,O,0,3A,O,0
DATA 3,E9,O,O,O,3A,48,E7,FF,FE,2C, 78,O,4,43,F9,O,O,O,94, 70,0
DATA 4E,AE,FD,D8,4A,80,67,76,2C,40,20,GF,O,40,20,68,O,2E,Dl
DATA FC,O,O,0,2C,22,68,O,4,22,69,O,4,45,F9,O,O,O,A6, 70,F,24
DATA D9,51,C8,FF,FC,4C,EF,0,3,O,44,2,40,O,lF,2,41,O,1F,E3,8
DATA E3,9,43,F9,O,O,O,A6,34,31,10,O,B2,O,67,26,6E,E,33,Bl,1°
DATA 2,lO,O,54,l,B2,O,66,F4,60,C,33,Bl,10,FE,lO,O,SS,l,B2,O
DATA 66,F4,33,82,lO,O, 70,20,4E,AE,FF,40,22,4E,2C, 78,O,4,4E
DATA AE,FE,62,4C,DF, 7F,FF,4E, 75,67,72,61,70,68,69,63, 73,2E
DATA 6C,69,62,72,61,72,79,0,O,O,0,o,O,O,O,o,O,O,O,O,O,o,o,0
DATA 0,°
DATA O,O,O,O,O,O,O,O,O,O,O,O,0,O,O,o,o,O,o,O,o,o,O,O,O,3,EC
DATA O,O,O,3,O,0,O,o,0,0,O,A,O,O,O,32,O,O,O,S2,0,O,O,o,o,o,3
DATA F2,O,O,3,F2
DATA BECKER

ABACUS

3.3.3

3.3 MACHINE LANGUAGE AND BAS I C

Putting the mouse to sleep

When the Amiga executes any disk operation, the wait pointer appears
(the cloud graphic with the two Zs drawn inside it). Professional
programs have different shaped mouse pointers. We also want to disable
the mouse in BASIC. This would be useful for disk operations or read­
ing data. The following program is an enhancement to do this:

e __ _ , ,
;BASIC-Extension Zzz SMmagic'BB;
;--;
;Syntax: Zzz WINDOW(7),OnOff
;OnOff even or 0 Mouse is slepping
;OnOff odd (1): Mouse is normal
;--;

ZZZ:

SLEEP:

EXIT:

MOVEM.L DO-A6,-(SP)
MOVE.L 4,A6
LEA INTNAME,Al
MOVEQ #O,DO
JSR -552 (A6)
TST.L DO
BEQ.S ENDE
MOVE.L DO,A6
MOVE.L 64(SP),AO
MOVE.L 6B(SP),DO
BTST #O,DO
BEQ.S SLEEP
JSR -60 (A6)
BRA.S EXIT
LEA MOUSE,Al
MOVEQ #22,DO
MOVEQ #16, Dl
MOVEQ #O,D2
MOVE.L D2,D3
JSR -270 (A6)
MOVE.L A6,Al
MOVE.L 4,A6
JSR -414 (A6)

;Reserve register
;Get Base address of Exec
;Address of Library-Names
;Version is same
;OpenLibrary
;No, what's happening?
;No? then end
;IntuitionBase loaded
;get WindowBase
;get OnOff-Flag
;Bit 0 test
;Even number? Good night
;ClearPointer called
land end
;Addess the Pointer data
;Height in dO
;Width in dl
;xoffset clear
;yoffset clear
;SetPointer called
;IntuitionBase to al
;ExecBase
;CloseLibrary call

ENDE: MOVEM.L (SP)+,DO-A6 ;Register from Stack
RTS ; return to BASIC-Program

INTNAME: DC.B "intuition.library",O ;Library-Name
MOUSE: DC.L O,$3000300,$7A007AO,$IFFOIFFO,$3FF03FFO

DC.L $30FB3FFB,$3DFC3FFC,$7BFC7FFC,$30FE3FFE
DC.L $3FB63FFE,$IFEFlFFF,$3FDE3FFE,$IFB61FFE
DC.L $FFCOFFC,$3FB03FB,$EOOOEO,$3B003BO,$7E007EO
DC.L $3400340,0,$600060,$700070,$200020,0
END ; End the data

;One typical call in BASIC:
;ZZZ WINDOW(7) ,0 'sleeping
;ZZZ WINDOW(7),1 'normal

121

3. MACHINE LANGUAGE M ORE TRICKS & TIPS

122

The following BASIC generator creates the machine code for this rou­
tine:

OPEN "ZZZ" FOR OUTPUT AS 1
FOR i=l TO 260

READ a$
a$="&H"+a$
PRINTt1,CHR$(VAL(a$»;

NEXT
CLOSE 1
DATA 0,0,3,F3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,31,0,0,3
DATA E9,0,0,0,31,48,E7,FF,FE,2C,78,0,4,43,F9,0,0,0,50,70,0,4E
DATA AE,FD,D8,4A,80,67,32,2C,40,20,6F,0,40,20,2F,0,44,8,0,0,°
DATA 67,6,4E,AE,FF,C4,60,12,43,F9,0,0,0,62,70,16, 72,10, 74,0
DATA 26,2,4E,AE,FE,F2,22,4E,2C, 78,0,4,4E,AE,FE,62,4C,DF, 7F,FF
DATA 4E,75,69,6E,74,75,69,74, 69, 6F, 6E,2E, 6C,69, 62, 72,61,72, 79
DATA 0,0,0,0,0,3,0,3,0, 7,AO,7,AO,lF,FO,lF,FO,3F,FO,3F,FO,30
DATA F8,3F,F8,3D,FC,3F,FC,7B,FC,7F,FC,30,FE,3F,FE,3F,86,3F,FE
DATA 1F,EF,lF,FF,3F,DE,3F,FE,lF,86,lF,FE,F,FC,F,FC,3,F8,3,F8
DATA 0,EO,O,EO,3,80,3,80, 7,EO, 7,EO,3,40,3,40,0,0,0,0,0,60,0
DATA 60,0,70,0,70,0,20,0,20,0,0,0,0,0,0,0,0,3,EC,0,0,0,2,O,°
DATA 0,0,0,0,0,A,0,0,0,30,0,0,0,0,0,0,3,F2,0,0,3,F2
DATA BECKER

This file is loaded with the LoadSegment routine. Here is a BASIC
program that loads and demonstrates the routine:

'Load first routine:~
DEFLNG a-z'll
DECLARE FUNCTION loadseg LIBRARY'lI
LIBRARY"T&T2:bmaps/dos.library"'lI
a=loadseg(SADD("T&T2:ZZZ"+CHR$(O»)'lI
prg=a*4+4'll
'Demo: Mouse sleeping'll
'll
prg WINDOW(7),O : 'Mouse sleeping~

'll
FOR i%=O TO 5000'll
NEXT~

'll
prg WINDOW(7),1 : 'mouse normal'll
~
'Release memory'll
ullloadseg a'll
LIBRARY CLOSE~

4.
Hardware
backing

ABACUS

4.

4. HARDWARE HACKING

Hardware hacking

Why do you spend so much time with the Amiga? It has the software
and hardware that make it a quality computer. This chapter deals with
the subject of hardware, and some of the neat things you can do using
Amiga hardware. You'll even learn some techniques you can use to
upgrade your Amiga's hardware.

Before we continue, we need to touch on a few points of information
about your hardware:

1. This is not a course in electronic circuitry, and it was never
intended to be. We assume you have some knowledge of
electronics, components and circuitry. We also assume that you
have some experience operating a soldering iron, and that you
know how to use a screwdriver. If you don't possess this
knowledge and experience, get it ~ you start tearing your
Amiga apart. If you still aren't sure of what you're
doing to the circuitry, DON'T DO IT! Get someone
knowledgeable in electronics to do this tinkering
instead. One wrong solder joint could ruin your Amiga.

2. If you open your case, you void the warranty (if the warranty is
still in effect). Any user-implemented hardware changes to a
device violates the warranty. This means that the
dealer/manufacturer are under no obligation to repair the machine
at their own expense. In short, if you break it, you will probably
end up paying to have it fixed, even if the warranty is in effect.

3. All changes described here were tested by us as explained at the
beginning of this book. It isn't always possible for an author to
test every version of a computer on the market, so we may have
come up wrong on one or two of these things. If problems
crop up, even though the project should
theoretically work, c han 2 e it h..a.ll1!l.1h.J:..l1:..B..I.. it
lUS.!

4. Use caution whenever working with electronic
components. Always have the power turned off when doing
any electrical work (unplug the equipment just to be extra-safe),
for your sake as well as the machine's sake. Remove the
components carefully, solder or connect carefully, reconnect
components carefully.

5. Most importantly, you don't have to do any of this.
We, as developers, had to at least try these things. You, as a
user, don't ~ to try any of these hardware modifications. If

125

4. HARDWARE HACKING MORE TRICKS & TIPS

126

you've read the last four warnings, and still feel willing to
experiment on your own hardware, fme.

Now that we're done with the warnings, let's take a look at your com­
puter's innards. We'll look at the memory expansion first. With a few
small changes, you can configure the memory to not interrupt any
programs. The next section goes into detail about disk drives. There
will be occasions when you want the disk drive turned off immediately,
and this hardware enhancement will show you how. The next item is a
real treat-you'll learn how to outfit your Amiga with a 68010 proces­
sor. We'll also talk about other processors.

ABACUS

4.1

4.1.1

4.1 DISABLING MEMORY EXPANSION

Disabling memory expansion

Memory expansion offers many advantages. We often get angry at our
Amigas because this additional memory is incompatible with many
programs. In actuality the problem lies with the programs, not with the
expansion. The programs can't tell which memory to use, so they don't
work. For example, the sound chip and the graphics chip must access
chip RAM, if a program uses them to access fast RAM the program
crashes as a result. Many early Amiga programs had this problem.

The next two hardware tricks are based on this problem. There is an
alternate software solution (see the Amiga System Programmer's Guide
from Abacus for a program which disables fast RAM through
software). It's easier to turn the Amiga on, flip the switch and run a
non-fast-RAM Amiga.

The 2000A board

If you have an Amiga 2000, you should first establish whether you
have the A board (this subsection applies only to this board.) If you do
not have the A board, skip this section. Look on the circuit board for a
PAL chip with the label V3 (you'll also find VI and V6labels, but for
now these aren't of any interest to us). This PAL chip handles free
memory organization. All we have to do is tell this chip not to make
the expanded memory available. The memory release control travels
over the pins named -OVR (position 19) and -SELECT (position 17).

To disable expanded memory, you must ensure that these two pins are
disconnected. If no current flows between these two pins, memory
expansion remains disabled. There are two ways to do this:

The first and simplest consists of just breaking the connection between
the PAL chip pins and the system. Tum off your Amiga. Carefully
disconnect the conducting paths from these pins. Rig a double-pole
switch between chip legs 19 and 17 and their connections (you may
want to use solderless connectors for the pin legs and connections). Vse
enough wire to run the switch outside the case with a little slack. Drill
a hole in the side of your Amiga case and install the switch in the case.
When you turn the switch "on," the system recognizes the expanded
RAM. However, when you tum the computer off for five to ten
seconds, turn this switch "off' during that time and turn the computer
back on, the Amiga won't recognize the memory expansion. All the

127

4. HARDWARE HACKING MORE TRICKS & TIPS

Materials:

Tools:

4.1.2

Materials:

Tools:

128

programs that wouldn't run under expanded memory now run without
problem.

The second method is somewhat neater, but also more expensive and
more difficult to implement. You'll need the following materials and
tools:

1 DPST (double-pole, single-throw) switch
approx. 12-16 inches double-strand wire
1 base (20 pole, to fit the PAL chip)
solder

soldering iron
sharp knife or screwdriver
tweezers

Carefully remove the chip. Take the 20-pin base and cut or snap off the
two corresponding pins (position 19 and position 17). Insert your
modified base in the old mounting. Now reconnect the removed pins to
the mounting using a two-pole switch and some wire. Drill a hole in
the side of your Amiga case which allows the switch head to fit
through. Make sure the switch is firmly connected. Make sure all solder
connections are tight and "clean." Now insert the PAL chip in its new
mounting.

Make sure all connections are right (if they aren't, correct the problem),
then do a test run of the switch ~ reassembling the Amiga case.

The Amiga 500: printed circuit board

The Amiga 500 board has a completely different design. Our goal here
is to disable the Sl2K card available from Commodore-Amiga. This
expansion card has a battery operated clock and fast RAM. This clock
remains undisturbed by the following operations.

1 SPST (single-pole, single throw) switch
approx. 12-16" double-strand wire
solder

soldering iron
sharp knife or screwdriver

Turn off your Amiga and open the expansion "drawer." Remove the
expansion card carefully (remember-use caution when removing,
modifying and installing any parts). Mter you remove the card lay it
out of the table in front of you, trace side (the side with all the etched
connections and solder joints) facing you. You should be able to see the

ABACUS 4.1 DISABLING MEMORY EXPANSION

solder joints and traces, and half of the edge card which plugs into the
Amiga's expansion port.

Look at pin 32 of the edge card (make absolutely sure that this is pin
32). Follow its route up the printed circuit board. See how the trace
(the etching) moves away from the solder point? That's our goal. You
must somehow break the conducting path of this trace. Take a sharp
screwdriver or sharp knife (an XActo® knife or sharp kitchen knife will
work). Carve into the trace to create a space-make sure there's a defi­
nite break between the cut (you should be able to see the printed circuit
board material through the cut, with no tracing material connecting).
You may want to make the space of the cut fairly wide (e.g., 1/8").
Take a piece of two-lead wire and solder each lead at one end to the cut
sections of the now-broken trace. Solder the other two ends to the
SPST switch. That's all there is to it.

Re-install the expansion card carefully. Make sure all solder
connections are tight and "clean." Connect everything up and boot the
Workbench. When you have the switch in the "off' position, the
Amiga 500 should ignore the memory expansion. When you tum the
Amiga off again for five or ten seconds, flip the RAM switch to the
"on" position and tum the power switch "on," this enables the memory
expansion. If the computer doesn't do what it should when it should,
you must have done something wrong. Check your solder joints (cold
solder joints frequently occur if you aren't careful, thus not making a
tight connection). If you have cold solder joints, re-solder the
connections. There really aren't any other errors that could occur.

129

4. HARDWARE HACKING M ORE TRICKS & TIPS

4.2 Disk drive switching

Additional external disk drives can cause as many problems as memory
expansion. External drives are usually automatically configured by the
operating system, which uses your working RAM. These autoconfig
systems may cause problems, because AmigaDOS can only manage
data from the disk drive using chip RAM.

Each drive requires a 30K buffer for fIle management. Many programs
need this memory, but once it's allocated for disk buffers, programs
can't access that extra memory. The result: The program either crashes
in mid-run or can't be started at all.

On/off switch One solution is to install a switch to disable the drive as needed. You'll
for disk drives need the following equipment:

Materials:

Tools:

130

1 SPST (single-pole, single-throw) switch
approx. 4-8" single-strand wire
solder

soldering iron
sharp knife
screwdriver

You can easily install a switch if the external drive doesn't have one of
its own. The switch interrupts the data direction of the computer by
resetting the line which infonns the Amiga that another drive is
connected. Pin 21 (SELl) of the drive plug handles the selection of the
first external drive.

Turn off the Amiga and unplug it for safety's sake. Detenninc the
correct lead for pin 21 and cut the wire. Solder the cut ends to one end
of each strand of wire leading to the switch. Solder the ends of the
switch wires to the SPST switch. You can either do this by connecting
it at the plug itself, or within the disk drive. If you selected the latter,
drill a hole in the disk drive case to match the switch. Mount the
switch, reassemble everything carefully and test out the computer.

ABACUS

4.3

Getting
started

4.3 INSTALLING THE Me 68010

Installing a Me 68010

Would you like to make your Amiga faster without spending a lot of
cash? Here's your chance. All you have to do is remove the old 68000
and replace it with 68010. This new Motorola chip is 99.99% compat­
ible with the old chip. It has only one disadvantage which you can learn
to live with.

But first, on to the advantages! You can install the new processor
easily. No soldering (in most cases), no additional expensive
components. The 68010 shows speed increases in certain processor
commands of up to 80% in tests. If you look at this from a general
standpoint, the program uses faster commands as well as those that
already exist. All in all, the speed only increases by about 16% over the
68000, but a faster machine is a faster machine.

In addition, you have the option of making the new chip 100% compat­
ible using an additional program (which you will find at the end of this
section).

Now let's see to the installation of your new processor. First you must
buy a 68010 processor. That shouldn't present a problem: You can find
ads for this chip in classified sections of computer magazines, and in
any computer journal that deals almost exclusively with sales of com­
ponents (e.g., Computer Shopper). Or perhaps you have an electronics
shop in your neighborhood that has the chip available, or can order it
for your. Once you have the new processor, you can continue with the
installation.

First you must open your Amiga case. This takes various amounts of
time, depending on the type of Amiga you own. Just take your time
dismantling the case, and ru!X attention 12.till<. Qfikr in which YQ!! take
.thin.g"s. apart. You'll need to know the order so that it'll be easier
putting it back together. You should mark each piece, possibly with
masking tape, as you go along.

The 68000 main processor should be easy to find. It's the largest chip
on the main printed circuit board, and has a label on it that says
"68000" or something similar. You must remove this chip.

Before removing the main processor, we should discuss something
important First off, many of the 68000 chips were merely inserted in a
chip socket. However, there may still be a few Amiga motherboards
out there that have 68000s with soldered connections. If you are
presently looking at a soldered processor, there are only two answers:
Either you desolder the chip from the circuit board, or you get someone
who has soldering experience to do it for you. If you don't have the

131

4. HARDWARE HACKING M ORE TRICKS & TIPS

132

soldering experience, you could mess it up badly. The best solution is
to use a solder plate (which makes all of the pins hot at the same time)
so that the chip can be pulled out as one unit during the desoldering.
Solder in an equivalent chip socket to ease chip replacement.

Let's assume for now that you have a socketed 68000. The first step is
to remove this from the socket You can do this using one or two
tools: Special tweezers designed for the purpose of removing a chip
level (all pins at once); or a screwdriver. The tweezers are expensive,
and are only worth the purchase if you want to save the chip for later
use (or if you are afraid of injuring the chip).

A flat screwdriver is a little riskier, but achieves the same end result
Insert the blade of the screwdriver flat between the socket and the end of
the chip. Rotate the blade gently about 10 degrees or so to pull the pro­
cessor up from the socket Repeat the same procedure on the other side.
Keep moving from end to end, prying the chip up bit by bit. Before
removing the processor completely, note the direction at which the
notch of the old processor points. Remove the chip by hand (remember
the direction the notch pointed-it's important). This method will work
for removing almost any chip, particularly those chips with large
numbers of legs.

Before you go on to the next step, we have a warning for you:
Electronic components are extremely delicate. The slightest difference
in voltage, say from a static charge, can "fry" a chip (render it useless).
That's why you should always ground yourself before you handle the
chassis or chips.

Next you should insert the new processor. Remove the 68010 from its
packaging and place it on the socket from which you removed the
68000. Press down on the chip ~ and evenly. Continue this
gentle, even pressure until the bottom of the chip is flush with the top
of the socket

Now reassemble the Amiga. Make sure that all parts are accounted for
(screws, washers, etc.)-you should have all the parts you removed.
Tak~ care that all fasteners are connected properly. Congratulations!
You've just replaced the main processor. Now comes the power-on test
Plug in the Amiga and check all power connections. Turn it on.
Everything should carry on as normal, except you should notice an
increase in speed.

If something's wrong, this may be for one of two reasons:

1. There may be an improperly connected cable or chip pin. Check
this first, before anything else.

ABACUS

2.

4.3 INSTALLING THE Me 68010

Your clothing may have contained a static charge and touched the
chip. As we mentioned above, chips aren't built to tolerate static
electricity. If you touched a pin of the chip with your finger and
your body contained a static charge, you may have destroyed
your new processor. If nothing helps, you'll have to buy a new
68010 to test it Try replacing the old 68000 to see if the entire
Amiga is defective.

The 68010 has additional debugging instructions, which must be
enabled by software on the Amiga. Programs that start with exception
4 will crash on the 68010, unless these are changes are done. Fred Fish
disk number 18 contains the program DeciGEL which does all of the
setup work for you. The SetAlert command performs the same task
from the startup sequence (you'll find SetAlert on the new
Workbench 1.3 disk). AssemPro from Abacus also has a program to do
this, along with the source code.

133

4. HARDWARE HACKING M ORE TRICKS & TIPS

4.4

134

The roar of the fans

Do you have an Amiga 2000? In the beginning, we thought the noise
the fan made was a show of quality. After a while the fan noise got
pretty annoying.

We offer you two options. The first suggestion came from a TV
repairman, who advised that we decrease the amount of power running
the fan. We didn't feel that was such good advice, so we chose a more
elegant solution.

The built-in Amiga 2000 fan is a Papst Multi-Fan 8312M. The Mat
the end of the number states the amount of noise it makes. After
searching through merchant information, we found a similar model that
performs the same task with half the noise level-the Papst Multi-Fan
8312L.

The hardest part of installing this model is finding it. Once you do, all
the screws and connections are the same as the original equipment. One
disadvantage of the entire process is the price of the new fan-about
$50. Once you've recovered from the shock, remember that the fan will
have a long, quiet life.

