

o

0

G

Q

J

3

J

a

n

n

n

n COMPUTE!'s

FIRST BOOK OF

AMIGA

n

COMPOTE!"Publications,lnc<
*•"""/ Part of ABC Consumer Magazines. Inc.
i I One of the ABC Publishing Companies

Greensboro, North Carolina

r?
t i

The following articles were originally published in COMPUTE! magazine, copy
right 1986, COMPUTE! Publications, Inc.: "Switchbox" (March); "Requester Windows
in Amiga BASIC" (March); "Tug-a-War" (April); "AmigaDOS Batch Files" (April);
"Hickory, Dickory, Dock" (May); "Amiga Puzzle" (May); "Meet Ed, the AmigaDOS
Editor" (June); "UFO Invasion" (June); "Printers for the Amiga" (June); "Programming
in Modula-2" (July); "Hex War" (July); "Tightrope" (August); "Foolproof Input for
Amiga BASIC" (August); "Beehive" (September); "Amiga BASIC Style" (September);
"Pyramid Power for the Amiga" (October); "Getting Online" (October); "Cutting
Telecommunications Costs" (November); "Biker Dave" (November); "Laser Strike"
(December).

"Chain Reaction" was originally published in COMPUTE! magazine (January), copy
right 1987, COMPUTE! Publications, Inc.

Copyright 1987, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by

Sections 107 and 108 of the United States Copyright Act without the permission of

the copyright owner is unlawful.

Printed in the United States of America

10 987654321

ISBN 0-87455-090-4

The authors and publisher have made every effort in the preparation of this book to insure the ac

curacy of the programs and information. However, the information and programs in this book are

sold without warranty, either express or implied. Neither the authors nor COMPUTE! Publica

tions, Inc. will be liable for any damages caused or alleged to be caused directly, indirectly, inci

dentally, or consequentially by the programs or information in this book.

The opinions expressed in this book are solely those of the author and are not necessarily those of

COMPUTE! Publications, Inc.

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)

275-9809, is part of ABC Consumer Magazines, Inc., one of the ABC Publishing Com

panies, and is not associated with any manufacturer of personal computers. Amiga is

a trademark of Commodore-Amiga.

n

n Contents

Foreword v

P"£ Chapter 1. Recreation 1
Tug-o-War

Mark Tuttle

Translation by John Krause 3

UFO Invasion

John Robinson

Translation by Philip I. Nelson 8

Tightrope

Daniel Aven

Translation by Patrick Parrish 17

Beehive

Steve Michel 28

Pyramid Power

Mike Lightstone 38

Biker Dave

David Schwener

Translation by Tim Midkiff 46

Laser Strike

Barbara Schulak

Translation by Tim Midkiff 53

Chapter 2. Education 59
Pioneer

*—} Martin Mathis 61
4 \

Hickory, Dickory, Dock

Barbara Schulak

f"j Translation by John Krause 78

Switchbox

_- Todd Heimarck

;(Translation by Philip I. Nelson 84

Amiga Puzzle

^ Bill Boegelein 97

LI

u

Hex War , (

Todd Heimarck LJ
Translation by Philip I. Nelson 103

Chain Reaction < i

Mark Tuttle U
Translation by Tim Midkiff 125

Chapter 3. BASIC Programming 133 LJ
Amiga BASIC Style

Jim Butterfield 135

Foolproof Input for Amiga BASIC
Tom Bunker 146

Amiga Math Graphics

Warren Block 154

Requester Windows in Amiga BASIC

Tom R. Halfhill 163

Chapter 4. Beyond BASIC 169
Meet Ed, the AmigaDOS Editor

Christopher J. Flynn 171

AmigaDOS Batch Files

Charles Brannon 180

Printers for the Amiga

Charles Brannon 190

Programming in Modula-2

Charles Brannon 193

Chapter 5. Telecommunications 199
Getting Online

Charles Brannon 201

Cutting Telecommunications Costs

Kathy Yakal 204

AmigaTerm

Philip I. Nelson 208

Index 225

Disk Coupon 227

Foreword

The powerful Amiga from Commodore has been supported by

COMPUTE! Publications right from the beginning. And COM

PUTE! Books continues this support with COMPUTED First

Book of Amiga, a collection of some of the best programs and

articles from COMPUTE!, plus some previously unpublished

programs and articles.

For game players we've included both strategy and fast-

action games. "Hex War," "Switchbox," and "Chain Reaction"

will challenge your mind. And for quick action there's "UFO

Invasion" and "Biker Dave."

Use your computer for education with "Hickory, Dickory,

Dock," an entertaining and easy way for preschoolers to learn

to tell time (using both traditional and digital clocks). How

well do you know your United States-geography facts? Find

out playing "Pioneer," a game for one to four players which

includes a detailed map of the U.S. as well as mouse control.

COMPUTERS First Book of Amiga includes plenty of helpful

programming tips, too. See how to create requester windows

in an Amiga BASIC program and how to write batch files

which can customize the Amiga's startup procedure. Learn to

use the Amiga's built-in editor program, ED, and explore pro

gramming in Modula-2.

Telecommunications is one of the more popular uses for

personal computers. COMPUTEI's First Book of Amiga's power

ful terminal program, "AmigaTerm," operates at both 300 and

1200 bps. AmigaTerm includes the most asked-for features in

terminal software, including macros and autodialing.

All the programs in COMPUTEI's First Book of Amiga have

been fully tested and are ready to type in and use. If you pre

fer not to type in the programs, there's a companion disk

available for purchase which includes all the BASIC programs

from the book ready to load and run. To order the COMPUTEI's

First Book of Amiga disk, call toll-free 1-800-346-6767 (in NY

212-887-8525) or use the coupon in the back of this book.

o

0

G

Q

J

3

J

a

o

0

G

Q

J

3

J

a

H

H

n Tug-o-War
^ Mark Tuttle

I Translation by John Krause

f""! Don't be fooled by the apparent simplicity of this two-

player strategy game. It looks easy on the surface,

but it's a stiff test of your concentration and ability to

think ahead. A color monitor or TV and at least 512K

RAM required.

Nearly everyone has played tug of war at one time or another.

The traditional game pits two players or teams at opposite

ends of a rope. At the middle of the rope is a flag, and each

side tries to pull the flag into its territory. "Tug-o-War" is

based on a similar concept. In this version, the flag is replaced

with a round ball shape, and each player tries to maneuver

the ball onto his or her side of the screen. Like many two-

player games, the difficulty of Tug-o-War depends somewhat

on the intelligence of your opponent. But even at the simplest

level, you'll find that skill and foresight are essential to success.

Type in and save the program to disk. Before running the

program set the screen to 80 columns by clicking on the Prefer

ences icon and setting the proper width. To run the program

select Start from the Run menu.

Battle of the Colors

When you run Tug-o-War, two sets of colored boxes appear,

one above the other. The lower, longer series of squares is the

playing field. Near the middle of this area is a round ball; the

outermost boxes at each end of the playing field represent each

player's home position. The players alternate turns, each trying

to move the ball in his or her own direction, until it reaches

one of the home squares.

So far, so good—but how do you move the ball? It's not

done by pulling a rope, but by changing the colors of boxes in

the playing field. The color of the square under the ball deter

mines which direction it moves and how far it travels. On any

given turn, the ball can move either one or two squares to the

CHAPTER ONE *-J

LJ

left, or one or two squares to the right. At the top of the screen (-

are four boxes that show you which colors are linked to which LJ
directions. For instance, the leftmost box shows you which

color makes the ball move one square to the left. The next box ^

to the right shows you which color makes it move two squares i_i
to the left. The second pair of boxes show you which colors

make the ball move in the opposite direction, to the right. By

changing the color of the box where the ball is currently lo- {_}
cated, you can make it move toward your home square.

The playfield contains 11 boxes. When the game begins,

each of these boxes is randomly given one of the four colors

shown at the top of the screen. On each turn, you may change

the color of one, several, or all of the boxes (however, you must

always change at least one box). To select a square, simply

move the mouse pointer to the desired box and press the left

mouse button.

Where do the new colors come from? Every box cycles

through the same series of four colors shown in the uppermost

set of boxes, going from left to right. For example, if the colors

shown there are yellow/purple/red/blue, then a yellow square

always changes to purple; a purple square always changes to

red; a blue square changes to yellow; and so on. In other

words, the box's current color determines which color it gets

after the next color change.

Though every turn involves at least one color change, the

ball doesn't necessarily move on every turn. It only moves

when you change all the boxes between your home position

and the current position of the ball. For example, if the ball is

three boxes away from your home square, then you must change

the color of at least three boxes in order to move it at all.

Foresight Rewarded

As you can see, there's much more to this game than appears

on the surface. At first you might be tempted to try to move

the ball as often as possible. But that's usually a losing strat

egy. Remember, the direction the ball moves depends on the

color of its square before you take the turn.

In many cases, you'll want to move the ball only if it's on

a color that moves it toward your goal. But like other games of

strategy, Tug-o-War rewards the player who looks beyond the

current move and tries to set things up for future moves;

sometimes it's wise to make a small, temporary sacrifice in or-

Recreation

der to benefit later in the game. Because the boxes change col

ors in the same sequence, the effect of your own move is

always completely predictable. However, since a single turn

can change the color of many boxes, dramatic changes of for

tune are also possible.

Tug-o-War

The left-arrow symbols in this listing indicate when to press RETURN at the end of each

program line. Do not attempt to type the arrows themselves.

SAY TRANSLATE*("")*

SCREEN 2,320,200,3,1*

WINDOW 2," Tug-o-War ",,12,2*

FOR i=0 TO 7*

READ r,g,b*

PALETTE i,r,g,b*

NEXT*

RANDOMIZE TIMER*

DIM a(ll)*

FOR i=l TO 11*

a(i)=INT(RND(1)*4>+4*

NEXT*

row=3*

col=3:colr=4:G0SUB frame:GOSUB square*

col=4:colr=5:G0SUB frame:60SUB square*

col=8:colr=6:G0SUB frame:GOSUB square*

col=9:colr=7:GOSUB frame:GOSUB square*
row=10*

LOCATE 5,11:COLOR 1,4:PRINT "2M*

LOCATE 5,14:COLOR 1,5:PRINT "1"*

LOCATE 5,26:COLOR 1,6:PRINT "1"*

LOCATE 5,29:COLOR 1,7:PRINT "2"*

LINE (64,36)-STEP(-16,0),l*

LINE -STEP(8,4),1*

LINE (48,36)-STEP<8,-4),1*

LINE (248,36)-STEP(16,0),l*
LINE -STEP(-8,4),1*

LINE (264,36)-STEP(-8,-4),1*
FOR col=0 TO 12*

GOSUB frame*

NEXT*

col=0:coir=3:GOSUB square*
col=12:colr=2:GOSUB square*

dot=6:GOSUB update*

SAY TRANSLATE*("welcome to tug o war.")*
main:*

LOCATE 17,15*

IF red THEN*

COLOR 2,0:PRINT "Red's turn "*
SAY TRANSLATE*("reds turn.")*

CHAPTER ONE u

Lf
ELSE*

COLOR 3,0:PRINT "Blue's turn"* I I
SAY TRANSLATE*("blues turn.")*

END IF*

WHILE MOUSE(0)<>1 OR MOUSE(4X80 OR MOUSE(4) >104 OR , ;

MOUSE (3X23 OR MOUSE (3) >276* U
WEND*

cli ck=INT(MOUSE(3)/24> *

IF (red AND click<=dot) OR (red=0 AND click>=dot) T ' [
HEN * —'

temp=dot*

IF a(temp)=4 THEN dot=dot-2*

IF a(temp)=5 THEN dot=dot-l*

IF a(temp)=6 THEN dot=dot+l*

IF a(temp)=7 THEN dot=dot+2*

END IF*

IF red THEN*

FOR i=click TO 11*

IF a(i)=8 THEN a(i)=4*

NEXT*

ELSE*

FOR i=l TO click*

IF a(i)=8 THEN a(i)=4*

NEXT*

END IF*

IF dot>ll THEN*

dot=12:G0SUB update*

LOCATE 17,15:C0L0R 2,0sPRINT " Red wins! "*

SAY TRANSLATE*("red wins.")*

GOTO quit*

END IF*

IF dot<l THEN*

dot=0:GOSUB update*

LOCATE 17,15:C0L0R 3,0:PRINT "Blue wins! "*

SAY TRANSLATE*("blue wins.")*

GOTO quit* j j
END IF*

GOSUB update*

red=l-red* j /

GOTO main * Li
frame:*

x=24:IF 24*col>280 THEN x=23*
LINE (24*col,8*row)-STEP(x,24),l,b* j >

RETURN* ^
square:*

x=22:IF 24*col+l>280 THEN x=21*
LINE (24*col +l,8*row+l)-STEP(x,22),colr,bf* |^J

RETURN*

update:*

Recreation

FOR col = l TO 11*

colr=a(col):GOSUB square*

NEXT*

CIRCLE <24*dot+l1,91),5,1*

PAINT <24*dot+ll,91) , 1*

RETURN *

quit:*

LOCATE 19,7:COLOR 1,0:PRINT "Click mouse to play ag

ain."*

SAY TRANSLATE*("click mouse to play again.")*

WHILE MOUSE(0)=0:WEND*

RUN*

DATA .5,.5,.5,0,0,0,1,0,0,0,0,1,0,1,0,1,1,0,1,0,1,0

,1,1*

UFO Invasion
John Robinson

Translation by Philip I. Nelson

A classic confrontation game, "UFO Invasion" pits

you, the lone defender, against a horde of deadly

machines from outer space.

You are at the controls of a surface-to-air missile launcher lo

cated somewhere near the Arctic Circle. Your radar outposts

have detected a fleet of unidentified flying objects (UFOs) in

vading the North American continent. Forewarned about this

possibility, you know that the waves of UFOs will attack your

missile site before proceeding to the more populous areas lying

southward. Are you up to the challenge?

Though it's not a particularly long program, "UFO Inva

sion" offers quite a test for your gaming skills, particularly at

the higher levels.

Typing It In

Type and save the program to disk. To run the program select

Start from the Run menu.

First Line of Defense

When UFO Invasion begins, you'll hear the sound of an alarm

siren and see two warning messages scroll across the screen.

The middle of the screen contains your control panel. The ob

servatory window at the top gives you a direct view of the

skyline in your defense sector. Within the window is the aim

ing crosshairs pointer for your missile launcher, and directly

below is a radar screen.

When the saucer-shaped UFO appears, your job is to

move the crosshairs onto the UFO (using the cursor keys) and

launch a missile at it (by pressing the space bar). If your mis

sile hits the UFO, the automated craft is vaporized immediately.

Before it can fire at your base, the UFO must locate your

position. Once your position is located, the UFO is certain to

Recreation

-i hit the mark. Your force shields are powerful enough to pro-

\ tect you against three hits by the UFO, but the fourth hit neu

tralizes your defenses and paves the way for a successful

m^ invasion (ending the game as well).

i

Control Panel

"^ The control panel is equipped with six gauges to help you

1 monitor events. On each side of the circular radar screen are

two ladder gauges. The gauge at the far right shows you how

many UFOs remain to be eliminated in the current level.

There are eight levels in all; you must eliminate 29 UFOs at

each level before advancing to the next.

The gauge directly to the right of the radar screen indi

cates how close the UFO is to locating your position. When

this indicator reaches the top, the UFO scores a hit.

The gauge at the far left shows your points for the current

level. You receive 100 points (shown as one bar on the ladder)

for each UFO you destroy, with an additional bar for hitting

the UFO before the timer is halfway to the top. If you score

two bars for every UFO on the current level, you receive a bo

nus equal to 1000 points times the level number.

Directly underneath the radar screen are two additional

indicators that show you how many levels have been com

pleted, and how many hits your shields have sustained.

Press the cursor keys to move the aiming crosshairs left,

right, up, or down. To fire a missile, press the space bar. You

can quit the game at any time by pressing Q. In levels 1, 2, 4,

6, and 8 you can view the UFOs through the observatory win

dow. In levels 3, 5, and 7 the sky is obscured by a thick cloud

cover, forcing you to guide the missiles by radar alone. The ra-

-> dar screen shows the position of the UFO in relation to your

! aiming crosshairs. Aim with the cursor keys until the red dot
is in the center of the radar panel; then fire.

1 UFO Invasion
The left-arrow symbols in this listing indicate when to press RETURN at the end of each

program line. Do not attempt to type the arrows themselves.