For those who think that a new fan is too expensive, we recommend
the method described by the TV repairman mentioned above. He sug­
gested we cut the positive power connection to the fan and insert a
son, SW potentiometer (the adjustable range should be between on
and won). By turning the potentiometer down the noise gets lower and
softer. Make your judgements by the amount of heat accumulation your
Amiga has, rather than fan speed (remember that the degree of heat
increases with expansion cards).

To conclude this section, we leave you with a warning. The Amiga fan
makes so much noise because of the potential amount of hardware it
must ventilate. The developers of the Amiga assumed that every free
expansion slot had a card plugged into it. If this is the case, then the
fan should continue to run at full speed. Otherwise, feel free to
experiment with running the fan at lower and quieter speeds.

ABACUS

4.5

4.5.1

4.5 NEW PROCESSOR INFORMATION

New processor information

Half of the infonnation about new processors usually ends up in techni­
cal journals. What can these new processors do for us, exactly? To
answer this question, we should take a closer look at these processors.

The 68010: high power, low price

The 68010 is fully compatible with the 68000 command set. All
68000 commands are integrated into the 68010. These commands
execute more quickly than in the 68000. In addition, the 68010 features
four new commands consisting of a loop mode and three other registers.
The amazing part of this chips is its easy replacement over the 68000:
Low price, identical size and pinout to the 68000 (see Section 4.3 for
installation infonnation).

We should discuss the 68010's architecture. Every assembler supports
68010 programming. Three new registers exist in this chip that the
68000 didn't have: the SourceFunctionCodeRegister (SFC),
the DestinationFunctionCodeRegister (DFC) and the
VectorBaseRegister (VBR). The last register allows the
examination of the beginning of the system vector table (between $0
and $3FF on the 68(00). This value changes to $0 after every reset. In
addition, it can be very useful to change all vectors simply by
switching over.

The Code register consists of only three bits and offers access to
Read(SFC) and Wri te(DFC) just like User and Supervisor modes.
Some news for the hardware hobbyist: When you connect pins FeO­
FC2 to the address bus, four memory banks accommodate 16
megabytes. The operating system rewrite forces separations in user
data/user program and supervisor data/supervisor environments.

Another difference from the 68000 lies in the 6801O's loop mode.
Prefetch technology makes this possible by reading a command while
the processor retains the previous command. The 68000 reads the
following loop from the address bus 75000 times and accesses the
address bus 75000 times. The 68010 perfonns this loop only three
times, instead of 75000 times:

MOVE.W *2499,00
Loop: MOVE.L (AO)+, (Al)+
DBRA DO, Loop

135

4. HARDWARE HACKING M ORE TRICKS & TIPS

136

The increase in speed should be evident to you. Unfortunately, only the
following machine language instructions function in loop mode:

ABCD, ADD, ADDA, ADDX, AND, ASL, ASR, CLR, CMP, CMPA,
EOR, LSL, LSR, MOVE, NBCD, NEG, NEGX, NOT, OR, ROL, ROR,
ROXL, ROXR, SBeD, SUB, SUBA, SUBX, TST

The exceptions look somewhat different on the 68010 because more
data is needed on the supervisor stack. The last data corresponds to that
of the 68000 on the supervisor stack, so the major difference lies in the
6801O's larger stack requirements. Bit 15 of the status word is inter­
esting in this context, it tells if the processor executes the exception (0)
or ignores it and executes the next command (l). This means that bus
and address errors can be trapped using software, solving many Guru
problems ..

The new commands are called MOVEC, MOVE CCR, MOVES and RTD.
The command MOVE SR,Destination only operates in supervisor
mode, causing a Guru Meditation. You can program an equivalent
exception routine which bypasses this problem. Few programmers are
unaware of this problem. Here are the syntaxes of the four instructions
(alternate syntaxes are given as needed):

MOVEC Register,Destination

MOVEC Source,Register

One of the three new registers or the USP can be substituted here for
the Source and Destination arguments. Data size: Word.

MOVES Register,Destination

MOVES Source, Register

MOVES transfers data between four data banks according to the methods
described above. It serves no purpose in major hardware manipulation
on the Amiga.

MOVE CCR,Destination

MOVE CCR reads the status register.

RTD Value

RTD is the equivalent of RTS. This instruction adds the value (16 bits)
to the stack pointer. This is practical when using the stack as a param­
eter statement.

ABACUS

4.5.2

4.5.3

68020

4.5 NEW PROCESSOR INFORMATION

The 68012: low cost, high memory

The mere size of the 68012 is the first thing the user notices about the
chip. It has a square instead of a rectangular shape, so you can't just
plug it into the 68000 socket. The user can take one of two routes to
install this chip:

• Install a second socket

• Buy an adapter board for the 68012.

This 100% 68010 compatible chip allows up to 2 gigabytes of
working RAM. The first gigabyte lies in memory locations $0 to
$3FFFFFFF and the second gigabyte lies in memory locations
$80000000-$BFFFFFFF. The following diagram shows the pin
arrangement as seen from below:

012 010 08 07 05 04 02 01 As III
015 014 011 09 06 03 00 UOS LOS OTACK
A22 A23 013 -- -- -- -- R/W BG BGACK
A21 GNO GNO -- VCC BR
A20 VCC A20 MOTOTOLA GNO GNO CLK
A19 A18 A25 68012 -- RST HALT
A17 A15 -- (BOTTOM) A27 VPA VMA
A16 A12 A13 -- A28 A29 -- IPL1 IPL2 E
A14 All A10 A8 AS A2 A31 FC1 IPLO BERR
- A9 A7 A6 A4 A3 Al FCO FC2 A26

The dashed pins are unused; the At pin marks the upper right of the
chip.

Monster processors: 68020, 68030, 6888x

Information about the 68020 alone can fill volumes. Here are a few key
points about this chip:

• 32-bit address bus: This bus enables direct addressing of
4,294,697,296 bytes (about 4 gigabytes). Pin AO allows access
to odd addresses (the 68000 could only do this by means of
elaborate calculations)

• Dynamic bus structure: Allows switching between 8-, 16-,24-,
and 32-bit data buses

137

4. HARDWARE HACKING M ORE TRICKS & TIPS

• True 64-bit arithmetic

• 62 addressing types (50 of them different)

• Access to individual bits or bit fields

• 28 additional instructions

• Data types: bits, bytes, words, longs, packed BCD numbers,
unpacked BCD numbers and bit fields

• Acceptance of internal instructions: three-word prefetch

• Processor internal instruction memory: 256-byte cache

• Coprocessor interface and coprocessor instructions

• Frequency measurement: standard = 16 MHz, others = 24 MHz

• Three stack pointers: MasterSP, InterruptSP, USerSP

• two-cache register and extended SR

68030/6885 1 The 68030 processor surpasses all of this data three to four times over,
and still remains compatible. It has 31 registers available for reading
and writing. The 68851 coprocessor closely integrates with the 68030,
and already runs in hardware-multitasking mode.

68881 Real power comes into play when a floating point arithmetic
coprocessor supplies math calculations directly to the 32/64-bit
processors. The 68881 processor operates using eight floating point
registers, and can process the following operand sizes:

68882

138

Byte (8-bit)
Word (16-bit)
Long (32-bit)
Float (32-bit)
DoubleFloat (64-bit)
ExtendedFloat (96-bit)
BinaryCodedDecimal (96-bit)

The math commands encompass any calculations you can think of,
including three different logarithms and everything that ever existed in
all the Amiga math libraries put together. It is convenient to use gen­
eral IEEE floating point format, so that a conversion occurs.

The 68882 is an extension of the 68881 processor.

s.
Workbench 1.3

ABACUS

5 .

5.1

5. WORKBENCH 1.3

Workbench 1.3

At the time the previous book (Amiga Tricks and Tips) hit the market,
only two forms of Workbench existed: Version 1.1 and Version 1.2.
Commodore-Amiga's development teams have spent a great deal of
time refining the Workbench user interface system and AmigaDOS.
This chapter discusses a few of the special items offered by the Work­
bench 1.3 disk, including new devices and FFS (FastFileSystem)
access. You'll also read about some of the new AmigaDOS commands
and how they can help your productivity in AmigaDOS.

Using Mount

Users seldom used the Mount command in earlier Workbench imple­
mentations. To discover more about the command, we must first under­
stand its main purpose. The Mount command mounts a new device in
the Amiga's operating system. First we should look at the existing
devices. This can be done easily with the Assign command. If you
enter Assign without any arguments, your screen may display the
following output:

Volumes:

Tips and Tricks [Mounted]
RAM DISK [Mounted]
BeckerText
Workbench 1.3 Wgb [Mounted]

Directories:

FONTS Volume: BeckerText
ENV RAM:Env
T RAM:T
S Workbench 1.3 Wgb:S
L Workbench 1.3 Wgb:L
C Workbench 1.3 Wgb:C
DEVS Workbench 1.3 Wgb:devs
LIES Workbench 1. 3 Wgb: libs
S1'S Workbench 1.3 Wgb:

Devices:

NEWCON DF1 DFO PRT
PAR SER RAW CON RAM

141

s. WORKBENCH 1.3 M ORE TRICKS & TIPS

Device

Unit

Flags

Surfaces

Reserved

142

Notice the last group (Devices:). This tells us the devices available
on the Workbench disk.

DFO: and OFl: should be familiar to you by now. PRT: represents the
direct printer interface, and PAR: or SER: represent the parallel and
serial interfaces. Output can be sent over RAW: and CON: without
access to Intuition. The RAM: may be familiar to you as the RAM
disk.

The devices listed above are placed in the operating system for access at
any time. Whenever you want to address a new device, Mount must
inform the system of the device's existence. This method makes
allowances for any further improvements made to the eLI, Shell and
editor. See Section 6.2 (Using Workbench 1.3) for more information
concerning new operating systems.

We need an entry in the Mount list first, generally found in the OEVS:
directory. The following example creates access to an external drive
addressed as OFl: (see your Mount list for this example or something
similar):

DFl: Device = trackdisk.device
Unit = 1

Flags = 1
Surfaces = 2
BlocksPerTrack = 11
Reserved = 2
PreAlloc = 11
Interleave = 0
LowCyl = 0 ; HighCyl 79
Buffers = 20
BufMemType = 3

Definitions always begin with the new device's name (DF1:) and end
with the end mark (#). Everything between them depends on the
respective device. Certain arguments are used frequently:

This argument tells Mount the name of the device. The DEVS: direc­
tory acts as the default directory for devices.

This argument assigns the number of the corresponding device. The
first physical disk drive has the number 0, the second (either internal or
external) has number 1, and so on. Any 5-1/4" disk drive has a unit
assignment of 2. This argument works for disk drives only.

This argument contains a value which changes according to the device.

This argument specifies the number of usable surfaces handled by the
device. A floppy disk normally has two usable surfaces. A hard disk has
four usable surfaces.

This argument specifies the number of data blocks in the boot block.

ABACUS 5.1 USING MOUNT

B u £ M em Typ e This argument specifies the memory type for the data buffer:

BootPri

5.1.1

0,1 = equal; 2,3 = CHIP-RAM; 4,5 = FAST-RAM

Sets the priority of the drive for booting. The higher the number, the
sooner this device boots. This option is especially important in
Version 1.3 of the operating system, since it allows the user to boot
from the RAM disk, hard disk, or almost any device capable of
booting. We won't go into detail about each one because the data
depends greatly on the device connected.

Renaming commands

If you have a PC or PC compatible, you may be having some prob­
lems getting accustomed to the Amiga system's DOS commands. For
example, instead of entering A: (MS-DOS) to change access to the fIrst
internal drive, you have to enter cd DFO: (AmigaDOS). This
becomes especially annoying if you frequently switch between systems,
or if you're one of the proud few who own a PC card. In this case it
would be the best to rename drive names DFO:, DFl:, etc. to IBM­
compatible names.

The AmigaDOS Assign command assigns a new name to each disk.
Here's an example:

Assign B: DF1:

Now instead of always having to type DFl:, you can just enter B:.
Now remove the disk from the external drive and insert another disk.
The Amiga demands the other disk. Assign applies to only the exist­
ing directory here, and not the disk drive.

We have a cure for that. Copy the definition for DFl: into the Mount
list because it contains all of the necessary data for a disk drive. Then
we change the definition name DF1: to B:. After saving, enter:

Mount B:

You can now address drive DFl: as B:.

You can perform the same change on drive DFO:. You must create a
copy of the old entry in the Mount list. Change the unit from 1 to 0
so the 0 drive is really addressed. Change the definition name to A:.
Finally enter the following:

Mount A:

143

s. WORKBENCH 1.3 M ORE TRICKS & TIPS

5.1.2

144

The table of the devices is supplied with both new devices, which can
be checked with Assign:

Devices:

A B NEWCON DF1 DFO
PRT PAR SER RAW CON
RAM

Less is more

Mount can do a great deal more than reassign devices. There are very
serious applications with which you can save money and amaze your
friends. Now we look deep into the arguments which accompany
Mount.

Here's a scenario: You buy a 10-packofunbranded disks which were on
sale for $10. Unfortunately, they are of inferior quality. The first time
you format any of these disks you find that almost all of them have
hardware errors on side 1. The formatting stops.

Here's the trick: Enter the Mount list and duplicate the definition for
DFl:. Change this copy definition's name to WGB:. Go into the
WGB: list and change the Surfaces argument from 2 to 1. The
WGB: device formats disk on only one side instead of two sides.

Enter the following in the CLI:

Format Drive WGB: Name "1 Surface Test"

The formatting seems to go faster because only half the disk is being
formatted. We recommend strongly that you read and write this disk
using this device only; you will have problems reading single-side­
format disks using the standard devices (DFO:, etc.). You can also
access the data only through your own applications designed to read
drive WGB: (i.e., you cannot access data from these disks using normal
applications). The main advantage here is that the disks cannot be
copied by normal means. One concluding tip: Buy the highest quality
disks you can afford, and you won't need to do any of this single-sided
disk formatting.

The Mount command has two other unusual qualities. The first comes
into play when you have a disk with more than one side damaged or
defective. Mount also regulates the beginning disk track and ending
disk track in a formatting process. For example, if you find you have
read errors on tracks 04, enter the Mount list and change the LowCyl
argument to 5: Formatting begins at track five. Tracks 04 remain
unformatted, and the rest of the disk formats as normal. The second

ABACUS 5.1 USING MOUNT

trick controls the end of the disk: Maybe tracks 71-79 are unreadable.
Simply change the HighCyl argument to 70 and format as described
above.

Experimental formatting may cause incompatibilities between the
Workbench and the disk drive. The fIrst problem is the Workbench.
When you connect a new external drive and format a disk on it, you' 11
get a DFl:NODOS icon. That's okay, but it still creates the second
problem. The DFl: drive is no longer addressable whether you insert a
disk in the normal Amiga format or not. It responds with "No disk in
unit I" which means that only the new format is accepted. You can
address the new format from the Workbench also.

These are some of the interesting applications. When you use a data
disk with this format, it is no problem reading it with your own
program, but all other programs that shouldn't read the data will not
have access, without the correct Mount list.

145

s. WORKBENCH 1.3 M ORE TRICKS & TIPS

5.2

5.2.1

146

Improvements to DOS 1.3
The software development people at Commodore-Amiga added many
improvements and upgrades to Workbench 1.3. With a few exceptions,
Version 1.3 is fully compatible with Version 1.2. Many of the excep­
tions appear in default settings. For example, Workbench 1.2 always
defaulted to the Topaz font-this doesn't have to be so in Version 1.3.
This means that the programmer must furnish all data structures with
the desired values, instead of, setting the font address to 0 to assign the
Topaz font. There are rules to programming the Amiga and each error
in programming produces an undesirable effect in Version 1.3, as was
the case in Version 1.2.

Incompatibility occurs only in rare cases. Even then it can be resolved
through simple changes in settings. The new devices, libraries, and
handler will be of great interest to all. Improvements to existing fea­
tures and the many new possibilities will also fascinate Amiga users.
With these enhancements and improvements, you don't need a Cray to
do major computations and applications anymore. Let's start by look­
ing in the DEVS: directory to see what improvements are there.

The PIPE device

The PIPE device is a new member of the DEVS: directory group. To
show you what the handler can do, we'll start by viewing a better­
known handler-the clipboard device. This device performs
temporary data exchange. If you need to exchange data between tasks
while in the eLI or Shell, you'd use the clipboard to transfer
this data. Once the Mount command places the clipboard in the
Mo un t list, you can direct data to and from this device by output or
input.

Unfortunately the Workbench is plagued with frequent read/write errors
and delays which extend to this device and its data. Look again in the
DEVS: directory, and you'll find an almost empty directory. The
clipboard device writes the given data to this directory and removes
it as needed.

Disk access takes quite a bit oftime. By adding memory expansion (the
Amiga can access 4,294,967,296 bytes [over four gigabytes] of main
memory through the 68020 processor), the majority of data messages
once exchanged on the disk through the clipboard can also be managed
in RAM.

ABACUS

5.2.2

S.2 IMPROVEMENTS TO DOS 1.3

Here's where the PIPE device comes into play. You can think of the
operation as if a pipeline were placed in RAM which could be filled
from one side with your data. The data could them be poured out of the
pipeline to the other application when needed. To use the PIPE device
the system must first be informed that the PIPE handler should be
activated. Enter:

MOUNT PIPE:

In the DEVS/Mountlist file you can enter the desired size of the
pipeline with the editor ED. To fill the pipeline, you only need to make
sure that the NewCon device receives the pipeline data instead of the
Cons 0 Ie device. This can be done with the CLI 's output redirection
command (>):

DIR >PIPE: SYS:

This directs the root directory of the boot disk into the pipeline.
Nothing else happens after you enter this command, aside from a brief
disk access. Enter the following command sequence to empty the PIPE
and display its contents on the screen:

TYPE PIPE:

This command won't work if too much data enters the pipeline, as you
may have seen from the above example. Should the pipeline be too
full, the error message renders the pipeline data unusable.

The Speak device

The Say command already existed in Version 1.2 but the Speak
device in Version 1.3 takes on an entirely different quality.

This device has some similarities to the PIPE device. It connects into
the system like PIPE and redirects data. Unlike PIPE the Speak device
doesn't allow temporary storage: Whatever goes in, comes out of
monitor speakers as speech. Let's test the water a little bit. Enter the
following command sequence:

MOUNT SPEAK:
DIR >SPEAK: SYS:

Perhaps you're tired of reading stories to your children every night, and
you'd like a night off from that task. Have the Amiga do it. The
following command starts a task and speaks the contents of the file
named BedTime Stories:

RUN TYPE >SPEAK: "BedTimeStories"

147

5. WORKBENCH 1.3 M ORE TRICKS & TIPS

5.2.3

5.2.4

148

Speech synthesis enthusiasts should try the following with the Extras
disk in df1:

RUN TYPE >SPEAK: dfl:AmigaBASIC OPT H

It makes more sense to make a prompt audible with As k:

ASK >SPEAK: "Do you like the Amiga?"

The NewCon device

The NewCon device is probably the best new command accessible from
the Shell. This device is in the startup sequence (Mount NewCon:).
NewCon is similar to the Console device that opens CLI windows.
Enter a command and press the <Return> key. Now press the <Cursor
left> key and observe what happens on the monitor.

You can now edit the command line at any time, similar to what occurs
in the List window of AmigaBASIC. When you mistype something
in a longer command line, you can now correct this error without
having to retype the entire text. Now enter the following commands:

DIR dfO: DIRS
LIST ram: OPT A
TYPE s!startup-sequence

Pretend that you would like to look at the directory of drive DFO:. With
the CLI you would have to re-enter the D i r command. Press the cursor
up key to scroll up to the previously entered commands. Because only
the commands are saved, the memory requirement to do this is small.
The cursor keys can be used to edit the commands.

The FastFileSystem

AmigaDOS takes up too much disk space. Version 1.3 uses the
external disk media extensively. A new disk format takes advantage of
these improvements.

To make you familiar with the file/system relationship, we'll show
you a big difference between the versions of AmigaDOS. One data
block of an AmigaDOS disk containing program data consists of 512
bytes. Of these 512 bytes DOS only allocates 488 bytes for data-the
rest go to data management. When you load a program, the
management data executes an elaborate memory transfer. This is where

ABACUS

5.2.5

S.2 IMPROVEMENTS TO DOS 1.3

the FastFileSystem comes into play. It ensures that management
data is no longer necessary in a data block and that all 512 bytes are
ready for use as program data.

When you read sequential multiple data blocks of a program, a single
read access can perform this task. Because the data management
structure has been removed, this block can be read directly into the
desired memory address. The increase in speed is enonnous. All disk
operations can be increased in speed by a factor of five. The disk space
saved by releasing the management data of a disk is also quite large. We
calculated that a 20 megabyte hard disk on which you placed the
FastFileSystem could save 1.5 megabytes of memory.

The use of FFS boils down to this: You get more disk for the same
money. Workbench 1.3 gives you better disk access in any case.

Version 1.3 defaults to an inactive FastFileSystem. You must
first infonn the system that you need the handler of the same name and
from which medium this should come. We recommend that the desired
device be entered into the Mount list using ED DEVS/Mountlist.
This can later be added to the startup sequence using the Moun t
command. We've prepared a version of the modified Mount lists to let
you quickly adapt to the FFS.