i * UFO Invasion for Amiga*

DEFINT A-Z«

•) RANDOMIZE TIMER*

» SCREEN 1, 320, 200, 2, 1«

WINDOW 1,"UFO Invasion",(0,0)-(311,185),20,1*

CHAPTER ONE

PALETTE 0,0,0,0*

PALETTE 1,1,1,1*

PALETTE 2,0,1,0*

PALETTE 3,1,0,0*

CLS*

DIM SH(2000),UFO(200),GD(200)*

DIM X(30),Y(30),Radar(50)*

L=l: TL=8: Lives=0: Score=0*

RX=100/15: RY=50/12*

LINE (U1,51)-(211,159),3,B*

LINE (111,101)-(211,101),3*

LINE (121,101)-(121,159),3*

LINE (131,101)-(131,159),3*

LINE (191,101)-(191,159),3*

LINE (201,101)-(201,159),3*

FOR Y=157 TO 103 STEP -2*

LINE (111,Y)-(131,Y),3*

LINE (191,Y)-(211,Y),3*

NEXT*

CIRCLE (161,120),16,1*

CIRCLE (161,120),10,1*

CIRCLE (161,120),4,1*

LINE (146,120)-(176,120),1*

LINE (161,108)-(161,132),1*

FOR X=145 TO 173 STEP 4*

LINE (X,135)-(X+4,140),3,B*

NEXT*

FOR X=154 TO 162 STEP 4*

LINE (X,147)-(X+4,151),3,B*

NEXT*

LINE (1,0)-(6,0),1*

LINE (0,1)-(7,1),1*

LINE (l,2)-(7,2),3*

LINE (0,3)-(7,3),l*

LINE (1,4)-(6,4),1*

GET (0,0)-(7,6),UFO*

LINE (0,0)-(7,7),0,bf*

LINE (0,3)-(4,3),2*

LINE (2,l)-(2,5),2*

GET (0,0)-(5,5),GD*

LINE (0,0)-(7,7),0,bf*

LINE (0,0)-(l,l),2,bf*

GET (0,0)-(1,1),Radar*

PUT (0,0),Radar*

GOSUB Siren*

B$=" Enemy Alert M*

GOSUB PrintMessage*

GOSUB Siren*

B*=" UFO Invasion M*

GOSUB PrintMessage*

GOTO NewLevel*

10

Recreation

*

*

Pri ntMessage: *

FOR J=l TO 39*

LOCATE 1,J*

SOUND 400+(J* 10), . 1*

PRINT LEFT*(B*,40-J)*

NEXT*

RETURNS

*

*

Siren:*

FOR J=l TO 10*

FOR P=1000 TO 1900 STEP 55*

SOUND P,.2*

NEXT*

NEXT*

RETURN*

*

*

NewLevel:*

B=160: Pts=0: T=0*

FOR S=158 TO 102 STEP -2*

LINE (202,S)-(210,S),2*

NEXT*

IF L=3 OR L=5 OR L=7 THEN clr=0:GOTO Mip ELSE clr=l
*

FOR S=l TO 60*

PSET(112+RND*98,52+RND*48),INT(RND*4)*

SOUND 1500+INT(RND(1)*1000),.1*

NEXT*

Mips*

S=100: Xu=l12+RND*90*

Yu=52+RND*40*

IF clr THEN PUT(Xu,Yu),UFO*
xg=160: yg=75*

PUT(xg,yg),GD*

LINE(142+L*4,136)-(144+L*4,139),1,bf*

*

MainLoop:*

X*=INKEY*: IF UCASE*(X*)="Q" THEN Quit*

IF X*="» OR X*<CHR*(28) OR X*>CHR*(32) THEN Skip*
ON ASC(X*)-27 GOTO Up, Down, Right, Left, Hit*
GOTO Skip*

Up:*

Cyg=Cyg-5:G0T0 Skip*
Down:*

Cyg=Cyg+5sG0T0 Skip*
Right:*

11

CHAPTER ONE

Cxg=Cxg+5:G0T0 Skip*

Left:*

Cxg=Cxg-5:G0T0 Skip*

Hit:*

Fired=l*

*

*

Skip:*

PUT (xg,yg),GD*

xg=xg+Cxg*

IF xg>200 THEN xg=200 ELSE IF xg<112 THEN xg=112*

yg=yg+Cyg*

IF yg>90 THEN yg=90 ELSE IF yg<52 THEN yg=52*

Cxg=0:Cyg=0*

PUT <xg,yg)fGD*

IF RND<-1 THEN Cxu=RND*10-5:Cyu=RND*6-3*

IF clr THEN PUT (Xu,Yu),UFO*

Xu=Xu+Cxu*

IF Xu>200 THEN Xu=200 ELSE IF Xu<112 THEN Xu=112*

Yu=Yu+Cyu*

IF Yu>90 THEN Yu=90 ELSE IF Yu<52 THEN Yu=52*

IF clr THEN PUT <Xu,Yu),UFO*

IF NotFirst THEN PUT<Xr,Yr>,Radar*

NotFirst=l*

Xr=161+(Xu-xg)/RX*

Yr=120+(Yu-yg)/RY*

PUT (Xr,Yr),Radar*

IF Fired THEN GOSUB Shoot:IF S=158 THEN AllGone*

T=T+1*

IF T>TL THEN B=B-2:T=0:LINE<192,B>-(200,B>,2:IF B=l

02 THEN GOSUB TakeShot*

GOTO MainLoop*

*

*

Quit:*

B$=" Game stopped"*

Score=Score+Pts*100*L*

GOTO GameOver*

*

*

Shoot:*

IF clr THEN PUT <Xu,Yu),UFO*

LINE (160,100)-(xg+3,yg+6),2*

FOR J=50 TO 1000 STEP 200*

SOUND J,.l*

NEXT*

Fired=0*

LINE (160,100)-(xg+3,yg+6),0*

IF xg+3>Xu AND xg+3<Xu+9 AND yg+4>Yu AND yg+3<Yu+6

THEN HitUFO*

IF clr THEN PUT (Xu,Yu),UFO*

12

Recreation

RETURN*

*

*

HitUFO:*

PUT (xg,yg),GD*

FOR e=l TO 30*

X(e)=Xu+RND*6+l*

Y(e)=Yu+RND*6+l*

PSET (X(e),Y(e)),2*

SOUND 820,.1*

NEXT*

FOR e=l TO 30*

PRESET (X(e),Y(e))*

NEXT*

IF clr THEN PSET (Xu+RND*6+1,Yu+RND*6+1),INT(RND*4>

*

Xu=112+RND*90*

Yu=52+RND*40*

IF clr THEN PUT(Xu,Yu),UFO*

PUT(xg,yg),GD*

AddScore:*

S=S+2*

LINE(202,S)-(210,S),0*

Pts=Pts+l*

60SUB Here*

IF BM30 THEN Pts=Pts+l:GOSUB Here*

FOR X=B TO 160 STEP 2*

LINE(192,X)-(200,X) ,0*

NEXT*

B=160*

RETURN*

*

*

Here:*

Hx=112: Hy=160-Pts»2*

IF Pts>29 THEN Hx=122:Hy=160-(Pts-29)*2*

LINE (Hx,Hy)-(Hx-i-8,Hy),l*

RETURN*

*

*

AllGone:*

L=L+1: TL=TL-1*

FOR P=102 TO 158 STEP 2*

LINE(112,P)-(120,P),0*

LINE(122,P)-(130,P),0*
NEXT*

LINE(112,52)-(209,99),0,bf*

Score=Score+Pts*(L-l)*100*

IF Pts<58 THEN GOTO There*

FOR J=500 TO 2500 STEP 500*

SOUND J,2*

13

CHAPTER ONE

u

NEXT*

B*=" You passed Level M+STR*(L-1)* * }
GOSUB PrintMessage* ^'
B*=STR*(1000*(L-1))+" Points bonus"*

GOSUB PrintMessage*

FOR J=l TO 2000* U
NEXT*

Score=Score+1000*(L-l)*

IF L=9 THEN PlayerWins*] I

There:* LJ
IF L>8 THEN PlayerWins*

B*=" Level M+STR*(D*

GOSUB PrintMessage*

FOR J=l TO 1500*

NEXT*

GOTO NeuLevel*

*

*

TakeShots*

PUT (xg,yg),GD*

IF clr THEN PUT (Xu,Yu),UFO*

Xb=Xu+4: Yb=Yu+A*

LINE(Xb,Yb)-(112,100),2*

LINE (Xb,Yb)-(210,100),2*

LINE (Xb,Yu)-(112,52),2*

LINE <Xb,Yu>-<210,52),2*

LINE(Xb,Yb)-(112,100),0*

LINE (Xb,Yb)-(210,100),0*

LINE (Xb,Yu)-(112,52),0*

LINE (Xb,Yu)-(210,52),0*

IF clr THEN PUT (Xu,Yu),UFO*

PUT <xg,yg),GD*

PALETTE 0,1,0,0*

FOR K=400 TO 500*

SOUND K,.1*

NEXT*

PALETTE 0,0,0,0* -{

Pts=Pts-2* }J
IF Pts<0 THEN Pts=0*

IF Lives=3 THEN UFOgotcha*

FOR X=102 TO 158 STEP 2* . .

LINE(192,X)-(200,X),0* LJ
NEXT*

B=160*

Lives=Lives+l* }
LINE (151+4*Lives,148)-<153+4*Lives,150),2,bf* UJ

RETURN*

UFOgotcha:*

PALETTE 0,1,0,0*

u

Recreation

FOR J=400 TO 500 STEP 3*

SOUND J,.l*

NEXT*

FOR J=500 TO 400 STEP -3*

SOUND J,.l*

NEXT*

PALETTE 0,0,0,0*

B*=" Game Over"*

GOTO GameOver*

*

*

PlayerWins:*

B*=" You win!"*

GOSUB WinSound*

GameOver: <r

GOSUB PrintMessage*

c*=" Score"+STR*(Score)*

FOR J=l TO 15*

LOCATE 1,J*

PRINT LEFT*<c*,40-J)*

NEXT*

CleanBuffers*

IF INKEY*Onn THEN CleanBuffer*

LOCATE 23,9*

PRINT "Press Y to play again";*

X*=""*

WHILE X*=""*

X*=INKEY**

WEND*

IF UCASE*(X*)="Y" THEN RUN*

CLS: END*

*

*

WinSound:*

FOR J=l TO 2*

RESTORE MusicData*

SoundLoop:*

READ X*

IF XO65535& THEN*

SOUND X,l*

GOTO SoundLoop*

END IF*

NEXT*

SOUND 550, 8*

RETURN*

*

*

MusicData:*

15

CHAPTER ONE

u

DATA 550, 500, 450, 400, 350<r -^

DATA 550, 500, 450, 400, 350« \j

DATA 300, 350, 400, 450, 500«

DATA 65535*

u

u

LJ

U

u

16

Tightrope
Daniel Aven

Translation by Patrick Fairish

Stretched high above the circus arena, the tightrope

beckons. Can you walk all the way across the rope

without falling into the net? This interesting program

is both an arcade game and a typing tutor. Requires

512K of memory.