FF S and hard disks

The most cost-effective storage comes from hard disks, because they
can hold large amounts of memory. Here is a possible Mount list
entry that could be placed in the FastFileSystem of your hard disk.
When you integrate it into your Mount list, do the following:

Copy all of the files from your hard disk to nonnal disks. Enter the
following to mount it:

Mount FHD:

Format your FastHardDisk with the following command sequence:

FORMAT DRIVE FHD: NAME "FastHardDisk"

Copy your files onto the FHD: device. You'll be surprised how many
more files you can put on the hard disk.

FHD: Device = hddisk.device
FileSystem = L:FastFileSystem

Unit = 1

Flags = 0

1* access to HD *1
1* all clear *1
1* Device 0 waiting

on AmigaDOS *1
1* for OpenDevice *1

149

S. WORKBENCH

5.2.8

150

1.3 MORE TRICKS & TIPS

Surfaces = 4 /* Disk surfaces */
BlocksPerTrack 15 /* Number of blocks

per track */
Reserved = 2 /* Bootblocks */

Interleave = 0 /* Block setup */
LowCyl 10 /* From

cylinder 10 */
HighCyl 800 /* to cyl. 800 */
Buffers 11 /* Read buffers */

BufMemType 1 /* same
(5=FastRAM) */

GlobVec = -1 /* No GlobVec */
Mount = 1 /* Load handler

immediately after
entering MOUNT */

Dos Type - Ox444F5301 /* Identifier code
for FFS */

t /* End of entry */

You must add the following line to the startup sequence to implement
the FastHardDisk:

MOUNT FHD:

The new math libraries

Who hasn't dreamt of a 68030 processor and a 68882 floating point
math coprocessor? The prices of these components are a little out of
most people's leagues.

New math libraries in 1.3 provide faster math calculations. The speed
when processing IEEE floats, like those used with the x#- variables in
BASIC, executes much faster. After an exact analysis we determined
that we have found the fastest known floating point routine currently
on the planet So as not to lead you astray, here is an example of the
way this routine can be used in BASIC:

DECLARE FUNCTION IEEEDPSint LIBRARY
LIBRARY "mathieeedoubtrans.library" 'BASIC does not

'use CHDIR [Path
PI#=4*ATN(1)
CIRC#=2*PI#

'accept pathnames
for the BMAP-Filesj !

'PI is calculated (fullcircle=2*PI)

FOR 1%=1 TO 359 'circle in degrees
ANGLE#=CIRC#/I% 'angle from 2*PI
HighLong&=PEEKL(VARPTR(ANGLE#)) 'first Long of DFloat
LowLong& =PEEKL(VARPTR(ANGLE#)+4) 'second Long of Float
SINUS#=IEEEDPSin#(HighLong&,LowLong&) 'Call function
PSET(I%,90-INT(SINUS#*50)),1 'Draw pixel

NEXT

ABACUS 5.2 IMPRovEMENTS TO DOS 1.3

FOR 1%=1 TO 359
ANGLE#=CIRC#/1%
SINUS#=SIN(ANGLE#)
PSET(I%,90-INT(SINUS#*50»,2

NEXT
LIBRARY CLOSE

'Just for Demo
'Look how fast
'BASIC is ..•
'other color

The first FOR/NEXT loop is slower than the second loop. The
VARPTR function must be called 720 times, the slow PEEKL must be
called 720 times, the addition of the value four 360 times, and the
routines call 360 times with assignment from two long values, which
doesn't go quickly. More lines and variable assignments distort the first
loop. All of these limitations are amazing. And the end result The first
loop is just as fast as the second loop.

The MathIEEEdoubtrans library includes all the possible transcen­
dental math functions executable on double-precision floating point
numbers. The MathIEEEdoubbas library, which contains the
simple calculation functions, is fast. Transcendental math functions
even come in handy for BASIC users, because they allow you to find
the arcsine without using calculation programs at the same speed as the
sine function. Here is an overview of the functions:

MathIeeeOoubBas-Library
x, y, Double

Long

Long
(DO)

Double
(00/01)

Long
(DO)

Long
(DO)

Double
(DO/Ol)
Double
(00/01)

IEEEOPFix
-30

IEEEOPFlt
-36

IEEEOPCmp
-42

IEEEOPTst
-48

IEEEOPAbs
-54
IEEEOPNeg
-60

(x)
(00/01)

(Long)
(DO)

(x, y)
(00/01,02/D3)

(x)

(00/01)

(x)

(00/01)
(x)

(00/01)

Double-precision
floating point
number (BASIC: 2
longs instead of
x and y)

Positive/negative
long integer
number
Double float/long
integer
conversion
Long integer/
double float
conversion
Compare x and y
(cc set for bee)
Applies to the
following:
x > y -->1
x=y -->0
x<y -->-1
Compare x and 0
(cc set; result
handled as in
IEEEOPCmp when
y=O)
Returns absolute
value of x
Function:
Double=-x

151

5. WORKBENCH 1.3 MORE TRICKS & TIPS

MathIeeeDoubTrans-Library
Double IEEEDPAdd (x,y) Function:
(DO/Dl) -66 (DO/Dl,D2/D3) Double=x+y
Double IEEEDPSub (x,y) Function:
(DO/Dl) -72 (D0/Dl,D2/D3) Double=x-y
Double IEEEDPMul (x,y) Function:
(DO/Dl) -78 (DO/Dl,D2/D3) Double=x*y
Double IEEEDPDiv (x,y) Function:
(DO/Dl) -84 (DO/Dl,D2/D3) Double=x/y
Double IEEEDPFloor (x) Returns greatest
(DO/Dl) -90 (DO/Dl) integer less than

or equal to x
Double IEEEDPCeil (x) Returns smallest
(DO/Dl) -96 (DO/Dl) integer greater

than or equal
to x

Double IEEEDPAtan (x) Returns arc-
(DO/Dl) -30 (DO/Dl) tangent of x
Double IEEEDPSin (x) Returns sine of x
(DO/Dl) -36 (DO/Dl)
Double IEEEDPCos (x) Returns cosine
(DO/Dl) -42 (DO/Dl) of x
Double IEEEDPTan (x) Returns tangent
(DO/Dl) -48 (DO/Dl) of x
Double IEEEDPSincos (x,VARPTR) Double calc:
(DO/Dl) -54 (DO/Dl,AO) Compute sine of

x, put
cosine of x in
VARPTR

Double IEEEDPSinh (x) Returns
(DO/Dl) -60 (DO/Dl) hyperbolic sine

of x
Double IEEEDPCosh lv' Returns \~,

(DO/Dl) -66 (DO/Dl) hyperbolic cosine
of x

Double IEEEDPTanh (x) Returns
(DO/Dl) -72 (DO/Dl) hyperbolic

tangent of x
Double IEEEDPExp (x) Exponent of e
(DO/Dl) -78 (DO/Dl) Function:

Double=eAx
Double IEEEDPLog (x) Returns natural
(DO/Dl) -84 (DO/Dl) logarithm of x
Double IEEEDPPow (x,y) Function:
(DO/Dl) -90 (DO/Dl,D2/D3) Double=xAy
Double IEEEDPSqrt (x) Returns square
(DO/Dl) -96 (DO/Dl) root of x
Float IEEEDPTieee (x) Calc x in IEEE
(DO) -102 (DO/Dl) floating point

single precision
Double IEEEDPFieee (Float) Compute single
(DO/Dl) -108 (DO) precision float

in double
precision

Double IEEEDPAsin (x) Returns arcsine
(DO/Dl) -114 (DO/Dl) of x

152

ABACUS S.2 IMPROVEMENTS TO DOS 1.3

MathleeeDoubTrans-Library
Double IEEEDPAcos (x)
(00/01) -120 (00/01)
Double IEEEDPLog10 (x)
(DO/D1) -126 (DO/D1)

Returns arccosine
of x
Returns base 10
logarithm of x

The BASIC programmer should remember that you can't have a double
float in the system routine. You must give this 64-bit variable in the
form of two long values which get their values through PEEKL
(VARPTR(». The sine demo in this section is an example of this
technique. Another feature of BASIC is the short IEEE library name of
the command of the same name.

You can give most libraries longer pathnames. With this library the
actual pathname may already be so long that no more path data can be
given. When you do this, a File not found error ensues. If you
want to access the math libraries, you must place the system start disk
with the corresponding BMAP files in the current directory or in the
LIBS: directory. Or you can add a CHDIR statement before the
Library command.

153

6.
The printer device

ABACUS

6.

6.1

6. THE PRINTER DEVICE

The printer device

The printer device gives the BASIC programmer the opportunity to use
the printer he has connected to his Amiga. If you have the proper
printer driver for your printer and the printer device available, the inter­
facing usually runs flawlessly, and with a minimum amount of hassle
for the user.

This chapter shows you how to set up your printer to perform tasks
that are a bit unusual. You'll find a program available to let you
control your printer outside of Preferences. In addition, this chapter
contains a program which enables easy printed hardcopy from an open
window.

Controlling printer parameters

Open a computer magazine and look through the advertisements. You'Il
see literally hundreds of printers on the market, all shouting at the user.
"Buy me." These printers all carry different price tags, different methods
of producing printed matter (dot matrix, daisywheel, inkjet, laser, ther­
mal), and different qualities of printing.

Each printer type has its own special strengths and weaknesses. Here
are some general descriptions of these pros and cons:

• Thermal printers are very inexpensive and very quiet, but require
special paper and may not be graphic compatible.

• Daisywheel printers produce excellent print for letters. theses,
etc., but cannot print any graphics except the most rudimentary
graphic output using available characters.

• Dot matrix printers can produce graphics (even in color), but
often the NLQ (near letter quality) mode is inadequate for
professional text printing.

• Laser printers have speed, high resolution and graphic capability,
but the price is prohibitive for the average user.

• Inkjet printers are quiet, efficient and fairly clear printers, but
their graphic reproduction varies greatly.

157

6. THE PRINTER DEVICE M ORE TRICKS & TIPS

158

You can easily see that each printer type descnbed above can address at
least one of your personal printing needs. The Amiga can help. Once
you select the printer you're using in the Change Printer screen of
Preferences (on the Workbench disk), the Amiga automatically converts
general printer commands and printer-specific command codes to your
printer. These codes make your programs either completely compatible
with your printer type, or as compatible as possible.

Preferences usually governs this print quality, but you can override the
control using the following program. This program should give you
some ideas of how the printer device communicates with the printer,
and how you can adapt the printer device to your own needs.

The ~ characters in the following program are not to be entered, they
only show where a BASIC line actually ends. When formatting the
listing to fit in the book, some lines may be split that should not be.
The ~ character shows where a line actually ends.

'*************************************~

'* Programm: Read Printer Data!
,* Date: May 28' 88i
,* Author: tobi
,* Version: 1.3~

1*************************************!
CLS~

PRINT "Searching for the .bmap files!CJ[
'EXEC-LIBRARYCJ[
DECLARE FUNCTION AllocMem& LIBRARYCJ[
DECLARE FUNCTION DoIO& LIBRARY~

DECLARE FUNCTION OpenDevice% LIBRARYi
DECLARE FUNCTION AllocSignal% LIBRARYi
DECLARE FUNCTION FindTask& LIBRARY~
LIBRARY "t&t2:bmaps/exec.library"~
in it : 'i

GetPrinterData!
CJ[
PRINT "Printer-Name
PRINT "Printer-Type
PRINT "Color capability
PRINT "Characters per line
PRINT "Number of fonts

II. ,
" . ,
II. ,
II. ,
II. ,

PRINT "Number of raster lines:
PRINT
PRINT
PRINT
PRINT
i
END~

~

"Max. num.
"Max. num.
"Density:
"Density:

SUB GetPrinterData STATIC!
SHARED prt.DRPReq&~

Dots horiz
Dots vert.

Dots/Inch h.
Dots/Inch v.

prt .name$~
prt .typ$~
prt.color$~

prt.columns%'lI
prt.charsets%CJ[
";prt.rows&~

";prt. xdots&~
";prt.ydots&~

";prt.xdotspi&i
";prt.ydotspi&~

SHARED prt.typ$, prt.colour$, prt.name$CJ[
SHARED prt.columns%, prt.charsets%i
SHARED prt.rows&, prt.xdots&, prt.ydots&CJ[

ABACUS 6.1 CONTROLLING PRINTER PARAMETERS

SHARED prt.xdotspi&, prt.ydotspi&i
S
DIM prt.color$ (9)CJ[
DIM prt.printer$ (3)CJ[
'I

(1) "Black-White"S
(2) ~ "Yellow-Magenta-Cyan"S

prt.color$
prt.color$
prt.color$
prt.color$
prt.color$
prt.color$
prt.color$
prt.color$
prt.color$

(3) "Yellow-Magenta-Cyan or Black-White"S
(4) "Yellow-Magenta-Cyan-Black"CJ[
(5) "Blue-Green-Red-White"'ll
(6) "Black-White Invers"'ll
(7) - "Blue-Green-Red"S
(8) - "Blue-Green-Red or Black-White"S
(9) "Blue-Green-Red-White"'ll

S
prt.printer$(O)
prt.printer$(l)
prt.printer$(2)
prt.printer$(3)

CJ[
'i

OpenPrinterS
'I

"b/w Text Printer"S
"b/w Graphics"'ll
"Color Text Printer"CJ[
"Color Graphics"S

prt.printerdata& = PEEKL (prt.DRPReq& + 20)'ll
prt .extendeddata& = (PEEKL (prt.printerdata& + 92) + 12) 'll
prt.name$ - ""'ll
prt.name& PEEKL (prt.extendeddata&)'I
prt.printer% PEEK (prt.extendeddata& + 20)'][
prt.color% PEEK (prt.extendeddata& + 21) 'll
prt.columns% PEEK (prt.extendeddata& + 22)S
prt.charsets% PEEK (prt.extendeddata& + 23)'][
prt.rows& = PEEKW (prt.extendeddata& + 24)'ll
prt.xdots& PEEKL (prt.extendeddata& + 26)'ll
prt.ydots& = PEEKL (prt.extendeddata& + 30)'ll
prt.xdotspi& = PEEKW (prt.extendeddata& + 34)'ll
prt.ydotspi& = PEEKW (prt.extendeddata& + 36)'][
'i
prt.typ$ = prt.printer$ (prt. printer%) 'll
prt.colour$ = prt.color$
'll
count
char
'lI

NULL 'll
PEEK (prt.name& + count)CJ[

WHILE char <> NULLCJ[

(prt.color%)'ll

prt.name$ prt.name$ + CHR$ (char)'][
count count + I'll
char

WEND!
'll
ClosePrinterCJ[

END SUBCJ[
'I

PEEK (prt.name& + count)'ll

SUB OpenPrinter STATIC'll
SHARED mem.chunk&'ll
SHARED prt.DRPReq&CJ[
'I

159

6. THE PRINTER DEVICE MORE TRICKS & TIPS

Variables

160

mem.clear&
mem.DRPReq%
mem.port%
mem.label%
mem.size%
'I

2~16 'clear memory before taski
62 '62 Bytes for DRPStrukturi
37 '37 Bytes for Port-Struct.~
4 '4 Bytes for Organizationi
mem.DRPReq% + mem.port% + mem.label%~

mem.chunk& AllocMem& (mem.size%, mem.clear&)~

IF mem.chunk& = NULL THEN ~
ERROR 7 'OUT OF MEMORY ERROR~

END IF'll
'J[
prt.label& = mem.chunk&'ll
prt.DRPReq& = mem.chunk& + mem.label%~
prt.port& mem.chunk& + mem.label% + mem.DRPReq%~
prt.name$ = "printer.device" + CHR$(O)'11
~

POKEL prt.label&, mem.size% 'allocate memory size~
~
status'll = OpenDevice% (SADD (prt.name$), 0, prt.DRPReq&, 0) ~
IF status'll <> NULL THEN~

PRINT "Printer is not available."~
CALL FreeMem (mem.chunk&, mem.size%)~

EXIT SUB'I[
END IF'll

END SUB'I
'II

SUB ClosePrinter STATIC'll
SHARED mem.chunk&'I[
~

mem.size% - PEEKL (mem.chunk&)~
prt.DRPReq& = mem.chunk& + 4~
CALL CloseDevice (prt.DRPReq&)~

CALL FreeMem (mem.chunk&, mem.size%)'J[
END SUB

prt.DRPReq&

prt.typ$
prt.colour$
prt.name$
prt.columns%
prt.charsets%
prt.rows&
prt.xdots&
prt.ydots&
prt.xdotspi&
prt.ydotspi&

I/O DumpRastPort structure
(starting address here)
Printer category
Color capability
Printer name
Characters per line
Number of available fonts
Number of pins available on printhead
Max. number of pixels in the X-direction
Max. number of pixels in the Y -direction
Horizontal resolution (pixels per inch)
Vertical resolution (pixels per inch)

ABACUS

Program
description

GetPrinterDataO:

prt.color$O
prt.printer$O
prt.printerdata&

prt.extendeddata&

prt.name&
prt.printer%
prt.color%
count
char

OpenPrinter:

mem.chunk&
mem.clear&
mem.DRPReq%
mem.port%
mem.label%
mem.size%
prt.label&
prt.DRPReq&

prt.port&
prt.name$
status%

6.1 CONTROLLING PRINTER PARAMETERS

Array-color types
Array-printer types
Starting address, PrinterData
structure
Starting address, ExtendedData
structure
Starting address, name string
Printer type code number
Color type code number
Counter
Read character

Starting address, reserved memory
= 2" 16; set available memory to 0
= 62; reserve 62 bytes for structure
= 38; reserve 38 bytes for structure
= 4; reserve 4 bytes for organization
Memory requirement in bytes
Starting address, label memory
Starting address, DumpRastport
structure
Starting address, Port structure
Device name
0= everything's okay

When you look at it, you discover that the previous program consists
of three subprograms:

GetPrinterData
OpenPrinter
ClosePrinter

The user will fmd the GetPrinterData subprogram most interest­
ing. This subprogram internally calls the other two subprograms. The
structure named PrinterExtendedData contains the information
needed by the other subprograms. To arrive at this, it is necessary to
fIrst open the printer through printer. device. This is done using
the OpenPrinter subprogram.

Next the Exec function AllocMemO allocates memory for two struc­
tures: a Port structure and a DumpRastPort structure. In addition,
AllocMemO reserves four bytes. These bytes are eventually used as
storage for the absolute memory size listed for F reeMemO.

When this method is used the Exec function OpenDeviceO opens
the printer. This call returns a Status report to the system. As long
as the Status value doesn't equal zero, the printer cannot be opened.

161

6. THE PRINTER DEVICE M ORE TRICKS & TIPS

162

Possible causes: Another task may be currently accessing the printer, or
the printer wasn't properly closed before this access.

When the printer opens, the DumpRa s t Port structure contains a
pointer to a structure named PrinterData. When the pointer is
reset, it points to the PrinterExtended data structure, in which
the necessary data is saved.

The data is read and stored in the correct variables. Then the printer is
closed once again. This is accomplished using a call of the
CloseP rinter routine. This must be done! When the printer is
opened but not closed by the same program it cannot be accessed until
the computer is reset.

Here is an example of the program output:

Printer-Name
Printer-Type
Color capability
Characters per line
Number of fonts

EpsonQ
Color Graphics
Yellow-Magenta-Cyan-Black

80
10

Number of raster lines: 24
720
o
90
180

Max. num. Dots horiz
Max. num. Dots vert.
Density: Dots/Inch h.
Density: Dots/Inch v.

ABACUS

6.2

6.2 GRAPHIC DUMPS USING THE PRINTER DEVICE

Graphic dumps using the
printer device

The following program is an example of printer control programming.
It shows you the essentials of printing the current contents of your
BASIC window to the printer as a graphic hardcopy or screen dump.

This program supports all the special flags included in operating
system 1.3. These flags let you reduce the size of a window's contents,
enlarge the window, distort its structure, center it and more.

The ~ characters in the following program are not to be entered, they
only show where a BASIC line actually ends. When formatting the
listing to fit in the book, some lines may be split that should be on
one line in Amiga BASIC. The ~ character shows where a line actually
ends.

'*************************************i
,* Program: Graphic-Dumpi
'* Date: May 28 1988i
,* Author: tobi
'* Version: 1.3i
'*************************************i
PRINT "Searching for .bmap files!"'ll
'EXEC-LIBRARYi
DECLARE FUNCTION AllocMem& LIBRARY'lI
DECLARE FUNCTION DoIO& LIBRARYi
DECLARE FUNCTION OpenDevice% LIBRARYi
DECLARE FUNCTION AllocSignal% LIBRARYi
DECLARE FUNCTION FindTask& LIBRARYi
LIBRARY "T&T2:bmaps/exec.library"'ll
init: i

CIRCLE (100,100),100'll
PRINT STRING$ (100,"_")'lI
'lI
special.nothing
special.milcols

Inch'll
special.milrows

Inch'll
special.fullcols
special.fullrows
special.fraccols

o 'no Special effects'll
= 1 'X-Dimension in 1/100

2 'Y-Dimension in 1/100

4 'Maximale X-measurement
8 'Maximale Y-measurement

16 'fraction of max. X-

'0

'0

'g'll
'g'll

measurement'll
special.fracrows
special.center
special. aspect
special.densityl
special.density2

32 'ditto, for Y-measurement'll
64 'Graphic centered on output'll

128 'correction X-Y-aspect'll
256 'Position 1 (lower)'lI
512 'Position 2 'lI

163

6. THE PRINTER DEVICE MORE TRICKS &TIPS

164

special.density3 768 'Position 3~
special.density4 = 1024 'Position 4~
special.density5 1280 'Position 5~
special.density6 1536 'Position 6~
special.density7 = 1792 'Position 7 (high)~

special.noformfeed= 2048 'no formfeedi
special.trustme 4096 'no Reset output i
special.noprint 8096 'calculation only, no printi
'l[
Hardcopy (special.center + special.density4), 100&,

100&~

~
'for Black/white printer, black and white screen~

'l[
PALETTE 0,1,1,1'.1[
PALETTE 1,0,0,0'.1[
'l[
Hardcopy (special. aspect + special.fullcols +

special.fullrows), 0&, O&i
~
'l[
END~

~
SUB Hardcopy (flags, X&, y&) STATIC'.I[

SHARED prt.DRPReq&'][
'l[
OpenPrinter'l[
~
POKEL prt.DRPReq& + 52, X&'l[
POKEL prt.DRPReq& + 56, y&'][
POKEW prt.DRPReq& + 60, flags~

InitDRPReq~

'l[
PrtErr% = DoIO& (prt.DRPReq&)~

~
PrtErr$ (0)
PrtErr$ (1)

PrtErr$ (2)
PrtErr$ (3)
PrtErr$ (4)
PrtErr$ (5)
PrtErr$ (6)
PrtErr$ (7)

'll

"NO ERROR."~
"PRINTING STOPPED BY USER."~
"PRINTER CANNOT PRINT GRAPHICS.",][
"./.",][
"PRINT SIZE IMPOSSIBLE"'l!
"./."~

"NO MEMORY FOR INTERNAL VARIABLES."~
"NO MEMORY FOR PRINTER BUFFER."'ll

resultS
~

= PrtErr$ (PrtErr%)'l!

PRINT result$~
'll
ClosePrinter~

END SUB'll
SUB OpenPrinter STATIC~

SHARED mem.chunk&,][
SHARED prt.DRPReq&'ll
SHARED prt.port&~
~
mem.c1ear& = 2~16 'Clear memory for task'll

ABACUS 6.2 GRAPHIC DUMPS USING THE PRINTER DEVICE

mem.DRPReq%
mem.port%
mem.label%
mem.size%
'll

62 '62 Bytes, DumpRastport Structure'll
38 '38 Bytes for Port-Structure'll
4 '4 Bytes for Organization'll
mem.DRPReq% + mem.port% + mem.label%'ll

mem.chunk& AllocMem& (mem.size%, mem.clear&l'll
IF mem.chunk& = NULL THEN 'll

ERROR 7 'OUT OF MEMORY ERROR'll
END IF'll
'll
prt.label&
prt.DRPReq&
prt.port&
prt.name$
'll

mem.chunk&'ll
mem.chunk& + mem.label%'ll
mem.chunk& + mem.label% + mem.DRPReq%'ll
"printer.device" + CHR$(O)'ll

POKEL prt.label&, mem.size% 'allocate memory size'll
'll
status% = OpenDevice% (SADD(prt.name$), 0,

prt.DRPReq&, OJ'll
IF status% <> NULL THEN'll

PRINT "Printer is not free."'ll
CALL FreeMem (mem.chunk&, mem.size%l'll
EXIT SUB'll

END IF'll
END SUB'll
SUB InitDRPReq STATIC'll

SHARED prt.DRPReq&'ll
SHARED prt.port&'ll
SHARED p.sigBit%'ll
'll
w.window&
w.rastport&
w.width%
w.height%
w.screen&
w.viewport&
w.colormap&
w. vp.mod!%
'll

= WINDOW(7)'ll
= PEEKL (w.window& + SOl'll

= PEEKW (w.window& + 112)'ll
= PEEKW (w.window& + 114)'ll

PEEKL (w.window& + 46)'ll
w.screen& + 44'll
PEEKL (w.viewport& + 4)'ll
PEEKW (w.viewport& + 32)'ll

p.sigBit% = AllocSignal%(-l)'ll
IF p.sigBit% = -1 THEN'll

PRINT "No Signalbit free!"'ll
CALL FreeMem(p.io&,100)'ll
EXIT SUB'll

END IF'll
p.sigTask& = FindTask&(O)'ll
'J[
POKE
POKEL
POKE
POKEL
POKEL
POKEL
POKE
POKE
POKE

prt.port&+8,4'll
prt.port&+10,prt.port&+34'll
prt.port&+15,p.sigBit%'ll
prt.port&+16,p.sigTask&'ll
prt.port&+20,prt.port&+24'll
prt.port&+28,prt.port&+20'll
prt.port&+34,ASC("P"I'J[
prt.port&+35,ASC("R")'J[
prt.port&+36,ASC("T"I'll

165

6. THE PRINTER DEVICE M ORE TRICKS & TIPS

Variables

Program
description

166

'l[
CALL AddPort(prt.port&)'l[
'l[
POKE prt.DRPReq& + 8,
POKEL prt.DRPReq& + 14,
POKEW prt.DRPReq& + 28,

5'l[
prt.port& ~
ll'l[

POKEL prt.DRPReq& + 32, w.rastport&'l[
POKEL prt.DRPReq& + 36, w.colormap&'ll
POKEL prt.DRPReq& + 40, w.vp.modi%'ll
POKEW prt.DRPReq& + 48, w.width%'ll
POKEW prt.DRPReq& + 50, w.height%'l[
'l[
IF PEEKL (prt.DRPReq& + 52) = 0 THEN'll

POKEL prt.DRPReq& + 52, X&'ll
END IF'l[

'll
IF PEEKL (prt.DRPReq& + 56)

POKEL prt.DRPReq& + 56, y&'ll
o THEN'l[

END IF 'l[
END SUB'l[

'll
SUB ClosePrinter STATIC'll

SHARED mem.chunk&'l[
SHARED prt.port&'l[
SHARED p.sigBit%'l[
'l[
mem.size% = PEEKL (mem.chunk&) 'l[
prt.DRPReq& = mem.chunk& + 4'l[
CALL CloseDevice (prt.DRPReq&)'l[
CALL RemPort (prt.port&)'ll
CALL FreeSignal (p.sigBit%)'l[
CALL FreeMem (mem.chunk&, mem.size%)'l[

END SUB'll

PrtErr%
PrtErr$O
resultS

Error number of I{O procedure
Error message text
Current error message

As you may have already noticed, this program contains the subpro­
grams OpenPrinter and ClosePrinter were described in the
program in Section 6.1. The subs Hardcopy and InitDRPReq are
new material. The Hardcopy subprogram should be highly valuable
to the user. It ensures that the contents of the current BASIC window
transfers to the printer as graphics, then it calls the other subprograms.

The printer must be open before it can print a graphic screen. The
OpenP rinter subprogram opens the printer, similar to its task in
the program in Section 6.1. The program POKES the width and the
height of the picture to be printed into the DumpRastPort request
structure. The same thing happens with the special bits.

ABACUS

6.2.1

Flags

6.2 GRAPHIC DUMPS USING THE PRINTER DEVICE

The program then calls Ini tDRPReq. This routine fills the rest of the
structure with the standard values, and then turns to the BASIC
window.

When the time is right, the Exec function DoIO& sends the
IORequest structure to the printer. If the printing stops, or if the
command cannot be executed for any reason, this function returns an
error code to the Status% variable. The program converts this error
code into readable text and displays this text on the screen. The
CloseP rinter routine closes off access to the printer, and the pro­
gram ends.

Hardcopy as an application

The Hardcopy function is unusually versatile. It makes use of all the
capabilities that the printer device has to offer. The call of the sub­
programs can look something like the sequence which follows below:

Hardcopy flags, width&, height&
flags: special flags
height: height of the print out
width: width of the print out

special.nothing
The printout occurs without any special printing effects

special.milcols
The routine supplies the printed width in 1/1000 inch
increments instead of in points (1 inch equals approximately
2.5 cm)

Hardcopy special.rnilcols, 9000,400
This call prints a graphic set at the size specified in the
arguments. For example, the above sample command
defaults to a width of nine inches (22.5 cm) and a height of
400 printed points

specia l.mil rows
Similar to special.milcols, but this command
controls printable height

special.fullcols
The printable width comes out as wide as the hardware can
manage, regardless of the value given as an argument

167

6. THE PRINTER DEVICE MORE TRICKS &TIPS

168

special.fullrows
Similar to special.fullcols, but this command
controls printable height

special.fraccols
The given width is interpreted as x/65535ths of the
maximum width

special.fracrows
Similar to special.fraccols. The given width is
interpreted as x/65535ths of the maximum width

special.center
The program prints the graphic centered on the page. The
special.center flag ignores any previously specified
parameters setting printable dimensions

special.aspect
This flag maintains the ratio between height and width,
regardless of the changes in height or width assigned by the
user

special.densi tyl-7 (V1.3)
Print density: 1 = low (default)

7= high

special.noformfeed (V1.3)
Disables paper formfeed, useful when printing to laser
printers. This allows the user to integrate text and graphics

special.trustme
No reset is sent to the printer

special.noprint (V1.3)
Processes all descriptions and computes all pnntmg
dimensions without executing a printout. This command
allows the user to double-check printing parameters before
doing an actual hardcopy

7.
Workbench
and extras

ABACUS

7.

7.1

7. WORKBENCH AND EXTRAS

VVorkbench and extras

The Workbench disk stores all the data you need for doing general
"chores" on the Amiga. You'll find fIles for fonts, printer drivers, eLI
commands and libraries. In addition, the Workbench disk features many
other support programs and enhancements. The Extras disk also has
more than just AmigaBASIC programs.

This chapter introduces you to many enhancements that should make
your Workbench sessions easier and more efficient. Here you'll read
about many different facets of the Workbench's Preferences program,
and how you can adjust some of the parameters set in Preferences
through programming. You'll even find a chart of the individual
Preferences settings commented in the C language.

Section 7.2 of this chapter looks at a few of the other items on the
Extras disk that aren't common knowledge to the average user. These
programs also help the user be more productive with Extras data.

Preferences

The Preferences program is certainly one of the most important pro­
grams furnished with the Amiga. This program's importance lies in the
amount of control it exercises over the Amiga's working environment
Preferences creates and maintains the environmental settings as
specified by the user (e.g., colors, pointer shape, time, etc.). The
biggest disadvantage to Preferences comes from the mere size of the
program (55K). Many people just don't use Preferences because of the
long loading time required to execute the program.

There are many ways to get around this. First you could copy Prefer­
ences to the RAM disk for faster access. Later versions of Workbench
(1.3 included) have a reset-resistant RAM disk device named RAMBO
which usually retains data in memory after a system reset occurs, so
copying Preferences to RAMBO could be very convenient to the user.

Quite often, you'll find that some programs cannot survive without
certain Preferences settings. For example, some word processors won't
operate in screen modes, other than in 80-column mode. Or a game
may only work with a particular color setting. The following sections
will show you how to read and set Preferences data without loading the
Preferences program.

171

7. WORKBENCH AND EXTRAS MORE TRICKS &TIPS

7.1.1

172

Reading and setting Preferences data

First we'll list the Preferences structure to illustrate exactly what
goes on in configuring these different parameters. The Preferences
structure is presented similar to a C source code. For those of you
unfamiliar with this language, we recommend that you learn C as soon
as possible. For now we'll discuss the five columns below. First, the
hexadecimal number of the C function's location. Then comes the
decimal equivalent of the hex number, followed by the function'S type
and function name. The last column consists of commentary to help
you understand the rest of the table, including possible contents:

Hex pec Type Name Exp1 anati on

struct Preferences
(

OxOOO 000 BYTE FontHeight; Font height: Topaz 8/9
OxOOl 001 UBYTE PrinterPort; $00=paralle1, $Ol=serial
Ox002 002 USHORT BaudRate; Baudrate: $00=110,

$01=300, $02=1200,
$03=2400, $04=4800,
$05=9600, $06=19200,
$07=MIDI

OxOOIl 004 struct timeva1 KeyRptSpeed;Keyboard repeat rate
OxOOIl 004 ULONG tv secs; in seconds
Ox008 008 ULONG tv-micro; in microseconds
OxOOC 012 struct timeval KeyRptDelay;Delay before keyboard

repeat
OxOOC 012 ULONG tv_secs; in seconds
Ox010 016 ULONG tv_micro; in micro-seconds
Ox014 020 struct timeval DoubleClick;Time length of double-

click
Ox014 020 ULONG tv secs; in seconds
Ox018 024 ULONG tv-micro; in micro-seconds
Ox01C 028 USHORT PoInterMatrix[36); Graphic array containing

mouse pointer data
Ox061l 100 BYTE XOffset; X-offset of active

"click"-bit
Ox065 101 BYTE YOffset; Y-offset of active

"click"-bit
Ox066 102 USHORT color17; RGB value sprite color 1
Ox068 104 USHORT color18; RGB value sprite color 2
Ox06A 106 USHORT co1or19; RGB value sprite color 3
Ox06C 108 USHORT PointerTicks; Sensitivity of mouse

pointer to recognizing
click

Ox06E 110 USHORT colorO; RGB value of Workbench
color register 0

Ox070 112 USHORT colorl; RGB value of Workbench
color register 1

Ox072 114 USHORT color2; RGB value of Workbench
color register 2

Ox071l 116 USHORT color3; RGB value of Workbench
color register 3

ABACUS

Ox076 118 BYTE

Ox077 119 BYTE

Ox078 120 WORD

Ox07A 122 WORD

Ox07C

Ox07D
Ox080

124 BOOL

126 USHORT
128 UBYTE

ViewXOffset;

ViewYOffset;

ViewInitX;

ViewInitY;

Enab1eCLI;

PrinterType;
PrinterFilename
[FILENAME_SIZE];

Ox09E 158 USHORT PrintPitch;

OxOAO 160 USHORT PrintQuality;

OxOA2 162 USHORT PrintSpacing;

OxOM
OxOM
OxOA8

164 UWORD
166 UWORD
168 USHORT

PrintLeftMargin;
PrintRightMargin;
P rintI mage;

OxOAA 170 USHORT PrintAspect;

OxOAC 172 USHORT PrintShade;

OxOAE
OxOBO

OxOB2
OxOB4

174 WORD
176 USHORT

178 UWORD
180 USHORT

Print Threshold;
PaperSize;

Paper Length;
PaperType;

*** Version 1.1 ends here***

OxOB6
OxOB7
OxOB8

182 UBYTE
183 UBYTE
184 UBYTE

OxOB9 185 UBYTE

OxOBA 186 UBYTE
OxOBB 187 BYTE
OxOBC 188 BYTE

SerRWBits;
SerStopBuf;
SerParShk;

LaceWB;

WorkName[30];
RowSizeChange;
ColumnSizeChange;

7.1 PREFERENCES

X-offset of top corner of
Workbench screen
Y-offset of top corner of
Workbench screen
Initialization value for
ViewXOffset
Initialization value for
ViewYOffset
CLI status: $OO=on,
$Ol=off
Printer type

Filename of custom
printer driver
Font pitch: $OOO=Pica,
$400=Elite, $800=Fine
Print quality:
$OOO=Draft, $100=Letter
Line spacing: $000=6 LPI,
$200=8 LPI
Left margin
Right margin
Printed image:
$OO=positive,
$Ol=negative
Print direction:
$OO=horizontal,
$Ol=vertical
Graphic shading: $OO=b/w,
$Ol=gray scales,
$02=color
Degree of contrast
Paper size: $00=U5
Letter, $10=U5 Legal,
$20=Narrow fanfold,
$30=Wide fanfold,
$40=User-assigned
Paper length in lines
Paper type: $OO=Fanfold,
$80=5ingle-sheet

Number of read-write bits
Number of stop bits
Parity setting and
handshake mode
Workbench interlace
status: $OO=normal,
$Ol=Interlace
Printer name buffer
User-defined line size
User-defined column size

*** Version 1.2 ends here ***

OxOBE 190 UWORD
OxOCO 192 UWORD

OxOC2 194 UWORD

OxOC4 196 UBYTE

PrintFlags;
PrintMaxWidth;

PrintMaxHeight;

PrintDensity;

Maximum printable width
in tenths of an inch
Maximum printable height
in tenths of an inch
Print density

173

7. WORKBENCH AND EXTRAS M ORE TRICKS & TIPS

Note:

174

OxOCS 197 UBYTE
OxOC6 198 UWORD

OxOC8 200 UWORD

OxOCA 202 UBYTE

OxOCB 203 BYTE

OxOCD 204

PrintXOffset;
wb_Width;

wb_Height;

wb_Depth;

ext_size;

Tabs in tenths of an inch
Width of the Workbench
screen
Height of the Workbench
screen
Bitplane depth of the
Workbench screen
Preferences structure
extension

/**** Version 1.3 ends here ****/
};

Now you know which data the Preferences structure accesses, but
you still don't have a use for it. It would be nice if you could read the
current settings, then alter and save these settings.

Here's where the utility program listed below comes in. This program
allows easy BASIC access to the Preferences data using the Intuition
functions. Also, this program shows how easily the user can read the
structure through two simple examples.

Be careful when using this program if you have Version 1.3 of the
Workbench. This Workbench implementation has some expanded data
fields. However, the program also runs with Kickstart 1.2.

Two Intuition functions help us perform this task. One function copies
the current values into a memory location reserved by the program.
You can change the data from this memory location. The second
function lets you return these edited settings to Preferences for saving.

T'ne following program changes the colors of tI'1e WorkBench screen.
The ~ characters in the following program are not to be entered, they
only show where a BASIC line actually ends. When formatting the
listing to fit in the book, some lines may be split that should not be.
The ~ character shows where a line actually ends.

'**·*****************************i
'* *'l!
'* Add Preferences Data *'l!
'* ---------------------------- *'l!
'* *'l!
'* Author Wolf-Gideon Bleek *'1
,* Date May 15 'SS *'lI
,* Name Add-Pref.bas *'l!
'* Version: 1.1 *'ll
'* System : V1.2 & V1.3 *'ll
'* *'l!
'********************************!
LIBRARY "T&T2:bmaps/exec.library"'lI
DECLARE FUNCTION AllocMem& LIBRARY'll
LIBRARY "T&T2:bmaps/intuition.library"'II
Mainprogram:'l[

Preferences loaded'll

ABACUS

Program
description

7.1 PREFERENCES

GetPreferences Prefs&, 220& i
IF Prefs& = 0 THEN GOTO Endei
i
I Enter new colorsi

CJ
ColourO 1l0i
Colourl 112'l[
Colour2 114'l[
i
POKEW Prefs& + ColourO, 1*15+I6*4+256*15'l[
POKEW Prefs& + Colourl, 1*15+I6*15+256*0'l[
POKEW Prefs& + Colour2, 1*0+16*15+256*8'l[
I Save Preferences i
Set Preferences Prefs&i

Ende:'l[
FreePreferences Prefs&i
LIBRARY CLOSE'l[

END'l[
SUB GetPreferences (Address&, Size&) STATIC'l[

Address& = AllocMem&(Size&+4, 65536&)i
IF Address& <> 0 THEN'l[

POKEL Address&, Size&i
Address& = Address&+4'l[
CALL GetPrefs(Address&, Size&)i

ELSEi
Address = O'l[

END IFi
END SUBi
SUB SetPreferences (Address&) STATIC'l[

IF Address& <> 0 THEN'l[
Size& = PEEKL(Address&-4)i
CALL SetPrefs(Address&, Size&, -I)'l[

END IF'l[
END SUB'l[
SUB FreePreferences (Address&) STATIC'l[

IF Address& <> 0 THENi
Size& = PEEKL (Address&-4)i
CALL FreeMem(Address&-4, Size&+4)i

END IFi
END SUEt

The program uses three subroutines which calls all of the necessary
Intuition functions. The fust function (GetPreferences) allocates
the necessary memory for the data structure and copies the data proper
into this memory. In case the program encounters an error, it returns
the value O. If all went well, then the user can modify every setting in
the program. Pay strict attention to the correct starting addresses (e.g.,
those offsets in the table listed earlier in this section), and to the correct
POKE length: POKE for byte values, POKEW for word (i.e., two-byte)
values and POKEL for long words (i.e., four-byte values). You get the
length from the table, from which you determine the difference between
the base address and the next address.

175

7. WORKBENCH AND EXTRAS MORE TRICKS &TIPS

7.1.2

Workbench
screen

A back door
to Preferences

176

The second function (SetPreferences) removes data from the
system memory and informs all other programs running of this change,
using an identifier of -1. If you prefer not to have the other tasks know
about the change, then you must insert the value O.

The last function (FreePreferences) releases the memory
occupied by the buffer and Preferences. That is important, and
signifies good programming style. You should always release memory
that you don't need for other programs once you've fmished using it

The new Preferences (Version 1.3)

No discussion of the new operating system would be complete without
our mentioning the improvements and changes made to the Preferences
program. Possibly the most obvious improvement lies in the upgraded
printer control. First, all the printer drivers now execute much faster. A
hardcopy which formerly might have taken ten minutes to print. now
needs only two minutes for execution time.