Arms outstretched, you venture cautiously onto the tightrope.

The rope quivers for a moment, then steadies. Far below, in a

packed circus tent, the crowd roars its encouragement. Don't

worry; there's a safety net below. But you won't entertain the

onlookers—or earn points in this game—by falling into the

net. Your first few steps are hesitant, but with practice your

progress becomes more sure. After what seems an eternity,

you reach the other side. The crowd cheers its approval and

cries out for a repeat performance.

"Tightrope" combines a novel game idea and realistic ani

mation with an educational goal. You can play it either as an

arcade game or as a typing tutor. In game mode, the object is

to help the acrobat walk all the way across the tightrope with

out falling into the net. In tutorial mode, you must watch for a

letter to appear next to the acrobat's head and type it on the

keyboard before time runs out.

A Delicate Balance

If you choose the game of skill, your goal is simple: Move the

animated acrobat all the way across the tightrope without fall

ing into the net. As the acrobat walks along, he'll occasionally

begin to fall to one side or the other. But there's always time

to help him recover his balance by pressing the Z key to move

him to his left or the slash (/) key to move him to his right. If

you countermove just enough to enable the acrobat to regain

his balance, all is well, and he begins to walk again. If you

move too far in the opposite direction, the teetering starts all
over again.

17

CHAPTER ONE

"Tightrope" requires 512K

of memory and uses key

board controls.

It's a delicate balancing act, and it grows more difficult

each time the acrobat makes it across the rope. When you suc

ceed in moving him to the opposite side, you advance to the

next skill level. At each higher level, it becomes more and

more difficult to keep him balanced.

If he loses his balance completely, the acrobat falls to the

safety net and bounces a few times before coming to rest. At

this point, you can try again at the same level or return to the

main menu to choose a different game.

Your score is based on how far the acrobat gets before

falling. Each successful step is worth a certain number of

points, and this value increases at higher levels. In addition,

bonus points are awarded for rapid progress—the faster you

move the acrobat across the rope, the higher the bonus.

Typing Tutor

In the tutorial version of Tightrope, the object is the same—

move the acrobat across the rope without falling—but differ

ent means are used to help him keep his balance.

When you see a character appear next to the acrobat's

head, that's your cue to press the corresponding key on the

keyboard. If you type the correct letter, the acrobat straightens

up. If you press the wrong key, a buzzer sounds, and the acro

bat teeters even more.

To remain on the rope, you must continue to type the same

letters as those which appear on the screen. In other respects,

the tutorial version of Tightrope is the same as the skill game.

18

Recreation

r* Typing It In

* Type in and save the program to disk. Before running the pro

gram, set the screen to 80 columns by clicking on the Prefer-

rn ences icon and setting the proper width. To run the program,

; - select Start from the Run menu.

—, Tightrope
| (The left-arrow symbols in this listing indicate when to press RETURN at the end of each

program line. Do not attempt to type the arrows themselves.

0 GOSUB setup:GOTO 704

1 PUT (X,Y)tw3,PSET5RETURN*

2 PUT <XtY>,w2,PSET:RETURN*

3 PUT <X,Y)fwl,PSET:RETURN*

4 PUT <XfY),11,PSET:RETURN*

5 PUT <X,Y>,12,PSET:RETURN*

6 PUT (X,Y),13,PSET:RETURN*

7 PUT <X,Y),rl,PSET:RETURN*

G PUT (X,Y)fr2,PSET:RETURN*

9 PUT (X,Y),r3,PSET:RETURN*

10 PUT <X,Y),w4,PSET:RETURN*

20 JV»0:a*«UCASE$(INKEY*)*

IF a*»CHR$<47> THEN *

JV«1:AV=0:RETURN*

END IF*

IF a*-CHR*<90> THEN*

JV-2:AV«0:RETURN *

END IF*

21 AV=AV+1*

IF AV=b<4 THEN AV«0:RETURN*

22 GOTO 20*

23 rl«INT<26«RND<l)>+l*

X9»INT<X/S>:r2»rl+64*

a-0:LOCATE 3,X9:PRINT CHR*(r2>*

24 a*«UCASE*(INKEY*):a«a+l*

IF a»b THEN*

M Ml«2*
1 GOSUB 1770:GOTO 30*

END IF*

r-| 25 IF a»=MH THEN 24*

! I 26 IF a*=CHR*(r2) THEN*
Ml-1*

GOSUB 1740:GOTO 30*

H END IF*

1 27 Ml=2:GOSUB 1770*
30 LOCATE 3,X9:PRINT " M*

_, RETURN*

] 31 T3-3*INT(TIMER-T2)*
T-1000-T3:IF T<0 THEN T»0*

19

CHAPTER ONE

32 RETURN*

70 CLS:FOR X»0 TO 36 STEP 364

FOR J-0 TO 24

PUT (X*8+J*8,40),sl4:NEXT J,X4

LINE (24,40)-(287,40),34

75 FOR J»0 TO 38 STEP 384

FOR I«l TO 154

PUT (J*8,1*8+40),sl54

PUT (J*8+8+(J"38) *16, 1*8+40),sl64

NEXT I,J4

80 FOR r«l TO 3:FOR c»6-r TO 364

X-RND(1):R0W«64+8*r:C0L=c*84

IF X<-3 THEN4

PUT(COL,ROW),sl7:80T0 1004

END IF4

85 IF X>".3 AND X<.6 THEN4

PUT(COL,ROM),sl8:60T0 1004

END IF4

90 IF X>=.6 AND X<.9 THEN4

PUT(COL,ROW),sl9:GOTO 1004

END IF4

95 LOCATE ROW/8,COL/8:PRINT " "4

100 NEXT c,r4

105 LINE (39,75)-(17,96)4

LINE (38,75)-(16,96)4

FOR 1-96 TO 96+74

LINE (16,I)-(8*37-l,I):NEXT 14

107 LINE (23,20*8-1)-(36*8,20*8-1)4

LINE (7,22*8)-(38*8,22*8)4

LINE (23,20*8)-(7,22*8)4

LINE (36*8,20*8-1)-(38*8,22*8)4

108 FOR r-0 TO 14

FOR c-3-r TO 35+r4

PUT (c*8,(r+20)*8),sl54

NEXT c,r4

109 LINE (7,22*8)-(7,24*8)4

LINE (38*8,22*8)-(38*8,24*8)4

LINE (23,22*8)-(23,23*8)4

LINE (36*8,22*8)-(36*8,23*8)4

160 Y»19:PX»7:PZ»10:c»04

440 T2-TIMER4

500 IF w»2 AND d«8 THEN4

b-1004

END IF4

IF w-2 AND d»9 THEN 4

b-654

END IF4

4

510 P-03 6OSUB 30004

FOR X-288 TO 4 STEP -34

520 c-c+d+lrQOSUB 314

20

n
Recreation

n

550 LOCATE 1,14

PRINT MSCOREMcM "TAB(16)"BONUS"T" "|«

PRINT TAB<31>"LEVELMd4

600 f«0:IF X<268 AND X>24 THEN GOSUB 7804

605 IF f-1 THEN 10804

630 P-P+liXF P-5 THEN P»14

640 ON P GOSUB 1,2,3,24

655 JV-0:a*«UCASE»<INKEY*>sIF a*-" " THEN GOSUB 151

IF a*-CHR*<47> THEN JV«1:GOSUB 8104

660 IF a*«CHR»<90> THEN JV=2sGOSUB 9504

665 IF f-1 THEN 10804

670 NEXT X:X»X+34

GOSUB 3000:GOSUB 104

710 c-c+T:T«04

720 IF d<9 THEN b-b-2:d«d+14

750 IF w-2 AND d<9 THEN b»b-254

760 IF d«9 THEN PX-6:PZ*94

770 GOTO 4404

760 r-INT<9*RND(l)>+14

IF r>2 THEN RETURN4

800 IF r"l THEN 9504

810 P»4:PUT (X,Y),11,PSET4

820 IF w=l THEN GOSUB 204

IF w=2 THEN GOSUB 234

840 IF Ml=l THEN JV=24

IF Ml=2 THEN JV=14

860 IF JV=2 THEN4

ON P GOSUB ,,3,4,5,64

IF P<4 THEN RETURN ELSE 8204

END IF4

880 P=P+lsON P GOSUB ,,,4,5,64

890 GOSUB 314

910 LOCATE 1,21:PRINT T4

920 IF P>3 AND P<PX THEN 8204

930 f»l:RETURN4

950 P=7:PUT (X,Y),rl,PSET4

960 IF w»l THEN GOSUB 204

IF w«2 THEN GOSUB 234

980 IF Ml«l THEN JV=14

IF Ml«2 THEN JV»24

990 IF JV-1 THEN P-P-14

1010 GOSUB 314

1030 LOCATE 1,21:PRINT T4

1040 IF P<7 THEN P«3:RETURN4

1050 IF JV-1 THEN4

— ON P GOSUB ,,,,,,7,8,94

GOTO 9604

END IF4

n

H

n

n 21

CHAPTER ONE u

G

1060 P=P+14 ,-{

ON P GOSUB ,,,,,,7,8,94 [J
1070 IF P>6 AND P<PZ THEN 9604

1075 f»l:RETURN4

1080 P«104 | |

PUT (X,Y),w4,PSET4 CJ

'FALLING MAN4

1090 Z2»234

FOR Z-Z2 TO 150 STEP 64 j (
IF Z>Z2 THEN PUT (X,Z-6),sl24 L-J
1100 PUT (X,Z),sl24

SOUND (Z+15)*2,.084

1110 NEXT Z4

PUT (X,Z-6),sl2:Y=Y+504

1120 FOR Z»150 TO Y STEP -64

IF Z<150 THEN PUT (X,Z+6),sl34

1125 PUT (X,Z)psl34

SOUND (Z+15)*2,1:NEXT Z4

PUT (X,Z+6),sl34

1130 FOR Z»Y TO 150 STEP 64

IF Z>Y THEN PUT <X,Z-6),sl34

1135 PUT (X,Z),sl34

SOUND (Z+15)»2,1:NEXT Z4

PUT (X,Z-6)tsl3:Y»Y+304

IF Y<150 THEN 11204

1160 PUT (X,Z-6),sl3:LOCATE 3,64

PRINT "Press <RETURN> to play again"4

LOCATE 4,74

PRINT "Press <SPACE BAR> for menu"4

1170 a*«INKEY*4

IF a*<>" " AND a«OCHR»(13) THEN 11704

1180 c=0:Ml»0:AV»04

IF a*«CHR$(13) THEN 704

60SUB again:GOTO 704

1510 T4=INT(TIMER)4

1520 a*=INKEY«4

IF a«="" THEN 15204

1530 T5=INT(TIMER):T2«T2+T5-T44 | I
RETURN4

1740 SOUND 440,1&RETURN4

1770 SOUND 2300,1:RETURN4 ,

3000 FOR DE=1 TO 400s NEXT:RETURN4 LJ
setup:4

DEFINT L,r,s,w4

SCREEN 1,320,200,2,14 \ \

9 OPEN WINDOW 3 WITH NO GADGETS 0R4 *—'
' title BAR4

WINDOW 1,"",(0,0)-(311,25),16,14

WINDOW 3,"",(0,0)-(311,185),16,14]i
4

22 u

Recreation

WINDOW OUTPUT 34

PALETTE 0,0,0,04

PALETTE 1,.5,1,14

PALETTE 2,1,0,04

PALETTE 3,1,1,.14

WIDTH 404

CLS4

DIM voice7.<8),w47.<200)4

BET <0,0)-(25,20>,w4%4

RESTORE VOICEDATA 4

FOR J=0 TO 84

READ voice%(J)4

NEXT4

' Speech will be synchronous4

VOICEDATA:4

DATA 110,0,170,0,22200,64,10,1,04

4

talk*="This is Tightrope" 4

LOCATE 12,114

PRINT talk»4

BOSUB talk*

L« 87 s DIM wl7.(L)4

FOR I»0 TO LsREAD a*:wiy.<I)=VAL<ll8ch"+a*) :NEXT4

shapedata;4

DATA 18,15,2,30,0,58,0,F84

DATA 0,4070,800,C030,1800,2078,2000,1FFF4

DATA C000,F8,0,F8,0,F8,0,F84

DATA 0,F8,0,F8,0,D8,0,D84

DATA 0,D8,0,78,0,38,0,1C4

DATA 0,18,0,78,0,30,0,784

DATA 0,F8,0,4070,800,C030,1800,20784

DATA 2000,1FFF,C000,F8,0,F8,0,F84

DATA 0,F8,0,F8,0,F8,0,D84

DATA 0,D8,0,D8,0,78,0,384

DATA 0,1C,0,18,0,78,0,04

L» 87 sDIM w27.(L)4

FOR I»0 TO L:READ a«: w2% < I) =VAL ("&h(I+a*) :NEXT4

DATA 18,15,2,30,0,58,0,F84

DATA 0,4070,800,C030,1800,2078,2000,1FFF4

DATA C000,F8,0,F8,0,F8,0,F84

DATA 0,FB,0,F8,0,08,0,1984

DATA 0,318,0,318,0,318,0,18C4
DATA 0,186,0,30C,0,30,0,784

DATA 0,F8,0,4070,800,C030,1800,20784

DATA 2000,1FFF,C000,F8,0,F8,0,F84

DATA 0,F8,0,F8,0,F8,0,D84
DATA 0,198,0,318,0,318,0,3184

DATA 0,18C,0,186,0,30C,0,04

L» 87 :DIM w3X(L)4

FOR 1=0 TO L:READ a*:w3%<I>=VAL<ll&h"+a*> :NEXT4

23

CHAPTER ONE

DATA 18,15,2,30,0,58,0, F84

DATA 0,4070,800,C030,1800,2078,2000,1FFF4

DATA C000,F8,0,F8,0,F8,0,F84

DATA 0, F8,0, F8,0, D8,0,1804

DATA 0,306,0,603,0,601,8000,6004

DATA C000,600,C000,1E01,8000,30,0,784

DATA 0,F8,0,4070,800,C030,1800,20784

DATA 2000,1FFF,C000,F8,0,F8,0,F84

DATA 0,F8,0,F8,0,F8,0,D84

DATA 0,18C,0,306,0,603,0,6014

DATA 8000,600,C000,600,C000,1E01,8000,04

L- 87 sDIM rl%<L>4

FOR 1-0 TO L:READ a*:rl%<I)«VAL<"&h"+a*>:NEXT4

DATA 18,15,2,30,0,58,1000,F84

DATA 1800,70,7000,31,C000,7F,0,1FC4

DATA 0,7F8,0,1CF8,0,F0F8,0,40F84

DATA 0,F8,0,F8,0,D8,0,1984

DATA 0,318,0,30C,0,306,0,1864

DATA 0,180,0,300,0,30,0,784

DATA 1000,F8,1800,70,7000,31,C000,7F4

DATA 0,1FC,0,7F8,0,1CF8,0,F0F84

DATA 0,40F8,0,F8,0,F8,0,D84

DATA 0,198,0,318,0,30C,0,3064

DATA 0,186,0,18C,0,300,0,04

L- 87 :DIM r2X(L)4

FOR I»0 TO LsREAD a*sr2%<I>»VAL<ll«chll+a*> :NEXT4

DATA 18,15,2,30,3800,58,6000,F84

DATA C000,71,8000,33,0,7E,0,1FC4

DATA 0,3F8,0,6F8,0,CF8,0,18F84

DATA 0,30F8,0,E0F8,0,D8,0,1984

DATA 0,318,0,30C,0,307,C000,1804

DATA C000,180,4000,300,0,30,3800,784

DATA 6000,F8,C000,71,8000,33,0,7E4

DATA 0,1FC,0,3F8,0,6F8,0,CF84

DATA 0,18F8,0,30F8,0,E0F8,0,D84

DATA 0,198,0,318,0,300,0,3074

DATA C000,180,C000,180,4000,300,0,04

L- 87 :DIM r3X<L>4

FOR 1-0 TO LsREAD a»sr3%<I>-VAL<"SchM+a*> sNEXT4

DATA 15,15,2,1860,798,3330,330,65984
DATA 47C2,CF98,478C,C718,C7B0,6331,C7C0,3FE34

DATA 400,1FC6,400,F8C,400,F98,798,FB04

DATA 330,FE0,7C2,FC0,78C,C00,7B0,C004

DATA 7C0,C00,400,C00,400,C00,400,C004

DATA 400,C00,400,3C00,0,I860,0,33304
DATA 0,6798,4000,CF98,4000,C718,C000,63314
DATA C000,3FE3,0,1FC6,0,F8C,0,F984
DATA 0,FB0,0,FE0f0,FC0,0,0004