Improvements have also been made to the graphic printing configura­
tion. Preferences supported graphic printing to some extent, but not as
well as it could have been supported. Now you have much more control
over the graphic printout in Version 1.3. We will list the remaining
changes before we go into detail in graphic selection.

At first glance the changes made to the title screen don't look very
impressive. For example, the eLI gadget gone. You can now work
with in the eLI without having to go in to click a gadget to activate it
first (a change that we believe was long overdue).

One internal improvement that may not be noticeable is in the clock.
The setting is passed to the battery-powered realtime clock, so the clock
updates whenever you select the Save gadget in this window. That's a
great advantage for all 500 and 2000 owners.

Preferences has one extra improvement-the addition of a "back door"
to the Preferences program. Just as you have a back door to a house,
which allows easier access to the building, Preferences has a rear
entrance for users to make a quick change.

Here's an example. You have a new printer and need to test out the
printer driver settings until you determine the correct combinations. To
do this you would normally select Preferences, change the data in the
Change Printer screen and exit Preferences. This operation gets
troublesome after a while, since you have to repeatedly select
Preferences and Change Printer, change parameters, exit Preferences,
test print, select Preferences, and so on.

ABACUS

Printing
graphics

Graphic 1

7.1 PREFERENCES

Workbench 1.3 stores Preferences in a drawer named Prefs. If you
double-click on this drawer, it opens, revealing the Preferences icon and
four additional icons. Three of these icons allow direct access to differ­
ent sections of Preferences without having to access Preferences itself
initially. These icons are as follows:

Pointer
Printer
Serial

Allows direct access to the Edit Pointer window.
Allows direct access to the Change Printer window.
Allows direct access to the Change Serial window.

Select one of these icons. Select the Info item from the Workbench
menu to view the Info screen for the icon. Notice that the Default Tool
gadget states Sys: Prefs/Preferences, and the Tool Types
gadget states Prefs=Icon name (Icon name represents either
Printer, Serial or poInter). These specifications tell the
Workbench to move to the desired window for changes. This takes
much less time than going through Preferences first. If you want to
start Preferences from the eLI, you can just enter the individual
arguments after the word Preferences:

Preferences [pointeriprinter i serial]

Two other icons can be seen in the Prefs drawer. You'll use the one
often, and may never use the other:

Preferences
CopyPrefs

Accesses the Preferences program.
Copies the configuration made by Preferences to
DFO:DEVS (useful for hard disk systems that
don't autoboot).

Now, double-click the Printer icon in the Prefs drawer. The Change
Printer window appears. You'll note that this window contains two
gadgets for selecting graphic modes---Graphic 1 and Graphic 2.

Clicking the Graphic 1 gadget has the same effect as clicking the
Graphic Select gadget in Workbench 1.2's Change Printer window. A
window appears, listing the parameters for selecting different print
parameters: Aspect, Image, Shade and Threshold. Note the
gadget in the Shade parameter that wasn't in WOIKbench 1.2:

IGray Scale21 Supplies extended four-shade gray scaling (the
Commodore-Amiga A2024 monitor supports
this degree of gray scaling).

177

7. WORKBENCH AND EXTRAS MORE TRICKS &TIPS

Graphic 2 Clicking the Graphic 2 gadget takes us into a new window. This
window lists additional gadgets for greatly improved printed graphic
control.

PI'efel'ences Vi. 3 .18

SHoothi ng
ON ."j_

ColoI' COl'rect
I RIG I B I
~olors = 499~

Width Lit'll t
'gFi'll@1ilIJt~b .. ti:i:1

He !ght Lil1it
lim~:iirU!i:~b~I!$::1

Left Offset
~.8 inches I
Center I ON lelj.

Dither! "g

(- Lil1! ts

Bounded
Absolute
Pixels

Hul tiplv

Preference 1.3 Graphic 2 Screen

Densitv

OK

I Cancel I

Smoothing This function enables the smoothing of diagonal lines. In many cases,
printed diagonal lines may have the "jaggies" (a jagged appearance) in
some Amiga graphic applications. Click the ON gadget to enable it and
the OFF gadget to disable it The Smoothing function defaults to OFF.

Note: You cannot have smoothing enabled at the same time you have F-S
dithering enabled (see the paragraph entitled Dithering below). If you
select F-S then select Smoothing ON, the dithering mode changes to
Ordered

Left Offset Now look at the next function to the right. The Left Offset parameter
controls the left margin of the graphic (if you want one). If you enter
0.0 inches (default setting) no left offset occurs.

Note: Selecting the Center ON parameter (see below) disables Left Offset.

Densi ty The Density parameter controls the density (darkness) of the printout A
higher density requires more printing time. The lower the density
setting, the faster the printing. Density 1 is the default setting.

Color Correct This parameter attempts to control color compensation in printing.

178

Either the red (R), blue (B) or green (G) shades appear on the printer as
on the screen. The normal amount of color available is 4096 colors.
However, this amount decreases if you select color correct. Color
correct can often produce a better output Default is no color correction
(none of the three gadgets is selected).

ABACUS

Dithering

Scaling

< - Limits

7.1 PREFERENCES

Dithering can be defined as another fonn of color control. Dithering
prints different color dots close together so that the multiple colors
appear to the naked eye as one color. You have three options for
dithering:

IOrdered I
IHalftonel

I F -- S I

This enables dithering in an orderly pattern of printed
dots.
This enables dithering in halftone style, similar to the
method used in printing newspapers, comic books and
other media of this type.
F-S stands for Floyd-Steinberg. F-S refers to the Floyd­
Steinberg error distribution method, which takes a set
of points to be combined into one color and randomizes
the dithering slightly. If you don't have a color printer
to see a Floyd-Steinberg configured printout, you
should see one sometime-it's really interesting.

Earlier Workbench graphic printouts all came out in the same size and
fonnat, regardless of the size of the original graphic. Workbench 1.3
provides two scaling modes:

I Fraction I Executes nonnal scaling as found on Workbench 1.2.

I Integer I Enables different sized printouts as specified in the
width Limit and Height Limit gadgets. For
example, if you enter ones in both these gadgets, the
graphic appears in 1: 1 scaling. Entering higher values
doubles and triples the scaling. If you enter 0 in each
gadget, the printout appears at the size of the sheet as
was stated by selecting Fraction.

This last function specifies the given graphic measurement limits, as
stated in the width Limit and Height Limit gadgets. You can
choose from one of five limiting modes:

IIgnOre I

IBounded I

IAbsolutel

Ignores given values and prints the graphic in the
normal format specified by the application used to
create the graphic.
Sets the maximum measurements as specified by
width Limit and Height Limit. Many graphics
may print in smaller sizes than specified due to
distortion.
Sets the measurements as absolute values in increments
of one-tenth of an inch. For example, A He i g h t
Limi t of 40 and width Limit of 50 prints a
graphic four inches high by five inches wide.
Similar to Absolute, except that values are read in
pixels instead of tenths of an inch.

179

7. WORKBENCH AND EXTRAS MORE TRICKS &TIPS

Note:

7.1.3

Clock
parameters
from eLI

180

Similar to Absolute. However, Mul tiply allows a
printout in multiples of original graphic size, as
specified in the Height Limit and width Limit
gadgets. For example, if you have a Height Limit
of 2 and Width Limit of 3, the printout appears
twice the normal height and three times the normal
width. These settings vary with the original graphic
size. If the original was 320x200, the printout here
would be 640 pixels wide by 600 pixels high.

These are the additions to The Version 1.3 implementation of
Preferences. If you don't quite get the printout you intended, keep
experimenting. Practice makes perfect, and this saying is very true in
printing graphics. If you haven't yet bought a printer, we recommend
that you ensure that the printer you're buying has a matching printer
driver included in Workbench 1.3.

If you can't find the driver for your printer, look on the Extras disk:
There are a few printer drivers that the Amiga developers couldn't fit on
the Workbench disk. You'll fmd these other drivers on the Extras disk
instead.

The 1.3 Utilities drawer

In addition to system data and work environment control, the
Workbench disk contains a number of utility programs. Utilities are
useful and helpful programs that aid the user in programming or other
tasks. You'll find these utilities in the Utilities drawer of the
Workbench disk.

Double-click the Utilities drawer to open it. Many of the programs
carried over from Version 1.2 underwent some upgrading for Version
1.3. New additions include extra parameters and settings, and little
known methods of CLI access.

You can set the clock parameters easily from menus. However, every
time you reboot the Workbench, all the parameters return to their
original status. You can control the clock parameters using a new CLI
command named Clock.

The argument template for Clock looks like this:

CLOCK [ANALOGIDIGITALIIDIGITAL2] [=<x>,<y>[,<width>,
<height>]] [12HOURI24HOUR] [SECONDS] [DATE]

ABACUS

ClockPtr

CMD

7.1 PREFERENCES

The arguments represent the following:

ANALOGIDIGITALliDIGITAL2
Specifies one of the three clock types available from the
Workbench (default=ANALOG).

<x>,<y>
Specifies clock placement on the screen. <x> represents the
number of horizontal pixels from the left screen border; <y>
represents the number of vertical pixels from the top of the
screen (default=10,15).

<width> ,<height>
Specifies the height and width of the analog clock only. Digital
clocks ignore the <height> and <width> arguments.

12HOUR I 24HOUR
Specifies the AM/PM (12-hour) or military (24-hour) clock type
(default=12 HOUR).

SECONDS
Enables or disables seconds display (default=OFF).

DATE
Enables or disables date display (default=OFF).

The following CLI command displays the time and date during the
current Workbench session:

Utilities/Clock DIGITAL2 24HOUR DATE

You can execute ClockPtr by executing or running the program
from the C L I or by double-clicking its icon. When you access
ClockPt r, the pointer changes into a digital clock whenever the
pointer rests on the Workbench screen. ClockPtr can display
different time parameters. Moving the pointer to the left side of the
Workbench screen displays minutes and seconds; moving the pointer to
the right side of the screen displays hours and minutes.

To disable ClockPtr, press <Ctrl><C> if you started it using
Execute from the CLI, enter Break if you started it using Run
from the CLI, or double-click the icon again if you started it from the
Workbench.

This new program sends CMD WRI TE output to a file that would
normally be sent to a parallel or serial output device. This command
has great potential for user control. A CMD WRI TE transfers data to a
printer, whether through the eLI or through program control.

The argument template for CMD looks like the following:

CMD <devicename><filename> [OPT slmlnj

181

7. WORKBENCH AND EXTRAS M ORE TRICKS & TIPS

Install
Printer

More

182

The arguments are as follows:

<devicename><filename>
Specify the original parallel or serial device «devicename»
and the file to which you want the information sent
«filename». You cannot use PAR: or SER: as device
names.

OPT s
Do not execute any short initial write (usually occurs after a
reset). The short initial write sets the printer to its power-up
status in some printer drivers. You won't need this mode for
sending data to a file. So, if your printer driver sends this code,
use s.

OPTm
Use with multiple files until Break occurs or <Ctrl><C> is
pressed. Cmd normally disables itself after writing a file. This
option keeps the command open for writing more than one file
or copies of the same file.

OPT n
Enable notify mode. This mode keeps the user informed of
progress during the file transfer.

You'll recall reading a bit earlier about the printer drivers placed on the
Extras disk, since the Workbench disk didn't have enough room on it
You'll also remember reading earlier about the Ie onX configured script
file named InstallPrinter. InstallPrinter copies a printer
driver from the Extras disk to the appropriate directory on the
Workbench disk (the DEVS: directory).

You can execute this program from the CLI or double-click its icon.
The program displays a list of printer drivers available on the Extras
disk. Enter the name of the desired driver at the prompt (you may use
wildcards if you wish to copy more than one driver) and press the
<Return> key. This script file copies the driver to the DEVS: directory
and adds the driver name to the list found in the Change Printer
window of Preferences. Press the <Return> key without entering any
driver names if you wish to exit InstallP rinter without copying
any drivers.

This command lets you display ASCII text files on the screen. You can
access More from either the CLI or from the Workbench. The CLI
syntax:

More <filename>

To access More from the Workbench, double-click the More icon. If
you wish to access an icon equipped text file direct from More, click
once on the More icon, press and hold the <Shift> key and double­
click the text icon you want to read.

ABACUS 7.1 PREFERENCES

The following keys move you through the text file:

<Space>
<Backspace>
<Return>
«>
<»
<%n>
<Ctrl><L>
</><string>

<.><string>

<n>
<h>
<q>
<E>

next page
previous page
next line
(less than) fIrst page of file
(greater than) last page of file
display the n% segment of the tile
refresh window
execute case sensitive search of characters following the
</> character (e.g., /Ma rch will not fInd rna rch)
execute non-case-sensitive search of string following
the <.> character (e.g., . March will fInd both March
and march)
fInd next occurrence of string stated in either </> or <.>
help list
(or <Ctrl><C» quit
edit with editor found in the ENV:EDITOR variable

More displays the percentage of the fIle at the bottom of the screen.
When you reach the end of the fIle, the message changes to -Less -.

When you access More using the CLI or Shell, you can access an
editor immediately for editing the file you're viewing, provided that the
ENV:EDITOR variable contains a specifIcation. This variable should
contain the correct editor path (e.g., C:ED). If ENV:EDITOR is
defined, press <Shift><E> to invoke the editor.

PrintFiles This command copies fIles to your printer. You can print more than
one file at a time by accessing the fIle from the CLI and using the
multiple file arguments.

You can access PrintFiles from the Workbench or from the CLI.
The argument template for the CLI command looks like this:

PrintFiles [-fl <filename>[[-fl <filename>J [[-fl<filename>l_.

The arguments are as follows:

-f Enables form feed mode. This mode adds a form feed between
each fIle and at the end of the file or set. You can enable this
mode from the Workbench by selecting Print files's info
screen and entering FLAGS=formfeed in the TOOL TYPES
gadget.

<filename>
SpecifIes the name of the fIle(s) you want printed.

If you want to access PrintFiles from the Workbench, click on the
icon of the file you want printed. Press and hold the <Shift> key and
click on any other file icons you want printed. Continue to hold the
<Shift> key and double-click on the Print files icon.

183

7. WORKBENCH AND EXTRAS MORE TRICKS &TIPS

7.1.3.1

Graphic
Dump

184

Other Workbench 1.3 utilities

This command does a screen dump of the Intuition screen in the fore­
ground to the printer. The 1.3 version of GraphicDurnp allows you
to specify the size of the screen dump.

You can access GraphicDurnp either by double-clicking its icon or
by accessing it from the CLIo The argument template for the CLI
implementation of GraphicDurnp looks like this:

GraphicDump [TINYISMALLIMEDIUMILARGElxdots:ydots]

The arguments are as follows:

TINY Prints the screen dump about one quarter the size of the
printable width (height adjusts proportionately).

SMALL Prints the screen dump about one half the size of the
printable width (height adjusts proportionately).

MEDIUM Prints the screen dump about three quarters the size of the
printable width (height adjusts proportionately).

LARGE Prints the screen dump the full printable width (height
adjusts proportionately). This is the default value when you
access graphicDurnp from the Workbench.

ABACUS

7.2

FED

Note:

Project

Edit

7.2 TOOLS ON THE EXTRAS DISK

Tools on the Extras disk

We mentioned a few pages back that the Extras disk contains more than
just AmigaBASIC. You can find a few extra printer drivers on this disk
(accessible from the InstallPrinter script file), and a number of
additional utility programs. This section discusses a number of them
found on Extras 1.3. Look in the Tools directory for these:

FED is the abbreviation for Font EDitor. This utility lets you either
change existing fonts or create your own.

Two warnings about FED. First, never experiment with the fonts on
your original Workbench disk. Second, FED cannot edit fonts any
larger than 32 pixels by 32 pixels.

You can access FED by double-clicking on its icon. A window appears
containing gadgets and characters. The following is a list of the menu
names, their items and the available gadgets.

This menu provides you with file management. The following items
are available:

New
Open
Save
Save As
About
Quit

Clears available fonts in memory.
Allows the user to open a font from disk.
Saves the current font to disk.
Saves the current font to disk under a new name.
An info screen-tells you who wrote FED.
Quits FED and returns you to the Workbench.

This menu provides editing facilities for the entire font (you cannot
change just one letter, and some edits may be irreversible).

Make italic Italicizes font
Make bold Bolds font
Make underlined

Copy to

Erase
All right

All left
All up
All down

Underlines font
Copies character from one box to another box. Select
the character you want copied. Select Copy to and
select the box to which you want the character copied.
Copy mode is enabled until you select Copy to
again.
Deletes the character from the box selected.
Moves all characters of the font to the right by one
pixel.
Moves all characters of the font to the left by one pixel.
Moves all characters of the font up by one pixel.
Moves all characters of the font down by one pixel.

185

7. WORKBENCH AND EXTRAS M ORE TRICKS & TIPS

Attributes This menu provides facilities for setting the font's type and style bits.

Font type You can select either Proportional spacing or Fixed
width spacing.

Font style Choose from Normal, Italic, Bold, Underlined or
Extended style. Most fonts work best in Normal style.

Rendering Choose from Forward or Reverse.

KeyToy20 0 0 This utility displays the current global keymap. The first screen display
shows unshifted keyboard output. If you want to see keys displayed
through the use of <Shift>, <Ctrl>, etc., click on the appropriate
gadget in the KeyToy window, or press the appropriate key on the
keyboard.

Memory
display

FreeMap

186

Here are a few "ground rules" in using KeyToy2 0 0 0:

• Blue labeled keys cannot be accessed by KeyToy (the <CTRL>
<SHIFT> and <AL T> keys can be accessed.)

• Yellow labeled keys cannot be accessed (the <Caps Lock> key
and the <Commodore> and right <Amiga> keys).

• $$-labeled keys contain strings with more than one character.

• Characters beginning with A or - are control characters.

• Blank labeled keys are undefined.

You have three options for displaying memory. The first option
displays available memory when on the Workbench screen. This has a
coupie of disadvantages. First, this screen can supersede any Guier
windows or screens. In addition, this memory display appears only
when the Workbench screen is active. The Extras disk includes two
utility programs written expressly for displaying free memory.

FreeMap creates a new screen and graphicaHy displays the memory
allocation. This screen displays both chip RAM and fast RAM. Older
versions of F reeMap only displayed chip RAM, so the fast RAM
display is a new addition. FreeMap also shows how the memory is
divided into segments when multiple tasks are running in memory. The
output is graphic.

The Info menu displays a description of how FreeMap displays
memory. Select the PIe a s e item from the Qu i t menu to exit
FreeMap.

ABACUS

Per:fMon

PaJ.ette

Note:

MEMACS

7.2 TOOLS ON THE EXTRAS DISK

Perf Man is a performance monitor program that indicates both free
chip RAM and free fast RAM. A peculiarity is that both displays show
the amount of processor time currently in use. It's interesting to see in
what way the 68000 is used or unused. A black line indicates the max­
imum ideal configuration. Some disadvantages to Perf Man: It uses its
own window and chip RAM, as well as its own text window on the
screen.

This tool allows the user to change screen colors. Unlike Preferences,
which limits itself to the Workbench colors, Palette offers you
access to any color in the Amiga's available spectrum. You can open
Palette by double-clicking its icon or by accessing it from the CLI.

The argument template for accessing Palet te from the CLI looks
like this:

Palette [<bitplanes>] [<screentype>]

The arguments represent the following:

bitplanes
Specifies the bitplane depth involved in the new color palette
setting. 1 gives you two colors; 2 gives you four colors; 3 gives
you eight colors; 4 gives you 16 colors; and 5 gives you 32
colors.

screentype
Specifies the resolution of the screen currently being tested. 0
gives a resolution of 320x200 pixels; 1 gives an interlaced reso­
lution of 320x400 pixels; 2 gives a resolution of 640x200
pixels; and 3 gives an interlaced resolution of 640x400 pixels.

The window displayed by Palet te has a number of gadgets and
sliders allowing user color control.

Palette color changes are temporary-you cannot currently save this
information to disk.

This is another item in the Tools: directory of the Extras disk, it is a
text editor. Many versions of MEMACS (short for MicroEmacs) exist for
many different brands of computers. MEMACS is a screen oriented text
editor which is much more powerful than ED. It allows you to edit
more than one file at a time, providing that enough RAM exists for
you to have all those multiple programs in memory.

You can execute MEMACS by double-clicking the Workbench icon, or
by access from the CLI. The argument template for MEMACS looks
like this:

Memacs [<filename>] [goto <n>] [OPT Wl

187

7. WORKBENCH AND EXTRAS MORE TRICKS &TIPS

188

The arguments represent the following:

[<filename>]
Specifies the file you want loaded into MEMACS.

[goto<n>]
Moves the cursor to line n of f il ename.

[OPT W]
Places MEMACS in a Workbench window.

MEMACS allows the use of both key combinations and mouse access.
The menus are self-explanatory, but be sure to look at the keyboard
shortcuts listed on the menus. The beauty of MEMAC S is that the
keyboard shortcuts are the same on any machine it is running on. This
means that if you learn to use the keyboard shortcuts on the Amiga
version, you will know how to operate an IBM or UNIX version of
MEMACS.

8.
Personalizing the

Workbench

ABACUS

8.

Note:

8. PERSONALIZING THE WORKBENCH

Personalizing
Workbench

the

You may have wondered about the possibility of changing the
Workbench messages to give your Workbench the "personal" touch. Or
perhaps you wanted to change the Workbench texts to another language
other than English. It's not as easy as changing a BASIC program, but
it can be done.