DATA 0,000,0,000,0,000,0,0004

DATA 0fC00,0,C00,0,3000,0,04

L- 87 sDIM 11%<L>4

24

Recreation

FOR 1-0 TO LsREAD a*s 1 l%(I)«VAL(ll8chll+a«) 8NEXT4

DATA 18,15,2,0,98,30,30,40584

DATA C2,E0F8,8C,3870,B0,E30,C0,3F84

DATA 0,FC,0,FF,0,F9,C098,F84

DATA 7830,F8,10C2,F8,8C,D8,B0,1984

DATA C0,318,0,318,0,318,0,30C4

DATA 0,F04,0,C,0,0,0,304

DATA 0,4078,0,E0F8,0,3870,0,E304

DATA 0,3F8,0,FC,0,FF,0,F94

DATA C000,F8,7800,F8,1000,F8,0,D84

DATA 0,198,0,318,0,318,0,3184

DATA 0,30C,0,F04,0,C,0,04

L» 87 :DIM 12X(L)4

FOR 1=0 TO L:READ a*: 12%<I>»VAL(ll«ch"+a») sNEXT4

DATA 16,15,2,0,98,E060,30,30B04

DATA C2,19F0,8C,CE0,B0,660,C0,3F04

DATA 0,1F8,0,1FC,0,1F6,98,1F34

DATA 30,1F1,80C2,1F0,E08C,1B0,40B0,3304

DATA C0,630,0,630,0,630,0,6184

DATA 0,1E08,0,18,0,0,0,E0604

DATA 0,30F0,0,19F0,0,CE0,0,6604

DATA 0,3F0,0,1F8,0,1FC,0,1F64

DATA 0,1F3,0,1F1,8000,1F0,E000,1B04

DATA 4000,330,0,630,0,630,0,6304

DATA 0,618,0,1E08,0,18,0,04

L» 87 8 DIM 13%(L)4

FOR 1-0 TO L:READ a*: 13X(I)«VAL(ll8ch"+a«) sNEXT4

DATA 14,15,2,C3,98,199,8030,832C4

DATA C0C2,867C,C08C,C638,C0B0,E319,80C0,31FF4

DATA 0,18FE,0,C7C,0,67C,98,37C4

DATA 30,1FC,C2,FC,8C,C,B0,C4

DATA C0,C,0,C,0,C,0,C4

DATA 0, C, 0, F, 0, C3,0,1994

DATA 8000,833C,C000,867C,C000,C638,C000,E3194

DATA 8000,31FF,0,18FE,0,C7C,0,67C4

DATA 0,37C,0,1FC,0,FC,0,C4

DATA 0,C,0,C,0,C,0,C4

DATA 0,C90,C,0,F,0,04

L» 87 :DIM sl27.(L)4

FOR I«0 TO L:READ a*: sl27. < I)-VAL < "&h"+a*): NEXT4

DATA 13,15,2,C3C3,98,C243,30,63C64

DATA C2,324C,8C,1998,B0,FF0,C0,7E04

DATA 0,7E0,0,7E0,0,7E0,98,7E04

DATA 30,7E0,C2,7E0,8C,660,B0,C304

DATA C0,1818,0,1818,0,1818,0,18184

DATA 0,1818,0,781E,0,C3C3,0,C3C34

DATA 0,63C6,0,324C,0,1998,0,FF04

DATA 0,7E0,0,7E0,0,7E0,0,7E04

DATA 0,7E0,0,7E0,0,7E0,0,6604

DATA 0,C30,0,1818,0,1818,0,18184

25

CHAPTER ONE u

LJ
DATA 0,1818,0,1818,0,781E,0,04

L= 39 :DIM sl3?C<L>4 I I
FOR 1-0 TO L:READ a*ssi3X(I)=VAL("8chII-t-a*) :NEXT« ^
DATA 10,12,2,70,78,78,38,04

DATA 1C,183E,1C7F,6CF,18F,400F,670F,2F8F4 ,

DATA B9FF,907F,C00F,FFFF,7FFE,70,78,784 |J
DATA 38,0,1C,183E,1C7F,6CF,18F,400F4

DATA 670F,2F8F,B9FF,907F,C00F,FFFF,7FFE,18184

L= 19 :DIM sl8%(L>4 } (

FOR 1=0 TO L:READ a*ssl8X<I>=VAL<"&h"+a*>:NEXT4 LJ
DATA 8,8,2,1C00,3E00,3E00,1C00,7E004

DATA FF00,FF00,FF00,0,0,0,0,04

DATA 80,80,80,04

L« 19 :DIM sl7%(L>4

FOR 1-0 TO L:READ a*:sl7y.<I>=VAL<"«chM+a*> :NEXT4

DATA 8,8,2,0,0,0,0,04

DATA 0,0,0,1C00,3E00,3E00,1C00,7E004

DATA FF80,FF80,FF80,04

L» 19 :DIM sl97.(L)4

FOR I«0 TO L:READ a*ssl9%CX)»VAL<a'&ha>+a*> :NEXT4

DATA 8,8,2,1C00,3E00,3E00,1C00,7E004

DATA FF00,FF00,FF00,1C00,3E00,3E00,1C00,7E004

DATA FF80,FF80,FF80,04

L- 19 :DIM 3157-(L)4

FOR 1-0 TO L:READ a«:sl5y.<I>=VAL<"*hM+a«> :NEXT4

DATA 8,8,2,C300,6600,3C00,3C00,3C004

DATA 3C00,6600,0300,0,0,0,0,04

DATA 0,0,0,04

L" 19 sDIM sl6%(L)4

FOR 1=0 TO LsREAD a$:sl6%<I>*VAL<M*hM+a*>sNEXT4

DATA 8,8,2,8100,8100,8100,8100,FF004

DATA 8100,8100,8100,8100,8100,8100,8100,FF004

DATA 8100,8100,8100,04

L= 19 :DIM sl4JC(L>4

FOR 1=0 TO L:READ a*:sl4X<I>»VAL<M&h"+a*>:NEXT4

DATA 8,8,2,70,78,78,38,04

DATA 1C,3E,7F,CCCF,CC8F,330F,330F,CC8F4

DATA CCFF,337F,330F,FFFF4 j I

again:4 l—>

RANDOMIZE TIMER4

CLS4 j I
BOSUB title4 ^
RETURN4

4 I i
announce: 4 l_J

talk*=c*4

4

talk:4 i

IF talkflag«0 THEN SAY TRANSLATE*(talk*),voice%4 LJ
RETURN4

26

Recreation

*

title:*

talk*°"press 1 for game, 2 for typing"*

GOSUB talk*

WINDOW 4," Press 1 or 2",(65,70)-(250,110),16,

1*

PRINT:PRINT " 1- Game"*

PRINT:PRINT " 2- Typing"*

*

grabkeys*

a*»INKEY*:IF a*="" THEN grabkey*

w=VAL(a*)*

IF w<l OR w>2 THEN grabkey*

talk*«"Press 0 through 9 to choose difficulty level

."*

GOSUB talk*

WINDOW 4,"Press 0-9 for difficulty",(65,70)-(255,11

0),16,1*

PRINT:PRINT:PRINT " Enter level (0-9)"*

*

grabkeyl:*

a*=INKEY*:IF a*="" OR (a*<"0" OR a*>"9") THEN grabk

eyl*

b=VAL(a*)*

d=b:b=10-b:IF w=l THEN b=b*2*

IF w=2 THEN b=b*40*

WINDOW CLOSE 4*

temp*="typing"*

IF w=l THEN temp*="game" *

talk*=temp*+" "+"level"+STR*(d)*

GOSUB talk*

RETURN*

*

getout:*

WINDOW CLOSE 3*

SCREEN CLOSE 1*

WINDOW 1,"Tightrope",,31,-1*

WINDOW OUTPUT 1*

END*

*

27

Beehive
Steve Michel

To avoid getting stung in this delightful strategy

game, you'll need to plan ahead. Requires

512K RAM.

"Beehive" is a two-player strategy game that requires you to

concentrate fully and develop long-range planning skills. The

game board consists of 121 hexagons arranged in a sloping 11

X 11 matrix. The name derives from the playing field's resem

blance to the geometric precision of a honeycomb. The first

player is assigned the left and right borders of the honeycomb,

while the second player is assigned the top and bottom edges.

The object of the game is deceptively simple. Each player

tries to connect a continuous line from one of his or her bor

ders to the other. If you're player 1, for instance, you need to

connect the left border with the right. The players alternate

turns, filling in cells of the honeycomb one at a time. While

attempting to complete your own course, you must also try to

block your opponent's way, and this requires strategic think

ing. The first player to connect both borders wins the game.

As a reward, tiny bee faces appear along the line of connec

tion, clearly marking the path to victory.

Starting the Game

Type in and save the program to disk. Before running the pro

gram set the screen to 80 columns by clicking on the Prefer

ences icon and setting the proper width. Once you have saved

a copy of the game, select Start from the Run menu. Beehive

begins by asking for the name of each player. After both play

ers have entered their names, the beehive grid is drawn, and

play begins. The computer determines randomly which player

should take the first turn. Each player takes a turn by moving

the mouse pointer to the desired cell and pressing the left

mouse button once.

When you choose a cell, it is filled with a solid circle, and

your turn ends. While connecting your own borders, you

28

Recreation

should also be trying to prevent the other player from making

a connection. Play continues until one player or the other

completes a continuous line from one border to the other. At

this point a victor is declared, and bee faces replace the circles

along the entire winning route.

Beehive includes synthesized speech. Either player can

toggle the speech effects on or off at any time. Press the left

button once: A small box appears, indicating the current

speech status. If speech was turned on, it is now turned off,

and vice versa. Press the left button again to erase the speech

box and resume the game.

Winning Strategies

Like most two-player games, Beehive adjusts itself to the skill

of the players. The basic concept is simple enough that even

small children can enjoy playing. But when two knowledge

able players are matched, play proceeds at a much higher

level. The flexibility of the game allows many different

strategies.

Here are some important points for beginners to keep in

mind. First, your opening move does not have to occur in one

of your border rows. In fact, you can often establish a better

strategic position by starting somewhere near the middle of

the playing field. In a typical game, you will have to swing

back and forth between an expanding, offensive posture and a

defensive, blocking posture. The middle areas accommodate

both strategies well.

Second, it is not necessary that all of your cells be con

nected. That is, a new cell doesn't necessarily have to touch

one of your existing cells. Any empty cell in the hive is fair

game for either player, and it's often advantageous to space

out your cells to allow multiple paths between borders. Start

ing multiple pathways makes it harder for an opponent to

block your progress completely.

Finally, keep in mind that the hexagonal shape of each

cell permits you to move in six different directions. Try not to

get locked into a strict, straight-line strategy too often. Any

pathway that connects both borders is legal, and in many

cases the winning path will be quite roundabout.

29

CHAPTER ONE

0

Beehive 4- »
The left-arrow symbols in this listing indicate when to press RETURN at the end of each \ j
program line. Do not attempt to type the arrows themselves.

CLS*

talk*=""s GOSUB talk*

GOSUB init* __

GOSUB getnames *)' [
starts* i-J
CLSs RANDOMIZE TIMER*

markers = 0s winner = 0s prev.player = 0*

player = INT(2*RND(1)+1)*

FOR j = 1 TO 11s FOR k=l TO 31s hive%(j,k)=0: NEXT

ks NEXT j *

FOR j = 1 TO 20s pathlen(j) = 0s NEXT j*

FOR j = 1 TO 65s pathX(j) = 0s used7.(j> = 0s nodea/.(

j) = 0s NEXT j*

GOSUB drawscreen*

BREAK ONs ON BREAK GOSUB closeup*

<r

mains*

IF prev-player <> player THEN*

COLOR 4*

LOCATE 1,2s PRINT "Players "*

LOCATE 1,2s PRINT "Players ";*

COLOR coir(player)s PRINT LEFT*(player*(player),15)

*

talk*=player*(player)s GOSUB talk*

prev.player = player*

END IF*

WHILE MOUSE(0) = 0*

x = MOUSE(0)*

a*=INKEY*sIF a*=" " THEN GOSUB readkey*

WEND*

GOSUB checkmouse*

IF used THEN main*

GOSUB checkline* -i (

IF possible = 1 THEN GOSUB checkwinner* *—'

LOCATE 3,2s PRINT " "*

IF winner = 1 THEN drawpath*

IF player = 1 THEN * J
player = 2 *

ELSE *

player = 1 * , ,

END IF* LJ
GOTO main*

*

inits* j j

CLSs colr(l) = 2s coir(2) =3* J—'
DIM colcor7-(ll)s FOR j = 1 TO lls READ colcor"/-(j)s

30

Recreation

n

n

NEXT j*

DATA 5,4,4,3,3,2,2,1,1,0,0*

DIM row.inc7.(6), col - inc7.(6)*

FOR j = 1 TO 6s READ row. inc7.(j) , col - inc7.< j) : NEXT

j*

DATA -1,-1,0,1,1,1,1,0,0,-1,-1,-1*

DIM hive%C 11, SIX-

DIM used%(65), node"/. (65) , pathZ(65), pathlen(20)*

SCREEN 1,640,200,3,2*

WINDOW 1,"BEE HIVE",,16,1*

GOSUB setcolor*

DIM hexa(100),bal11(100),bal12(100),eyesl(100),eyes

2(100)*

LINE (30,10)-(12,15),7: LINE - STEP (0,10),7: LINE

- STEP (18,5),7*

LINE - STEP (18,-5),7: LINE - STEP (0,-10),7: LINE

- STEP (-18,-5),7*

LINE (30,11)-(13,15),6s LINE - STEP (0,9),6: LINE -

STEP (17,5),6*

LINE - STEP (16,-4),6s LINE - STEP (0,-10),6s LINE

- STEP (-17,-4),6*

GET (12,10)-(48,30),hexa *

CLSs CIRCLE (30,20),ll,colr(l)s PAINT (30,20),coir(

l)s GET (20,9)-(40,31),bal11*

GOSUB partss GET (18,12)-(42,30), eyesl *

CLSs CIRCLE (30,20VM,colr(2)s PAINT (30,20) ,coir (

2)s GET (20,9)-(40,31),bal12*

GOSUB partss GET (18,12)-(42,30), eyes2s CLS*

RETURN*

*

partss *

CIRCLE (25,19),4,Is CIRCLE (35,19),4,1*

PAINT (25,19),Is PAINT (35,19),1*

PSET (29,17)s LINE - STEP (-5,-5)s LINE - STEP (-5,

3)*

PSET (31,17)s LINE - STEP (5,-5)s LINE - STEP (5,3)

CIRCLE (30,24),2,Is PAINT (30,24),1*

RETURN*

*

getnamess*

COLOR 4*

CLSs talk*="WELCQME TO BEEE HIVE"s GOSUB talk*

a* = " What is the name of player 1 "s PRINT *

PRINT a*;s talk*=a*s GOSUB talks INPUT player*(D*

a* = " What is the name of player 2 "s PRINT *

PRINT a*;s talk*=a*s GOSUB talks INPUT player*(2)*

talk$="Press space bar to turn speech off or on dun-

ing game."*

LOCATE 15,14sPRINT talk**

GOSUB talksCLSs RETURN*

CHAPTER ONE

drawscreen:* ^ [
CLS: y = 7*

FOR r = 1 TO 11*

x = 180 - r * 18*

FOR c = 1 TO 11*

x = x + 36*

PUT (x,y),hexa,OR* ~

NEXT c * M
y = y + 15 * wJ
NEXT r *

PSET (595,12),2: GOSUB upndown: LINE -STEP (0,10),2

*

PSET (596,12),2: GOSUB upndown: LINE -STEP (0,10),2

*

PSET (597,12),2: GOSUB upndown: LINE -STEP (0,10),2

PSET (194,12),2: GOSUB upndown: LINE -STEP (0,10),2

PSET (195,12),2: GOSUB upndown: LINE -STEP (0,10),2

PSET (196,12),2: GOSUB upndown: LINE -STEP (0,10),2

yl=-5: y2=5: PSET (198,9),3: GOSUB across*

PSET (198,10),3: GOSUB across*

PSET (199,11),3: GOSUB across*

yl=5: y2=-5: PSET (19,173),3: GOSUB across*

PSET (19,174),3: GOSUB across*

PSET (19,175),3: GOSUB across*

RETURN*

*

upndown:*

FOR j = 1 TO 10*

LINE -STEP (0,10),colr(D*

LINE -STEP C-18,5),colr(D*

NEXT j*

RETURN*

*

across:*

FOR j = 1 TO 11*

LINE -STEP (18,yl),colr(2)*

LINE -STEP (18,y2),colr(2)*

NEXT j*

RETURN*

checkmouse: * —J
x = MOUSE(3): y = MOUSE(4)*

offset = 0: used = 0* ^ (

yr = INT (y/15+.5): row = yr: yr ■ yr * 15 * Ji
IF INT (yr/2) = yr/2 THEN offset = 18*

xr = INT ((x-offset)/36+.5): col = xr: xr = xr » 36

32 *

Recreation

n

n

+ offset*

IF row < 1 OR row > 11 THEN*

used = 1*

RETURN*

END IF*

col = col - colcorX(row)*

IF col < 1 OR col > 11 THEN*

used =1*

RETURN*

END IF*

rowhive = row: colhive = 10+2*col-raw*

IF hive7.(row,colhive) <> 0 THEN *

used =1*

RETURN*

END IF *

markers = markers + 1*

hive%(row,colhive) = player*

IF player = 1 THEN *

PUT (xr-10,yr-9),balll,OR *

ELSE *

PUT (xr-10,yr-9),ball2,OR*

END IF*

RETURN*

*

checkline:*

possible=l*

IF player = 2 THEN *

FOR row = 1 TO 6: ff=0: fb=0*

FOR col = 1 TO 11: colhive=10+2*col-row*

IF hiveZ(row,colhive)=player THEN ff=l*

colhive = 10+2*(col)-(12-row)*

IF hiveZ(12-row,colhive)=player THEN fb=l*

NEXT col *

IF ff=0 OR fb=0 THEN *

possible = 0*

row = 1E+09*

END IF*

NEXT row*

ELSE*

FOR col = 1 TO 6: ff=0: fb=0*
FOR row = 1 TO 11: colhive=10+2*col-row*

IF hive*(row,colhive)=plaver THEN ff=l*

colhive = 10+2*(12-col)-row*

IF hiveX(row,colhive)=player THEN fb=l*

NEXT row *

IF ff=0 OR fb=0 THEN *

possible = 0*

col = 1E+09*

END IF*

NEXT col*

END IF*

33

CHAPTER ONE U

u

RETURN*

* u
checkwinner:4

LOCATE 3,2s COLOR 4s PRINT "Checking-.."4

used.cntr = 0s winner = 0s node.cntr = 0s node.tota .—

1 =0s counter = 04 l_J
IF player = 1 THEN check14

FOR col = 1 TO lls row =14 _

IF hive'/.(row, 10+2*col-row> <> player THEN skip24 f l
noderow = rows nodecol = cols GOSUB usedlookup4 >—f