This chapter shows Amiga lOOO owners how you can change the
Workbench texts. All you need are a backup copy of the Kickstart disk
and a disk monitor. Use backups of Kickstart and Workbench! Do NOT
use your originals when editing important files.

If you've never used a disk monitor, these programs allow you to read,
edit and write blocks of disk memory. If you don't have a disk monitor,
look for one in the public domain. Many such programs are available,
under titles like Diskmon or TSEditor. Or if you prefer, get the
disk monitor listed in Abacus' Amiga Disk Drives Inside and Out.
Learn the essentials of using a disk monitor ~ starting this project,
since one error in typing could destroy data.

The instructions in this chapter are intended for the
Amiga 1000 Kickstart disk only. Those of you who own
Amiga 500 and 2000 models have Kickstart in ROM, so you can't
easily change that. If you really want to edit your Kickstart ROM,
you'll have to somehow extract the ROM code using a machine
language monitor, change that code and burn it into a new EPROM.
You'll probably have to find someone who has expertise in EPROM
burning and machine language to do this for you, if you don't have the
experience yourself. Amiga 500 and 2000 users may prefer to skip this
chapter. However, you can still1earn a great deal about the workings of
Kickstart by reading this chapter.

191

8. PERSONALIZING THE WORKBENCH M ORE TRICKS & TIPS

8.1

Kickstart
backup

Disk monitor

192

Making preparations

First let's go through the parts list one more time. You need the
following equipment to make these changes to the Kickstart disk:

We repeat, do not use your original Kickstart disk for this
project. Take your Kickstart disk, enable the write protect and make a
backup or two of the disk. Use the Duplicate item from the
Workbench menu, or use the Diskcopy command from the CLIo
Once you've made backups put your original Kickstart disk away. Use
the backup for making changes, and keep the second backup handy in
case you accidentally destroy the backup currently in use. In fact,
making more than two backups is always a good idea for any disk.

As described above, disk monitors read data from a disk (usually in
increments of a sector). You can examine this data, edit it and write it
back to the disk.

You can find disk monitor programs from a number of sources. Many
public domain disks have disk monitors, and a number of books
contain listings for powerful monitors in C. AmigaBASIC and
machine language.

One necessary feature the disk monitor must have: It must be capable
of displaying the data in ASCII characters, and allow text entry into the
disk block. The disk monitor program in the Abacus book Amiga Disk
Drives Inside and Out has this ability and is the one we used when
preparing this book to modify our KickStart disks.

You do not need the Workbench disk for the modifications. Your
inclination might be to look on the Workbench disk for the texts. If
you haven't looked there yet, we'll tell you right now that you won't
find the texts needed on the Workbench disk. The Kickstart disk (or
ROM) contains any messages that go into the operating system. These
messages load during the booting process. Therefore, you only need the
Workbench disk when you test out your new system.

Here are a few ground rules which you should know while editing your
backup Kickstart disk:

1) Always use backups whenever using a disk monitor to write disk
blocks. If you use original disks, you risk destroying important
data. Certain areas of disks shouldn't be tampered with, one error
could render an entire disk useless for anything other than
reformatting.

ABACUS 8.1 MAKING PREPARATIONS

2) When writing to disk, test boot the disk often at first (after every
change works well). This way if something goes wrong, you can
at least figure out when the problem arose. As you gain
confidence in editing disks, you can test reboot less often.

3) Use compatible versions of Workbench and Kickstart (i.e., 1.2
Kickstart with 1.2 Workbench, 1.3 Kickstart with 1.3
Workbench). Intermixing versions of Kickstart and Workbench
may cause problems.

4) When rebooting with a modified Kickstart, the Amiga does an
internal checksum to see if Kickstart is compatible with itself. A
"normal" Kickstart disk invokes the Workbench hand icon when
you reset the computer. However, a modified Kickstart disk will
cause the system to ask for the Kickstart disk. This is perfectly
normal-just keep both Kickstart and Workbench handy when
booting up and rebooting.

5) Take your time when using a disk monitor. One misplaced space
or character can crash the system. Just take the time to observe
the structure of a text, and keep that structure the same length. If
you rush the editing process, the odds of making a major error
increase. Take it slowly and carefully.

So much for the warnings. Let's do some disk editing.

193

8. PERSONALIZING THE WORKBENCH M ORE TRICKS & TIPS

8.2

8.2.1

194

Getting started with text
editing

We've got the groundwork done. Now let's get started with the editorial
process. We can now begin with looking for the texts we want
changed. Section 8.3 give a complete listing of the texts.

Starting messages and the AmiqaDOS
window

Boot up your monitor and do whatever you have to do to read your
Kickstart backup. Read block 454 decimal ($01c5 hexadecimal) for
Kickstart 1.2 and block 453 decimal ($0Ic4 hex) for Kickstart 1.3.
Look for some system names like LIBS, DEVS or FONTS (you may
have to scroll up and down through the blocks until you find the text
mentioned here, depending on the type of Kickstart you have). Now
search for the following text in this block or the block immediately
following this block:

CON:O/O/640/200/ArnigaDOS

This line opens a console window named AmigaDOS. That's the first
thing you see as the Workbench does its task. This creates the window
during booting, before the screen appears in AmigaDOS. This
command configuration sets the window height at 200 pixels, the
standard value for American (NTSC video) Amigas. If you have a PAL
video Amiga (the European standard), you can change the Y value from
200 to 256. Or if you prefer, you can make your AmigaDOS window
smaller. For instance, we changed the 200 to 150. The altered line
should now look like this:

CON:O/O/640/150/ArnigaDOS

Make your changes and write the block back to the disk. Exit the disk
monitor. Tum the computer off for ten seconds. Tum it on again and
try booting with the modified Kickstart disk. The Amiga eventually
asks for the Workbench disk. Insert the Workbench disk as usual. The
AmigaDOS window should appear on the screen, about 3/4 the height
of the original window. This may not seem like much of an
accomplishment, but better things are coming.

ABACUS

Original
Correct
Correct
Incorrect! !

8.2 GETTING STARTED WITH TEXT EDITING

Turn the computer off for ten seconds and remove the experimental
disks. Turn it back on and reboot with the Kickstart and Workbench
disks you normally use. Execute the disk monitor again.

Let's do our first real text modification-change the name of the
ArnigaDOS window to something else. Read the block you modified
earlier (454 decimal [$Olc5 hex] for most versions of 1.2, and 453
decimal [$01c4 hex] for versions of 1.3). Look again for the following
text (you modified this line earlier to reduce the size of the ArnigaDOS
window):

CON:O/O/640/1S0/AmigaDOS

The Abacus product development department has a favorite user named
Elmer who's been a noted media personality since the 1930s. His
accent is-well, unusual. We'll change the ArnigaDOS window title to
match Elmer's personal DOS. The new name can be whatever we want,
just as long as the new name is the same length as or shorter than the
number of characters present in the existing name. Do not make
your replacement texts any longer than the originals. If
the text is shorter, pad it to the proper length using
spaces. Here are some examples of correct text replacements and
incorrect text replacements:

CON:O/O/640/1S0/AmigaDOS
CON:O/O/640/1S0/FredDOS
CON:O/O/640/1S0/Doug_DOS
CON:O/O/640/1S0/Richard_DOS

AmigaDOS occupies eight characters. Change the window title to read
as follows:

CON:O/O/640/1S0/ElmerDOS

Make your changes and write the block back to the disk.

Exit the disk monitor. Tum the computer off for ten seconds. Turn it
on again and try booting with the modified Kickstart disk. The
Kickstart eventually asks for the Workbench disk. Insert the Workbench
disk as usual. The new DOS window should appear on the screen with
the title ElmerDOS instead of AmigaDOS. If the system crashes, turn
the computer off and reboot with the regulation Kickstart and
Workbench.

Turn the computer off for ten seconds and remove the experimental
disks. Turn it back on and reboot with the Kickstart and Workbench
disks you normally use. Execute the disk monitor again.

Read the block you read when you changed the ElmerDOS title (454
decimal or so). Let's change the copyright message. Look for one of
the following texts:

195

8. PERSONALIZING THE WORKBENCH M ORE TRICKS & TIPS

8.2.2

196

Copyright • 1985, 1986 Commodore-Amiga
Copyright • 1988 Commodore-Amiga

Change this text to read as follows (don't touch the period between the
word Copyright and the copyright year-it's machine code, and not just
a period):

Copywight • 1988, 1989 Commodore-Amiga
Copywight • 1989 Commodore-Amiga

Write that block to disk as usual. Now look for one of the following
texts (you may have to scroll around to the next block to find it):

All rights reserved .. Release 1.2
All rights reserved •• Release 1.3

Change this to:

All wights weserved .. Wewease 1.2
All wights weserved .• Wewease 1.3

Write this block to disk. Now tum off the computer for ten seconds and
do an experimental bootup. Watch the screen carefully, and look at your
efforts. Congratulations; you now have an alpha version of ElmerDOS I

As we said above, you can change the messages to whatever you want
(limited only by line length) later, but do it our way for the moment. It
may seem silly now, but once you get accustomed to this process, you
can handle it easily.

Changing the title bar and menus

Most of the Workbench's functions are accessible through menus. You
can also change these menu titles and items to your own needs, or to
make them understandable to people who speak in other languages.

Let's continue with our ElmerDOS concept. If you boot the disk
monitor, you'll find the menu texts beginning at block 384 decimal in
Kickstart 1.2. and at block 383 decimal in Kickstart 1.3. There you'll
see the Workbench's menu title and its menu items. The other menu
titles and items are in this block and the next block. Before thinking
about overwriting these, remember that the new name must be no
longer than the original, and that a shorter name may be padded with
ending spaces.

One item of interest before we continue: Look for the last item of the
Special menu (Version). If you look a few characters past that item,
you'll see a number of blank spaces. This is actually another menu.
This other menu comes into play when an error occurs. The Amiga

ABACUS

8.2.3

8.2 GETTING STARTED WITH TEXT EDITING

jumps to a debugger in the Kickstart ROM which allows the user to
examine the error in detail, providing that a terminal is connected to the
Amiga's RS-232 interface.

You can enable this menu and call the data from here. This only makes
sense if you're a developer-the average Amiga user doesn't need this
menu.

To use this hidden menu, you must add the word Debug to the
loadWB command in the startup sequence. You'll also have to insert
the word Debug in the blank spaces. For now we'll skip this item and
continue with the menus that apply to the everyday user. If you want
more information about the Debug menu, see the Amiga ROM Kernel
Reference Manual: Exec from Commodore-Amiga for details on ROM­
Wack and this menu.

New menu items and messages

Maybe you have the ambition to translate the menu titles and items
into a foreign language. Or perhaps just change the names to
something more "fun." This can be interesting-renaming menu items
to humorous functions or foreign languages.

Just by scrolling through the disk blocks, you can see that the Amiga
has many, many menu items and messages. We are only going to
concentrate on the most important ones in this chapter. If you wish to
explore on your own, you'll find a collection of these and other
messages listed at the end of this section.

Any time you work with the Amiga, the Workbench screen is active.
You can only work with the Workbench if the startup sequence loaded
it using LoadWB. In any case, the screen title bar reads Workbench
Screen.

LeCscontinue customizing the Kickstart for ElmerDOS. Select block
247 for Kickstart 1.2 (block 245 for Kickstart 1.3). Look for the
following screen:

Workbench Screen

Change it to the following:

Wuhkbench Scween

Write the block to disk as usual. You may want to reboot and see how
well the new Kickstart is holding up. If nothing crashes, we can
continue.

197

8. PERSONALIZING THE WORKBENCH M ORE TRICKS & TIPS

198

The title bar of the Workbench screen lies in block 359. It reads as
follows:

Workbench release 1.2. %ld free memory

When you make the change to this text, do so with extreme caution!
The period, two spaces, %ld and space are statements specific to C.
These statements allocate room for the system to insert the number of
bytes free. Leave these characters intact! Now, change this line to
match our current ElmerOOS Kickstart:

Wuhkbench wewease 1.2. %ld fwee memowy

Write the block to disk.

Let's go in and change some menu items. Remember, the menu texts
start at block 384 decimal (Kickstart 1.2.) or at block 383 decimal
(Kickstart 1.3.). You'll see the Workbench menu listed as follows:

Workbench.Open.Close.Duplicate.Rename •• Info •. Discard .•

Convert it to ElmerDOS by changing this text to the following (notice
the two spaces used to pad the replacement for Discard:

Wuhkbench.Opun.Cwose.Dupwicate.Wename .• Huh?.Bwast

Write the block back to disk as usual.

Now, look for the Disk menu title. It should read as follows:

Disk .. Empty Trash.Initialize

Change it to read:

Disk .. Empty Twash.Initiawize

Remember, do not touch the periods separating the menu titles and
items. Write the block to disk.

Now for the Special menu (which may be spread over the course of two
blocks on your Kickstart). The original reads:

Special.Clean Up .. Last Error .• Redraw •• Snapshot •• Version

Change it to the following (remember to leave the periods alone):

Special.Cwean Up •. Wast Ewwow .. Wedraw .. Snapshot .. wuhsion

Write the block to disk and do a test reboot. Pull down each menu and
see the result.

ABACUS 8.2 GETTING STARTED WITH TEXT EDITING

We should also change the requester called by the replacement for
Discard (Bwast). Go to block 385 (Kicks tart 1.2) or block 383
(Kickstart 1.3). The original text:

Warning: you •• cannot get back.what you discard.

Change it to the following (remember to leave the periods alone):

Warning: you .. cannot get back.what you bwast! •

Write the block to disk.

We need to modify the gadgets for this requester message. Go to block
381 (Kicks tart 1.2) or block 379 (Kicks tart 1.3). Here you'll find the
text for the gadgets used by the discard requester:

ok to discard. forget it!

Replace this text with the following (notice the padding spaces after
bwast):

ok to bwast .fawget it!

Write the block to disk. Do a test reboot. Open the Workbench disk
icon. Click once on a file icon and select the Bwast item from the
Wuhkbench menu. The following requester should appear:

Warning: you
cannot get back
what you bwast!

II ok to bwa s t II rrU =f a=w=g=e=t =i=t=! ::;"111

Click on the fawget it! gadget to exit without bwasting (discarding) the
fIle.

This should give you some idea of the basics of changing your
Kickstart disk. The ElmerDOS example given here was intended as a
generic tutorial on editing the disk. Now you can customize your own
Kickstart disk.

199

8. PERSONALIZING THE WORKBENCH M ORE TRICKS & TIPS

8.3

200

A guide to Kickstart messages

The following is a list of messages available on your Kickstart disk.
The entry begins with the block number as found on our Kickstart 1.2
disk (other Kickstart disks may require some scrolling up or down by a
block or two). Then follows the text itself. Just remember that your
replacement texts can be no longer than the original texts. Shorter
replacement texts must be padded using spaces or punctuation marks.

Some of these messages may not be visible by any means other than
access through a disk monitor. However, we chose to include a few of
them just to show you what's on your disk that you might not
ordinarily be aware of.

Blk. Messag_e
25- Not enough memory
26 .'.Software failure • • '.Recoverable Alert.

Press left mouse button to continue
Guru Meditation * ...

26 ROM Wack commands: alter.boot.clear.fill.find.go.
iq.limit.list.regs.reset.resume.set.show.user.

56 The Amiqa Wizards brinq this power to you
245 =LEFT BUTTON OK= ••••• =RIGHT BUTTON CANCEL=

System Request
247 Workbench Screen .. WBenchPort
263- Brought to you by not a mere Wizard, but the
264 Wizard Extraordinaire: Dale Luck!
292 DMC68343 FLOATING POINT FIRMWARE (C) COPYRIGHT 1981

BY MOTOROLA INC.
341 read error %ld, track %d
348 Please insert volume .. in any drive

Retry.Cancel
349 Error while ...
351 examining directory.accessing %s.opening %s.

reading.writing.moving %s.removing %s.examining %s ..
writing %s.

353 This drawer is not really a directory
358 Can't rename this disk
359 Workbench release 1.2. %ld free memory
373 SYS:System/DiskCopy
375 Icons cannot be moved into this window
376 This disk cannot be copied
378 '%s' cannot be moved out of its window .•

Disks are of incompatible type and cannot be copied
381 OK to discard. forget it!

Kickstart version %ld.%ld. Workbench Version %ld.%ld
384 Info not available

Workbench Open Close Duplicate Rename Info Discard

ABACUS 8.3 A GUIDE TO KICKSTART MESSAGES

Blk. Messaqe
384- Disk Empty Trash Initialize
385 Special Clean up Last Error Redraw SnapShot Version

Debug. flushlibs
Warning: you •• cannot get back.what you discard

391 Cannot read info file %s
394 Enter the new name. Press return when done .••

Do not use '%lc' in names
Ran out of memory. Please free some and try again

396 DOS
401 The icon (s) have no default tool
407 This drawer cannot be opened
418 kodiak andy carl

Initial CLI
422- Disk corrupt - task held
423 Software Error - task held

Finish ALL disk activity
Select CANCEL to reset/debug

425 Retry.Cancel
426 Fault.Error code %N
428 Volume •• in Unit Ox! ! ••

is not validated
is write protected ••
Please replace volume •••
in any drive .•••
is full ••.••
Not a DOS disk ••
No disk present ••..•
has a read/write error •.
You MUST replace volume

432 Please insert volume in any drive
454- SYS.: ••• LIBS •••• DEVS ..•• FONTS ••. C ••. L ••• S ••• DFX.CLI
455 Restart.FileHandler.

CON:0/0/640/200/AmigaDOS
Copyright 1985, 1986 Commodore Amiga, Inc .•
All rights reserved ••
Release 1.2
:S/STARTUP-SEQUENCE

456 CON.RAW.SER.PAR.PRT
devs:system-configuration

460 *** BREAK-CLI
c: •• Unknown command %S
Unable to load %S
.%S failed return code %N
Error in command name

462- Too many > or <
463 command too long

Unable to open redirection file.
Syntax error
CLI error: %S

488 BUSY

201

8. PERSONALIZING THE WORKBENCH M ORE TRICKS & TIPS

202

1 Blk .1 Message
510 Out of memory

Cannot open disc device
:L/Disk-Validator ... L:Disk-Validator
Unable to load disk validator

511- out of range
512 slready set

Error validating disk
Disk structure corrupt
Use DISKDOCTOR to correct it
out of range
Disk is unreadable
checksum error

880 Empty
882 Trashcan
883 Trashcan.info

You've probably noticed the many markers such as %ld,%s, etc. These
are C format specifiers, which must stay untouched in the disk. They
act as reference points for inserting text and numeric data.

Appendices

ABACUS

A.

A. ERROR MESSAGES

Error messages

This section lists AmigaDOS error messages by number.

103 insufficient free store

AmigaDOS can't load the program due to insufficient memory.
End any other tasks or close any other open CLI windows.

105 task table full

AmigaDOS can only manage 20 CLI tasks at once. As soon as
the internal task table is full, no more CLIs can be opened.

120 argument line invalid or too long

This error message appears if an AmigaDOS command has a
problem with the given parameters.

121 file is not an object module

Only program files can be started by directly entering their
names (e.g., script files must be started with Execute).

122 invalid resident library during load

A problem occurs when opening or loading a library.

202 object in use

This message prevents file writing or directory deletion while
another task accesses the file or directory.

203 object already exists

A given name already exists and cannot be erased.

204 directory not found

AmigaDOS cannot find a given directory.

205 object not found

A file or directory cannot be found from AmigaDOS.

206 invalid window description

The syntax was incorrect when opening a window. Check the
window coordinates and syntax (e.g., con:0/0/635/100f).

205

ApPENDICES

206

M ORE TRICKS & TIPS

209 packet request type unknown

A driver cannot fulfill a desired access. This only occurs because
of programming errors.

211 invalid object lock

A programming error created an invalid lock code.

212 object not of required type

Confusion between files and directories causes this error.

213 disk not validated

The disk in the drive is probably damaged.

214 disk write-protected

It is not possible to write to this disk. The write protect clips are
probably in the wrong position.

215 rename across devices attempted

Rename cannot rename from one disk to another.

216 directory not empty

Trying to erase a directory that is not empty causes this error.

218 device (or volume) not mounted

AmigaDOS cannot fmd the requested disk.

219 seek failure

A false argument was given when calling the Seek function.

220 comment too big

File comments added to a file with FileNote cannot be longer
than 80 characters.

221 disk full

No memory available on the given disk for the desired action.

222 file is protected from deletion

The file is probably protected from deletion with Protect.

223 file is write protected

ABACUS A. ERROR MESSAGES

224 file is read protected

Both of these commands react to the protection flags set using
Protect. These two error message are not used because the
present version of DOS only supports the D flag.

225 not a valid DOS disk

Either the disk structure of the disk is completely destroyed or it
was not formatted under AmigaDOS.

226 no disk in drive

There is no disk in the requested drive at the time.

232 no more entries in directory

This programming error informs you that the access of the
ExNext routine in a directory cannot fmd any more entries.

207

ApPENDICES

B.

208

M ORE TRICKS It TIPS

eLI shortcuts

The eLI and Shell commands include <Ctrl> and <Esc> command
sequences that can be entered from the keyboard. The command charac­
ters can also be used in script files through the Echo command. The
Escape sequence appears in quotation marks, beginning with an asterisk
acting as the <Esc> key (e.g., echo "*ec" clears the screen). You
can change the type style, enter a color, move the cursor and more by
entering these codes in a eLI window.

<Esc> c Clear screen and disable all special modes

<Esc> [Om Disable all special modes (normal characters)

<Esc> [lm Bold type

<Esc> [2m Black type (color number 2)

<Esc> [3m Italic type

<Esc> [30m Blue type (color number 0)

<Esc> [31m White type (color number 1)

<Esc> [32m Black type (color number 2)

<Esc> [33m Orange type (color number 3)

<Esc> [4m Underlining

<Esc> [40m Blue background (color number 0)

<Esc> [41m White background (color number 1)

<Esc> [42m Black background (color number 2)

<Esc> [43m Orange background (color number 3)

<Esc> [7m Inverse presentation (normally blue on white)

<Esc> [8m Blue type, invisible (or color number 0)

<Esc> [nu Width of eLI wlndow 10 characters (n)

<Esc> [ox Left margin of the eLI window in pixels (n)

<Esc> [ny Distance of window from top in pixels (n)

<Esc> [nt Number of lines in eLI window (n)

ABACUS B. eLI SHORTCUTS

<Ctrl><H> Deletes the last character entered or <Backspace>

<Ctrl><I> Moves the cursor to a tab position to the right or
<Tab> (default 5 character)

<Ctrl><J'> Enters line feed without executing the entered
command. This allows multiple command entry.
Pressing the <Return> key executes all commands in
sequence

<Ctrl><K> Moves the cursor to a position as above. The text that
is there cannot be changed

<Ctrl><L> Clears the screen

<Ctrl><M> Ends the line and executes the entered or <Return>
commands

<CtrI><N> Enables the Alt character set. Only special characters are
printed

<CtrI><O> Disables the Alt character set and returns to the normal
character set

<Ctrl><X> Deletes the current line

<CtrI><\> Signals the end of a file in AmigaDOS. Also ends
input in Con: windows

209

ApPENDICES

c.

M ORE TRICKS & TIPS

Printer escape
sequences

The following printer Escape sequences are translated using the printer
drivers included in Preferences.

Escape sequence
<Esc>c
<Esc>#l
<Esc>D
<Esc>E
<Esc>M

<Esc>[Om
<Esc>[lm
<Esc> [22m
<Esc>[3m
<Esc>[23m
<Esc>[4m
<Esc> [24m
<Esc>[xm

<Esc> [Ow
<Esc>[2w
<Esc>[lw
<Esc>[4w
<Esc>[3w
<Esc>[6w
<Esc>[5w
<Esc>[2"z
<Ese>[l"z
<Ese> [4"z
<Esc> [3"z
<Esc>[6"z
<Esc>[5"z

<Esc>[2v
<Esc> [Iv
<Esc>[4v
<Esc>[3v
<Esc>[Ov

Meaning
Initialize (reset) printer
Disable all other modes
Line feed
Line feed + carriage return
One line up

Normal characters
Boldon
Bold off
Italics on
Italics off
Underlining on
Underlining off
Colors (x=30 to 39 [foreground] or 40 to 49
[background])

Normal text size
Elite on
Elite off
Condensed type on
Condensed type off
Enlarged type on
Enlarged type off
NLQon
NLQoff
Double strike on
Double strike off
Shadow type on
Shadow type off

Superscript on
Superscript off
Subscript on
Subscript off
Back to normal type

210

ABACUS

<Esc>[2p
<Esc> [1 p
<Esc>[Op
<Esc>[xE

<Esc>[SF
<Esc>[7F
<Esc>[6F
<Esc>[OF
<Esc>[3F
<Esc>[1F

<Esc>[Oz
<Esc>[1z
<Esc>[xt
<Esc>[xq
<Esc>[Oq

<Esc>(B
<Esc>(R
<Esc>(K
<Esc>(A
<Esc>(E
<Esc>(H
<Esc>(Y
<Esc>(Z
<Esc>(J
<Esc>(6
<Esc>(C

<Esc>#9
<Esc>#O
<Esc>#8
<Esc>#2
<Esc>#3
<Esc>[xyr
<Esc>[xys

<Esc>H
<ESC>]
<Ese>[Og
<Esc>[3g
<Esc>[lg
<Esc>[4g
<Esc>#4
<Esc>#5

c. PRINTER ESCAPE SEQUENCES

Proportional type on
Proportional type off
Delete proportional spacing
Proportional spacing = x

Left justify
Right justify
Set block
Set block off
Justify letter width
Center justify

Line dimension 1/8 inch
Line dimension 1/6 inch
Page length set at x lines
Perforation jumps to x lines
Perforation jumping off

American character set
French character set
German character set
English character set
Danish character set (Nr.l)
Swedish character set
Italian character set
Spanish character set
Japanese character set
Norwegian character set
Danish character set (Nr.2)

Set left margin
Set right margin
Set header
Set footer
Delete margins
Header x lines from top; footer y lines from bottom
Set left margin (x) and right margin (y)

Set horizontal tab
Set vertical tab
Delete horizontal tab
Delete all horizontal tabs
Delete vertical tab
Delete all vertical tabs
Delete all tabs
Set standard tabs

211

ApPENDICES

D.

212

M ORE TRICKS & TIPS

Guru meditation codes

Guru Meditations supply infonnation about system crashes. Guru
Meditations return two eight-digit numbers. The fIrst number gives
detailed error infonnation in the following fonnat:

I Error number

xxxx

The second eight-digit number gives the starting address of the task that
started the interrupt.

System ID
00

codes

01
02
03
04
05
06
07
08
09
OA
10
11
12
13
14
15
20
21
22
30
31
32

Error classes
01
02
03
04
05
06
07

CPU trap
Exec library
Graphics library
Layers library
Intuition library
Math library
CList library
DOS library
RAM library
Icon library
Expansion library
Audio device
Console device
GamePort device
Keyboord device
Trackdisk device
Timer device
CIA resource
Disk resource
Mise resource
Bootstrap
Workbench
Diskcopy

Insufficient memory
Make Library error
OpenLibrary error
OpenDevice error
OpeoResource error
I/O error
No signal

ABACUS D. GURU MEDITATION CODES

Special guru meditation codes
When a system ID code begins with a number greater than or equal to
8, the error is non-recoverable. Subtract 8 from the first digit to get the
true system ID code.

CPU traps
00000OO2
00000003
00000OO4
00000005
00000OO6
00000007
00000008
00000OO9
OOOOOOOA
OOOOOOOB

Exec library
81000001
81000002
81000003
81000004
81000005
81000006
81000007
81000008
81000009
8100000A

Bus error
Address error
Illegal instruction
Divide by zero
CHK instruction
TRAPV instruction
Privilege violation
Trace
OpcodelOlO
Opcode 1111

Error in 68000 exception vector checksum
Error in ExecBase checksum
Error in a Library checksum
Insufficient memory for MakeLibrary
Memory list scrambled
No free memory for interrupt server
Problem with InitAPtr
Semaphore scrambled
Double call from free
"Bogus Exception"

Graphics
82010001
82010002
82010003
82010004
82010005
82010006
82010007
82010008
82010009
8201000A
8201000B

library

Layers library

Insufficient memory for Copper display list
Insufficient memory for Copper command list
Copper list overflow
"Copper Intermediate" list overflow
Insufficient memory for header of Copper list
Memory absence at Long Frame
Memory absence at Short Frame
Insufficient memory for Flood Fill
Insufficient memory for TmpRas
Insufficient memory for BltBitMap
"Region Memory"

83010001 No available memory for layers

Intuition
84000001
84010002
84010003
84010004
84010005

library
Gadget type unknown
Insufficient memory to add port
Insufficient memory for Item Plane AlIoc
Insufficient memory for Sub Alloc
Insufficient memory for Plane Alloc

213

ApPENDICES

214

84000006
84010007
84000008
84010009
8101000A
8101000B
8100000C
81Ooo00D
8400000E
8400000F

DOS library
07010001
07000002
07000003
07000004
07000005
07000006
07000007
07000008
07000009
0700000A
0700000B
0700000C

RAM library
08000001

MORE TRICKS & TIPS

Original coordinate smaller than RelZero
Insufficient memory to open screen
Insufficient memory for Raster Alloc
Unknown type at Open S ys Screen
Insufficient memory for gadgets
Insufficient memory for window
Faulty return code encountered in Intuition
IDCMP sent a faulty message
Answer was incomprehensible
Error when opening Console device

Memory problem at startup
Problem with EndTask
Problem with Qpkt
Receiver packet not expected
Problem with Free V ec
Error in DiskBlock sequence
Faulty bitmap
Key already erased
Checksum false
Diskette error
Incorrect value for key
Problem at overlay

Faulty Segment-List

Expansion library
OAOOooOI Problem at Expansion Free

Trackdisk device
14000001 Seek error at calibrate
14000002 Error at timer delay

Timer device
15000001
15000002

Disk resource
21000001
21000002

Bootstrap
30000001

Incorrect request
Incorrect transfer

Get drive has prepared the diskette
Interrupt: no active drive

Boot code error

ABACUS INDEX

Index

68000 commands 135 Command description 78
68010 processor 126 Computer viruses 109

CON handler 3
Accessing directories 84,88 Console device 6, 148
AllocMemO 22,84 Control key. 4
Amiga hardware 125 ConvertFD 20
AmigaBASIC 8 Copy more! 5
AmigaDOS 76 CurrentDirO 88
AmigaDOS commands 141
Archival listings 92 DATA statements 47
ASCII fIle 57 DeciGEL 133
ASCII format 9 Default Tool gadget 177
ASCII text 10 DefChipQ 22
Assign 72 DeleteFileQ function 90
Autoknob 53 Density parameter 178
Automatic backups 3 Device 142

DEVS 11
BASIC editor 10 Direct fIle control 90
BCPL language 116 Directory menu 98
Block 73 Directory files 88
Boot block 109 Directory handling 87
BootPri 143 Directory listing 85
Border 31 Directory management 92
Borderless CLI 6 Disk drive switching 130
BufMemType 143 Disk icons 6
Byte Bandit virus 109 Disk monitor 192

Disk routines 76
C programming language 105 Diskcopy command 192
CHR$(27) 11 DiskDoctor 13
CLI 3 Dithering 179
CLI output 3 Division by zero handler 106
CLI text modes 3 DOS lock access 83
Clipboard device 146 DrawBorderO 47
Clock 180 DumpRastPort structure 162
Clock parameters 180
ClockPtr 181 Echo 3
CloseAlI 23 ElmerDOS 196
ClosePrinter routine 162 ExamineO 84
CMD_WRITE 181 Exception routine 106
Code register 135 Exec.library 10
Color correct 178 ExNextO function 85
ColorCycle 120 Extras disk 171

215

INDEX MORE TRICKS & TIPS

FED 185 JSR (Jump to SubRoutine) 117
FFS (FastFileSystem) 141
File access 76 KeyToy2000 186

File control 77 Kickstart 14

File menu 98 Kickstart backup 192

File monitor 58 Kickstart messages 200

Filled gadgets 40 Knob graphic 52

Flags 142
Floating point variables 114 LIBRARY 40

Font Attributes 186 Link module 116

FreeMap 186 LoadIt routine 100

FreeMemO 161 LoadSeg 116

FreePreferences 176 LoadWB 6
LockO function 83

Gadget 23,31 LowCyl 144

GadgetDef 24,29 LPRINT 12

GetDir subroutine 100
GetMsgO 25 Machine language 105

GetPreferences 175 MEMACS 187

GetPrinterData subprogram 161 Memory display 186

Graphic 1 177 Memory 9

Graphic 2 177 Memory allocation routine 24

Graphic dumps 163, 184 Memory expansion 126

Graphics.library 40 Mlist 22

Guru Meditation 13 Modular work 8
More 182

Hardcopy 166 Motorola chip 131

Height Limit 170 Mount command 141
~'J

Hexadecimal 58 MOVECCR 136

Hidden texts 14 MOVE SR,Destination 136

HighCyl 145 MOVES 136

Info file 53,90 NewCLI 6

InfoO 88 NewCon 5
InitDRPReq 167 NewCon device 148
Install command 109 NewShell 5
InstallPrinter 182 NewSuffIx routine 101
Instruction register 106 NIL device 150
IntuiText 29 Numerical array 79
Intuition 57
Intuition knob graphic 52 OpenAlI 23

Intuition library 9 OpenDevice() 161

Intuition window 20 ()pe~ntersubprogram 161

IntuitionMsg 25 ()penWindowO 23

IORequest 167 PAL 73

JAM2 30 Palette 187

216

ABACUS INDEX

PAR 11 Shell 5
ParentDirO function 87 Sliders 52
Patching 74 Smoothing function 178
PerfMon 187 Sort routine 100
PIPE device 146 SourceFunctionCodeRegister (SFC) 135
PolyDrawO 47 Speak command 147
Power LED 115 Special menu 196
Preferences 11 SpecialInfo 52
Preferences program 171 SPST switch. 130
Prefs 177 Standard icons 8
Printed circuit board 128 Startup sequence 3
Printer device 157 Status display 73
Printer parameters 157 Status register 106
PrinterData 162 String gadgets 52
PrinterExtendcdData 161 Superstate word 106
PrintFiles 183 Supervisor stack 106
Process handling 77 Surfaces 142
PropInfo 52 System vectors 110
Proportional gadget 52 System-Configuration 13
PRT: 11

TabOut 47
RAMdiskRAD 150 Temporary files 3
RAMBO 6 Text editing 194
Random file access 80 TOOL TYPES 183
Read(SFC) 135 Tool 11
RectFill 40 Tool Types gadget 177
RenameO function 91 Topaz font 146
Renaming commands 143 Trap vector 108
Renaming menu items 197
Reserved 142 UnDefO 22
RID 136 UNDERLINE 4
RTE (ReTurn from Exception) 106 Undo buffer 73
RTS 136 Undo gadget 73

Unit 142
SaveData routine 100 UnloadSeg routine 116
Say command 147 UnlockO 83
SCA virus 109 Utilities drawer 180
Dealing 179 Utility program 174
screen names 9
Script file 5 Variables 160
Scrolling tables 4 5 VectorBaseRegister (VBR) 135
SER 11
SetAlert command 106, 133 Width Limit 179

SetDrMd 40 WinDef02 2

SctPreferences 176 Window name 9
SetProtectionO 91 Workbench 6
Settings menu 99 Workbench disk 171

217

INDEX

Workbench screen
Write(DFC)

xCloseO function
xOpenO function
xReadO function
xWriteO function

218

176
135

79
78
78
79

M ORE TRICKS & TIPS

Selected Abacus Products for the Amiga computers

AssemPro
Machine Language Development

System for the Amiga

Bridge the gap between slow higher-level languages and
ultra-fast machine language programming: AssemPro
Amiga unlocks the full power of the AMIGA's 68000
processor. It's a complete developer's kit for rapidly
developing machine language/assembler programs on
your Amiga. AssemPro has everything you need to write
professional-quality programs "down to the metal":
editor, debugger, disassembler & reassembler.

Yet AssemPro isn't just for the 68000 experts.
AssemPro is easy to use. You select options from the
dropdown menus or with shortcut keys, which makes
your program development a much simpler process. With
the optional Abacus book Amiga Machine Language (see
page 3), AssemPro is the perfect introduction to Amiga
machine language development and programming.

AssemPro also has the professional features that
advanced programmers look for. Lots of "extras·
eliminate the most tedious, repetitious and time­
consuming mil programming tasks. Like syntax error
search/replace functions to speed program alterations and
debugging. And you can compile to memory for lighting
speed. The comprehensive tutorial and manual have the
detailed information you need for fast, effective
programming.

AssemPro Amiga offers more professional features.
speed, sheer power, and ease of operation than any other
assembler package we've seen for the money. Test drive
your AssemPro Amiga with the security of the Abacus
30-day guarantee.

Suggested retail price: $99.95

Features
• Integrated Editor, Debugger, Disassembler and

Reassembler
• Large operating system library
• Runs under eLi and Workbench
• Produces either PC-rt3iocatable or absolute code
• Create custom macros for nearly any parameter (of

different types)
• Error search and replace functions
• Cross-reference list
• Menu-controlled conditional and repeated assembly
• Full 32-bit arithm etic
• Advanced debugger with 68020 single-step emulation
• Written completely in machine language for ultra-fast

operation
• Runs on any Amiga with 512K or more and Kickstart

version 1.2
• Not copy protected

Machine language programming requires a solid understanding
of the AMIGA' s hardware ana operating system. We do not
recommend this paclaJge to beginning Amiga programmers

. Selected Abacus Products for the Amiga computers
~ . "" - ~;- ~ -

, -

BeckerText
Powerful Word Processing

Package for the Amiga
BeckerText Amiga is more than just a word processor.
BeckerText Amiga gives you all of the easy-to-use
features found in our TextPro Amiga, plus it lets you
do a whole lot more. You can merge sophisticated IFF­
graphics anywhere in your document. You can hyphenate,
create indexes and generate a table of contents for your
documents, automatically. And what you see on the
BeckerText screen is what you get when you print the
document-real WYSIWYG formatting on your Amiga.

But BeckerText gives you still more: it lets you
perform calculations of numerical data ffi1hin. your
documents, using flexible templates to add, subtract,
multiply and divide up to five columns of numbers on a
page. BeckerText can also display and print multiple
columns of text, up to five columns per page, for
professional-looking newsletters, presentations. reports,
etc. Its expandable built-in spell checker eliminates those
distracting typographical errors.

BeckerText works with most popular dot-matrix and
letter-quality printers, and even the latest laser printers for
typeset-quality output. Includes comprehensive tutorial II
and manual.

BeckerText gives you the power and flexibility that you
need to produce the professional-quality documents that
you demand.

When you need more from your word processor than just
word processing. you need BeckerText Amiga.
Discover the power of BeckerText.

Suggested retail price: $150.00

Features
• Select options from pulldown menus or handy shortcut

keys
• Fast. true WYSIWYG formatting
• Bold, italic, underline, superscript and subscript

characters
• Automatic wordwrap and page numbering
• Sophisticated tab and indent options, with centering and

margin justification
• Move, Copy, Delete, Search and Replace
• Automatic hyphenation. with automatic table of

contents and index generation
• Write up to 999 characters per line with horizontal

scrolling feature
• Check spelling as you write or interactively proof

document; add to dictionary
• Performs calculations within your documents­

calculate in columns with flexible templates
• Customize 30 function keys to store often-used text

and macro commands
• Merge IFF graphics into documents

Includes BTSnap program for converting text blocks to
IFF graphics

• C-source mode for quick and easy C language program
editing

• Print up to 5 columns on a single page
• Adapts to virtually any dot-matrix. letter-quality or laser

printer
• Comprehensive tutorial and manual
• Not copy protected

Selected Abacus Products for the Amiga computers

DataRetrieve
A Powerful Database Manager

for the Amiga
Imagine a powerful database for your Amiga: one that's
fast. has a huge data capacity, yet is easy to work with.

Now think DataRetrieve Amiga. It works the same
way as your Amiga-graphic and intuitive, with no
obscure commands. You quickly set up your data files
using convenient on-screen templates called masks. Select
commands from the pulldown menus or time-saving
shortcut keys. Customize the masks with different text
fonts, styles, colors, sizes and graphics. If you have any
questions, Help screens are available at the touch of a
button. And DataRetrieve's 128-page manual is clear
and comprehensive.

DataRetrieve is easy to use-but it also has
professional features for your most demanding database
applications. Password security for your data.
Sophisticated indexing with variable precision. Full
Search and Select functions. File sizes, data sets and data
fields limited only by your memory and disk storage
space. Customize up to 20 function keys to store macro
commands and often-used text. For optimum access speed,
DataRetrieve takes advantage of the Amiga's multi­
tasking.

You can exchange data with TextPro Amiga,
BeckerText Amiga and other packages to easily
produce form letters, mailing labels, index cards,
bulletins, etc. DataRetrieve prints data reports to most
dot-matrix & letter-quality printers.

DataRetrieve is the perfect database for your Amiga.
Get this proven system today with the assurance of the
Abacus 30-day MoneyBack Guarantee.

Suggested retail price: $79.95

-. ==
r'

Features
• Select commands and options from the pulldown menus

or shortcut keys
• Enter data into convenient screen masks
• Enhance screen masks with different text styles, fonts,

colors, graphics, etc.
• Work with 8 databases concurrently
• Define different field types: text, date, time, numeric &

selection
• Customize 20 function keys to store macro commands

and text
• Specify up to 80 index fields for superfast access to

your data
• Perform simple or complex data searches
• Create subsets of a larger database for even faster

operation
• Exchange data with other packages: form letters,

mailing lists etc.
• Produce custom printer forms: index cards, labels,

Rolodexocards, etc. Adapts to most dot-matrix & letter­
quality printers

• Protect your data with passwords
• Get Help from online screens
• Not copy protected

• Max. file size
• Max. data record size
• Max. data set
• Max. no. of data fields
• Max. field size

Limited only
by your memory
and disk space

Abacus Products for Amiga computers

Professional DataRetrieve
The Professional Level

Database Management System

Professional DataRetrieve, for the Amiga 500/1 OOO!2000,
is a friendly easy-to-operate professional level data manage­
ment package with the features most wanted in a relational
data base system.
Professional DataRetrieve has complete relational data
mangagement capabilities. Define relationships betwecn
different files (one to one, one to many, many to many).
Change relations without file reorganization.

Professional DataRetrieve includes an extensive program­
ming laguage which includes more than 200 BASIC-like
commands and functions and integrated program editor.
Design custom user interfaces with pulldown menus, icon
selection, window activation and more.
Professional DataRetrieve can perform calculations and
searches using complex mathematical comparisons using
over 80 functions and constants.

Professional DataRetrieve is a friendly, easy to operate
programmable RELATIONAL data base system. PDR in­
cludes PROFIL, a progmmming language similar to BASIC.
You can open and edit up to 8 files simultaneously and the
size of your data fields, records and files are limited only by
your memory and disk storage. You have complete intercc­
lation between files which can include IFF graphics. NOT
COpy PROTECTED. ISBN 1-55755-048-4

MORE features of Professional DataRetrieve

Easily import data from other databases fiIe compatible
with standard DataRetrieve supports mul titasking ... design
your own custom forms with the completely integrated
printer mask editorincludes PROFIL programming lan­
guage that allows the programmer to custom tailor his data­
base requirements ...

MORE features of PROFIL include:

Open Amiga devices including the console, printer,
serial and the CLI.
Create your own programmable requestors
Complete error trapping.
Built-in compiler and much, much more.

Suggested retail price: $295.00

The
P,o!ersiolllJ!
/""/
Database._ - -._ Mallacem"tt

Abacus_

Features

System!or
yourAmiga
(oltlp~Jer.

• up to 8 files can be edited simultaneously
• Maximum size of a data field 32,000 characters

(text fields only)
• Maximum number of data fields limited by RAM
• Maximum record size of 64,000 characters
• Maximum number of records disk dependent
(2,000,000,000 maximum)

• Up to 80 index fields per file
• Up to 6 field types - Text, Date, Time, Numeric,

IFF, Choice
• Unlimited number of searches and subrange
criteria

• Integrated list editor and full-page printer mask
editor

• Index accuracy selectable from 1-999 characters
• Multiple file masks on·screen
• Easily create/edit on-screen masks for one or
many files

• User-programmable pulldown menus
• Operate the program from the mouse or the key
board

• Calculation fields, Data Fields
IFF Graphics supported

• Mass-storage-oriented file organization
• Not Copy Protected, NO DONGLE; can be in
stalled on your hard drive

Selected Abacus Products for the Amiga computers
, . .

TextPro
The Ideal Word Processing

Package for the Amiga
TextPro Amiga is an full-function word processing
package that shares the true spirit of the Amiga: easy to
use, fast and powerful-with a surprising number of
"extra" features.

You can write your first TextPro documents without
even reading the manual. Select options from the
dropdown menus with your mouse, or use the time-saving
shortcut keys to edit, format and print your documents.

Yet TextPro is much more than a beginner's package. It
has the professional features you need for all of your
printed documents. Fast formatting on the screen: bold,
italic, underline, etc. Centering and margin justification.
Page headers and footers. Automatic hyphenation of text.
You can customize the TextPro keyboard and function
keys to suit your own style. Even merge IFF-format
graphics right into your documents. TextPro includes
BTSnap, a utility for saving IFF graphics that you can
use in your graphics programs. This package can also
convert and print other popular word processor files.

TextPro is output-oriented. This means you can print
your documents to exact specifications-and get top
performance out of your dot-matrix or letter quality
printer. (Printer drivers included on diskette let you
customize TextPro to virtually any printer on the
market). The complete tutorial and manual shows you
how it's all done, step by step.

TextPro sets a new standard for word processors in its
price range. Easy to use, packed with advanced features­
it's the Ideal package for all of your wordprocessing needs.
Backed by the Abacus 30·day MoneyBack
Guarantee.

Suggested retail price: $79.95

Features
• Fast editing and formatting on screen
• Display bold, italic, underline, superscript and subscript

characters
• Select options from dropdown menus or handy shortcut

keys
• Automatic wordwrap & page numbering
• Sophisticated tab and indent options, with centering &

margin justification
• Move, Copy, Delete, Search &Replace options
• Automatic hyphenation
• Customize up to 30 function keys to store often-used

text, macro commands
• Merge IFF format graphics into your documents
• Includes BTSnsp program for saving IFF graphics from

any program
• Load & save files through RS-232 port
• Flexible, ultrafast printer output-printer drivers for

most popular dot-matrix & letter quality printers included
• Comprehensive tutorial and manual
• Not copy protected

Amlga C for Advanced Programmers
·contams a wealth of information from the pros: how compil·
ers, assemblers and linkers work, designing and program·
ming user friendly interlaces using Intuition. combining
assembly tanguage and C codes, and more. Includes com·
plete source code for text editor.
ISBN 1-55755-046-8 400pp $24,95

AmigaCforBeginners
·an introduction to tearnmg the popular C language. Explains
the language elements using examples specifically geared
to the Amiga. Describes C library roulines, how the compi ler
works and more.
ISBN 1-55755-045-X 280pp $19,95

Amiga 3-D Graphic Programming in BASIC
·shows you how to use the powerlul graphic capabilities of
the Amiga. Details the techniques and algorithms for wntlng
three·dimensional graphic programs: ray tracing in all reso·
lutions, light sources and shading, saving graphics in IFF
format and more.

__ Abacus-. __ .. ISBN 1-55755-044-1 300pp $19.95

Amig. Disk. Drives
Insid,& Out

Amiga Disk Drives Inside & Out
·is the most in·depth reference available covenng the Amiga's
disk drives. Learn how to speed up data transfer, how copy
protection works, computer viruses, Workbench and the CLI
DOS functions, loading, saving, sequential and random file
organization, more.

__ A.Ibaa. __ ... ISBN 1-55755-042-5 360pp $29,95

r--Am~iga-for-:--"" Amiga For Beginners·
Beginners ·the first volume in our Amiga series, introduces you to

.r .. . " .. ,

tntuition (Amiga's graphic interlace), the mouse, windows,
the CLI, and Amiga BAStC and explains every practical
aspect of the Amiga in plain English.
ISBN 1-55755-021-2 184pp $16,95

Includes Workbench 1.3 Info

AmlgaBASIC Inside & Out
. THE definitive step·by·step guide to programming the Amiga
in BASIC. Every AmigaBASIC command is fully described
and detailed. Topics include chans, windows, pulldown
menus, files, mouse and speech commands . ~ .. -

Abacus-. ISBN 0-916439-87-9 554 pp $24.95
'-___ .. Includes Workbench 1.3 Info

Amiga Tricks & Tips
·follows our tradition of other Tricks and Tips books for CBM
users. Presents dozens of tips on accessing libraries from
BASIC, custom character sets, AmigaDOS, sound, impor·
tant 68000 memory locations, and much more!
ISBN 0-916439-88-7 348pp $19.95

AmigaDOS Inside & Out
·covers the insides of AmlgaDOS tram the Internal design up
to practical applications. Includes detailed reference sec·
lion. lasks and handling. DOS editors ED and EDIT. how to
create and use scnpt files. multitasking. and much more.
ISBN 1-55755-041-7 280pp $19.95

Includes Workbench 1.3 Info

Amiga Machine Language
'IS a comprehensive mtroduction to 68000 assembler rna·
chine language programming and IS THE practical guide for
learning to program the Amlga in ultra· fast ML. Also covers
68000 microprocessor address modes and archilecture.
speech and sound from ML and much more.
ISBN 1-55755-025-5 264pp $19.95

Amlga System Programmer's Guide
·comprehenSlve guide to what goes on inside the Amiga in
a single volume. Only a few of the many subjects covered
include the EXEC structure, I/O requests. Interrupts and
resource management. multitaskmg functions and much,
much more.
ISBN 1-55755-034-4 442 pp $34.95

AmigaDOS Quick Reference·
·an easy·to·use reference tool for beginners and advanced
programmers alike. You can quickly find commands for your
Amiga by using the three handy indexes designed with the
user in mmd. All commands are in alphabetical order for easy
reference. Includes Workbench 1.3 Info
ISBN 1-55755-049-2 128pp $14.95

Com puler Viruses: a high·tech disease'
·descnbes whal a computer virus IS. how viluses work,
VIIuses and batch files. protecting your computer, deSigning
VIIUS proof systems and more.
ISBN 1-55755-043-3 292 pp $18.95

'Prohahly fl/t' h('.\(tJlld mosl ('l/rren(

hook . 1.1 hen oj'pn'I'('nri l"t' m('fI,wres"
/'(' Wed l/-lI·NN

AmigaDOS
Inside & Out

IK41
Amiga
-~-

IBJ,······· '. .. " ; ,

Amiga System
A'ogramme,,"s Guide

compUTER

VIRU7C?

Save Time and Moneyl·Optlonal program disks are avail·
ablefor many of our Amiga reference books. All programs listed

Optional in the books are on each respective disk and will save you
Disk countless hours at typing I $14.95

(' Optional Diskene Not Available for these Titles)

Abacus
Dept. L3, 5370 52nd Street SE

Grand Rapids, MI 49508
(616) 698-0330

See your local Dealer or Call Toll Free 1·800·451·4319 Add $4.00 Shipping and Handling per Order
Foreign add $12.00 per item

Books for the AMIGA

Amiga for Beginners
Amlga For BegInners- the first volume in our Amiga series,
introduces you to Intuition (Amiga's graphic interface), the mouse,
windows, the CLI, and Amiga BASIC and explains every practical aspect
of the Amiga in plain English.The glossary, "first-aid" appendix, icon
appendix and technical appendix are invaluable to the beginner.

Topics include:

• Unpacking and connecting the Amiga components
• Starting up your Amiga
• Customizing the Workbench
• Exploring the Extras Disk
• Taking your first steps in the AmigaBASIC programming

language
• AmigaDOS functions
• Using the CLI to perform 'housekeeping' chores
• First Aid, Keyword, Technical appendixes
• Complete set-up instructions

IliiiiUilUil

• Backing up important diskettes
• Setting Preferences
• Creating your own icons

No Optional Disk
Available

Volume 1 Suggested Retail Price $16.95 ISBN 1-55755-021-2

AmigaBASIC: Inside & Out
AmlgaBASIC- InsIde and Out- THE definitive step-by-step
guide to programming the Amiga in BASIC. Every AmigaBASIC
command is fully described and detailed. Topics include charts,
windows, pull down menus, files, mouse and speech commands.

Features:

• Loaded with real working programs
• Video titling for high quality object animation
• Windows
• Pull-down menus
• Moused commands
• Statistics
• Sequential and random files
• Exciting graphics demonstrations

• Powerful database :~~~~;;;::~j~ • Charting application for creating detailed pie charts and bar graphs
• Speech utility for remarkable human voice syntheses demonstrations
• Synthesizer program to create custom sound effects and music.

Volume 2 Suggested retail price $24.95 ISBN 0-916439-87-9

Save Time and Money!-Optional program disks are available for all our Amiga reference
books (except Amiga for Beginners). All programs listed in the book are on each respective
disk and will save you countless hours of typing! $14.95

Books for the AMIGA

Amiga 3-D Graphics Programming in BASIC
Shows you how to use the powerful graphics capabilities of the
Amiga. Details the techniques and algorithm for writing three­
dimensional graphics programs: ray tracing in all resolutions, light
sources and shading, saving graphics in IFF format and more.

Topics include:

• Basics of ray tracing
• Using an object editor to enter three-dimensional objects
• Material editor for setting up materials
• Automatic computation in different resolutions
• Using any Amiga resolution (low-res, high-res, interface,

HAM)
• Different light sources and any active pixel
• Save graphics in IFF format for later recall into any IFF

compatible drawing program
• Mathematical basics for the non-mathematition

Volume 3 Suggested retail price $19.95 ISBN 1-55755-044-1

Amiga Machine Language
Amlga MachIne Language introduces you to 68000 machine
language programming presented in clear, easy to understand terms. If
you're a beginner, the introduction eases you into programming right
away. If you're an advance programmer, you'll discover the hidden
powers of your Amiga. Learn how to access the hardware registers, use
the Amiga libraries, create gadgets, work with Intuition and much more.

• 68000 address modes and instruction set
• Accessing RAM, operating system and multitasking

capabilities
• Details the powerful Amiga libraries for using AmigaDOS

Speech and sound facilities from machine language
• Simple number base conversions
• Text input and output
• Checking for special keys
• Opening CON: RAW: SER: and PRT: devices
• New directory program that doesnl access the CLI
• Menu programming explained
• Complete Intuition demonstration program including

Proportional, Boolean and String gadgets.

Volume 4 Suggested retail price $19.95 ISBN 1-55755-025-5

Save Time and Money!-Optional program disks are available for ali our Amiga reference
books (except Amiga for Beginners). All programs listed in the book are on each respective
disk and will save you countless hours of typing! $14.95

Books for the AMIGA

Amiga Tricks & Tips
Amlga Tricks & Tips follows our tradition of other Tricks and Tips
books for CBM users. Presents dozens of tips on accessing libraries
from BASIC, custom character sets, AmigaDOS, sound, important
68000 memory locations, and much more!

Topics include:

• Diverse and useful programming techniques
• Displaying 64 colors on screen simultaneously
• Accessing libraries from BASIC
• Creating custom character sets
• Using Amiga DOS and graphics
• Dozens of tips on windows
• Programming aids
• Covers important 68000 memory locations

Volume 5 Suggested retail price $19.95 ISBN 0-916439-88-7

Amiga System Programmer's Guide
Amlga System Programmer's Guide is a comprehensive guide to
what goes on inside the Amiga in a single volume. Explains in detail the
Amiga chips (68000, CIA, Agnus, Denise, Paula) and how to access
them. All the Amiga's powerful interfaces and features are explained
and documented in a clear precise manner.

Topics include:

• EXEC Structure
• Multitasking functions
• 110 management through devices and I/O request

Interrupts and resource management
• RESET and its operation
• DOS libraries
• Disk Management
• Detailed information about the CLI and its commands

Volume 6 Suggested retail price $34.95 ISBN 1-55755-034-4

Save Time and Money!-Optional program disks are available for all our Amiga reference
books (except Amiga lor Beginners). All programs listed in the book are on each respective
disk and will save you countless hours of typing! $14.95

2 New Books for the AmigaJ

Amiga Disk Drives Inside and Out
A practical guide to Amiga's disk drive operations.

The most In-depth book available about the Amlga disk drives. It covers a
wide range of subjects from the technical aspects of the hardware, data
speed routines, to copy protection and computer viruses.

• Floppy disk operation from the Workbench and CLI
• BASIC: loading, saving, sequential and relative files
• DOS functions
• File management: Block types, boot blocks, checksums, file headers,

hashmarks and protection methods
• Viruses: Protecting your boot block
• Trackdisk.device: Commands, structures
• Trackdisk-task: Function and design Diskette access without DOS:

AmigaDis .
_ Inside & *o~~/ves

A Apracr·
mlga's 01 k'cal gUide r -s Orj 0

ve Operations

• MFM, GCR, Track design, blockheader, data blocks, checksums,
• coding and decoding, hardware registers, SYNC, interrupts Abacu ·fimImfm

• Disk Monitor ~:;~~~S~Il!l!J1!1JJJ:/:IIl~~J
ISBN 1-55755-042-5 Suggested Retail Price $29.95

Optional Program Diskette Available: $14.95

AmigaDOS Inside & Out

AmigaDOS covers the insides of AmigaDOS from the internal design
up to practical applications. There is also a detailed reference section
which helps you find information in a flash, both alphabetically and in
command groups.

Topics include:
• 68000 microprocessor architecture
• AmigaDOS - Tasks and handling
• Detailed explanations of CLI commands and their functions
• DOS editors ED and EDIT
• Operating notes about the CLI (wildcards, shortening input

and output)
• Amiga devices and how the CLI uses them
• Batch files - what they are and how to write them
• Changing the startup sequence
• AmigaDOS and multitasking
• Writing your own ClI commands
• Reference to the ClI, ED and EDIT commands
• Resetting priorities - the TaskPri command
• Protecting your Amiga from unauthorized use

AmigaDOs
!nside&our

ISBN 1-55755-041-7 Suggested retail price: $19.95

Optional program diskette available: $14.95

Books for the AMIGA

Amiga C for Beginners
An introduction to learning the popular C language. Explains the
language elements using examples specifically geared to the Amiga.
Describes C library routines, how the compiler works and more.

Topics include:

• Particulars of C
• How a compiler works
• Writing your first program
• The scope of the language (loops, conditions, functions,

structures)
• Special features of C
• Important routines in the C libraries
• Input/Output
• Tricks and Tips for finding errors
• Introduction to direct programming of the operating system

(windows, screens, direct text output, DOS functions)
• Using the LATTICE and AZTEC C compilers

Volume 10 Suggested retail price $19.95 ISBN 1-55755-045-X

Amiga C for Advanced Programmers
Amlga C for Advanced Programmers- contains a weaHh of
information from the pros: how compilers, assemblers and linkers work,
designing and programming user friendly interfaces using Intuition,
managing large programming projects, using jump tables and dynamic
arrays, coming assembly language and C codes, and more. Includes
complete source code for text editor.

Topics Include:

• Using INCLUDE, DEFINE and CASTS
• Debugging and optimizing assembler sources
• All about Intuition programming (windows, screens, pulldown

menus, requesters, gadgets)
• Programming the console devices
• A professional editor's view of problems with developing

larger programs
• Using MAKE correctly
• Debugging C programs with different utilities
• Folding (formatting text lines and functions for readability)

Volume 11 Suggested retail price $24.95 ISBN 1-55755-046-8

Save Time and Money!-Optional program disks are available for all our Amiga reference
books (except Amiga for Beginners). All programs listed in the book are on each respective
disk and will save you countless hours of typing! $14.95

Books for the AMIGA

AmigaDOS Quick Reference Guide
AmigaDos Quick Reference Guide is an easy-to-use reference tool for
beginners and advanced programmers alike. You can quickly find commands
for your Amiga by using the three handy indexes designed with the user in
mind. All commands are in alphabetical order for easy reference. The most
useful information you need fast can be found- including:

• All AmigaDOS commands described, including Workbench 1.3
• Command syntax and arguments described with examples
• CLI shortcuts
• CTRL sequences
• ESCape sequences
• Amiga ASCII table
• Guru Meditation Codes
• Error messages with their corresponding numbers

~ indexes for quick information at your fingertips! The AmigaDOS
Quick Reference Guide is an indispensable tool you'll want to keep close
to your Amiga.

Suggested retail price $14.95 ISBN 1-55755-049-2

AMIGA BOOK SUMMARY
BOOk Title ISBN No.,

Vol.1 Amlaa for Bealnners 1-55755-021-2

Vol.2 AmlaaBASIC Inside & Out 0-916439-87-9

Vol.3 Amlaa 3D Graphics Proa. In BASIC 1-55755-044-1

Vol.4 Amlaa Machine Lanauaae 1-55755-025-5

Vol.5 Amlaa Tricks & Tips 0-916439-88-7

Vol.6 Amlaa S~stem Programmers Guide 1-55755-034-4

Vol.7 Amlaa System Proarammers Guide 2 1-55755-047-6

Vol.8 Amlaa DOS Inside & Out 1-55755-041-7

Vol.9 Amlaa Disk Drives Inside & Out 1-55755-042-5

Vol.10 Amlaa 'c' for Bealnners 1-55755-045-X

Vol.11 Amlga 'c' for Advanced Prog's 1-55755-046-8

AmlgaDOS Quick Reference Guide 1-55755-049-2

PRICE

$16.95

$24.95

$19.95

$19.95

_t19.95

-.134.95

$34.95

$19.95

$29.95

$19.95

$24.95

$14.95

Save Time and Money!-Optional program disks are available for all our Amiga reference
books (except Amiga for Beginners). All programs listed in the book are on each respective
disk and will save you countless hours of typing! $14.95

How to Order
Abacus I I llIlU11 5370 52nd Street SE Grand Rapids, MI49508

All of our Amiga products-application and language
software, and our Amiga Reference Library-are available at
more than 2000 dealers in the U.S. and Canada. To find out
the location of the Abacus dealer nearest you, caIl:

Toll Free 1-800-451-4319
8:30 am-8:00 pm Eastem Standard Time

Or order from Abacus directly by phone with your credit
card. We accept Mastercard, Visa and American Express.

Every one of our software packages is backed by the
Abacus 30-Day Guarantee-if for any reason you're not
satisfied by the software purchased directly from us, simply
return the product for a full refund of the purchase price.

OrdcrBIank

Name:

Address'

City

Phone:

Otv

State

Name of oroduct

. ... Mich.residenlS add 4% sales tax

..• . ShippinglHandling charge
. (Foreign Orders $12 per Iteln) · .

Zip

.. Chec\JMoney order . . TOTAL enclosed

Credit Card#

Country

Price

1 1 1 1 I I I 1 1 1 I I I I

Expiration date

[I I D
I 1

I
I
I I
I ~ I
I I
I M~ I
I I
I City State Zip I
I •
I •
• Phone () •
I Where did you purchase your Abacus Amiga Product? I
I What other Abacus Products would you be interested in? I
I I
I D Please send me additional information on ollier Amiga products. •

._-------------------------------------_.