IF used-flag = 1 THEN skip24

node.total = Is path.total = Iscounter = 14

path7.(l) = 100 * noderow + nodecol4

GOSUB checkpath4

IF winner = 1 THEN col = 1E+094

skip2s4

NEXT col4

RETURN4

4

checkIs 4

FOR row = 1 TO lls col = 14

IF hiveZ(row,10+2*col-row> <> player THEN skipl4

noderow = rows nodecol = cols GOSUB usedlookup4

IF used.flag = 1 THEN skip!4

node.total = Is path.total = Is counter = 14

path7.(l) = 100 * noderow ♦ nodecol4

GOSUB checkpath4

IF winner = 1 THEN row = 1E+094

skipls4

NEXT row4

RETURN4

4

used1ookup s 4

used.flag = 0s search = 100 * noderow + nodecol4

Ik = 0s IF used.cntr = 0 THEN skipsearch4

FOR Ik = 1 TO used.cntr4

IF search = used7.(lk) THEN 4

used.flag =14 \ \

Ik = 1E+094 w

END IF 4

NEXT Ik4

skipsearchs4 1[
IF used.flag = 0 THEN4

used.cntr = used.cntr +14

usedX (used.cntr) = search4

END IF4

RETURN4

4

checkpaths4 j [

node.cntr = 04 *—'

34

u

Recreation

FOR nc = 1 TO 6*

noderow = noderow + row.inc%(nc): nodecol = nodecol

+ col.incX(nc)^

IF noderow < 1 OR noderow > 11 OR nodecol < 1 OR no

decol > 11 THEN skipnode

*

IF hive%<noderow,10+2*nodecol-noderow) <> player TH

EN skipnode*

GOSUB usedlookup: IF used.flag = 1 THEN skipnode*

node.entr = node-entr + 1*

node.total = node.total + 1: nodeX(node.total) = 10

0 * noderow + nodecol*

IF (player = 2 AND noderow = 11) OR (player = 1 AND

nodecol = 11) THEN *

winner = 1*

path.total = path.total + 1*

path%(path.total) = 100 * noderow + nodecol *

nc = 1E+09*

END IF *

skipnode:*

NEXT nc*

IF winner = 1 THEN RETURN*

IF node.cntr = 0 AND node.total « 0 THEN RETURN*

IF node.cntr = 0 THEN *

path.total = path.total - pathlen(counter)*

pathlen(counter) = 0*

counter « counter - 1*

END IF *

IF node.cntr > 1 THEN counter = counter + node.cntr

- 1*

noderow = INT(nodeX(node.total)/100)*

nodecol = nodeX(node.total) — 100 * noderow*

path.total = path.total +1*

pathien(counter) = pathlen(counter) + 1*

path"/, (path, total) = node"/, (node, total)*

node.total = node.total - 1 *

GOTO checkpath *

*

drawpaths*

LOCATE 1,1: PRINT " ": COLOR 4*

LOCATE 1,1: PRINT "THE WINNER: ";:COLOR coir(player

): PRINT player*(player);*

a* = "THE WINNER IS " + player*(player): talk*=a*:

GOSUB talk*

■v FOR j = 1 TO path.total: offset = 0*

i row = INT(path7.(j>/100): col « pathX(j) - 100*row +

colcorX(row)*

IF row/2 = INT(row/2) THEN offset = 18 *

| xr = col * 36 + offset: yr = row * 15*

IF player = 1 THEN*

T 35

CHAPTER ONE

PUT (xr-10,yr-9), balll, XOR *

PUT (xr-12,yr-5), eyesl, OR*

ELSE*

PUT (xr-10,yr-9), ball2, XOR*

PUT (xr-12,yr-5), eyes2, OR*

END IF*

NEXT j *

* _

goagain:* \ j

LINE (419,139)-(625,186),7,b: LINE (420,140)-(624,1 ^
85),7,b*

LINE (421,141)-(623,184),4,bf: COLOR 6*

LOCATE 19,55: a* = M WANT TO PLAY AGAIN ? ": PRINT

a*; *

LINE (431,162)-(487,180),7,bf: LOCATE 22,56: PRINT

" YES ";*

LINE (567,162)-(615,180),7,bf: LOCATE 22,73: PRINT

" NO "; *

talk$=a*: GOSUB talk*

*

wai ter:*

WHILE MOUSE(0) <> 1*

WEND*

x = MOUSE(3): y = MOUSE(4)*

IF y < 162 OR y > 180 THEN waiter*

IF x > 430 AND x < 488 THEN start*

IF x > 566 AND x < 616 THEN closeup*

GOTO waiter*

*

setcolor:*

PALETTE 0,-3,-3,-3 'grey*

PALETTE 1,0,0,0 'black*

PALETTE 2,0,1,0 'green*

PALETTE 3,0,0,1 'blue*

PALETTE 4,1,1,1 'white*

PALETTE 5,0,1,1 'aqua*

PALETTE 6,1,1,0 'yellow*

PALETTE 7,-8,-2,0 'red* '< \
RETURN* «LJ
*

closeup:* .._—.

PALETTE 0,-1,-1,1 'blue* 1 j
PALETTE 1,1,1,1 'white* *—*
PALETTE 2,0,0,0 'black*

PALETTE 3,-85,-2,0 'red*

WINDOW CLOSE 1*

SCREEN CLOSE 1*

STOP*

*

*

readkey:*

36 £J

. Recreation

WINDOW 4,"Speech",(250,70)-(390,110),16,1*

IF TalkFlag=l THEN*

talk*="Now I can talk."*

PRINT talk**

TalkFlag=l-TalkFlag*

GOSUB talk*

GOTO clearmouse*

END IF*

IF TalkFlag=0 THEN*

talk*="OK, I'll be quiet."*

PRINT talk**

GOSUB talk*

TalkFlag=l-TalkFlag*

END IF*

*

c1earmouse:*

WHILE MOUSE(0)<>0:WEND*

PRINT "Press button once"*

PRINT "to continue..."*

WHILE MOUSE(0)<>1:WEND*

WHILE INKEY*< >"":WEND*

WINDOW CLOSE 4*

RETURN*

*

talk:*

IF TalkFlag=0 THEN SAY TRANSLATE*<talk*)*

RETURN*

*

37

0

0

Pyramid Power 0
Mike Lightstone ^ ,

This colorful action game, originally written for the _.

IBM PC/PCjr, runs on any Amiga computer with JJ

512K memory. A joystick is required.

The object of "Pyramid Power" is to fill in all the cubes that

make up the pyramid by jumping onto each one—while evad

ing some hazardous pursuers. The pyramid is 6 cubes wide by

6 cubes high. If you succeed in filling all 21 cubes, you ad

vance to a new level.

Your pursuers consist of a bouncing rock and a pesky

buglike creature. The rock comes bouncing down randomly

from the top of the screen, starting over again every time it

reaches the bottom of the pyramid. The creature is a little

smarter. It constantly follows your every move as you jump

from cube to cube. If your player collides with either one, the

game ends.

You can also lose the game by jumping in the wrong di

rection and falling off the edge of the pyramid. This happens

frequently when you're fleeing in panic from the tumbling

rock or nasty creature.

Type in the program and save a copy before you run it.

The small *■ character indicates where each program line ends.

Don't try to type this character—we deliberately chose one

that's not on the Amiga keyboard. The «- character merely

shows where you should press RETURN (or move the cursor j [

off the line) to enter one program line and start another. ^—
Before running the program set the screen to 80 columns by

clicking on the Preferences icon and setting the proper width. f~j

The joystick controls your movement. Plug the joystick into ^—*
the port next to the mouse port (do not unplug the mouse).

Two Escape Routes

To make things a little easier, there are two special ways you

can avoid your pursuers. A pair of elevators flanking the base 1 j
of the pyramid stand ready to transport you at any time to the

38 :ij

Recreation

"Pyramid Power" for the

512K Amiga features color

ful action on a three-

dimensional playing field.

apex. To get on the elevator, you have to jump upward from

the cubes at the bottom corners of the pyramid. Just get on the

elevator and ride to the top. You can use an elevator as often

as you like. But be careful not to miss when you jump, or

you'll fall off the edge and lose the game.

The scoring system is pretty simple. Jumping on an empty

cube is worth 100 points times the number of the level you're

on, and elevator rides subtract 100 points times your level

number. In other words, cubes are worth 100 points on level

1, 200 points on level 2, and so on. Elevator rides subtract 100

points on level 1, 200 points on level 2, and so on. Advancing

to a new level earns a bonus of 1000 points. The program

keeps track of your current score and high score, but the high

score may reflect the points you gained before your last eleva

tor ride. Finally, Pyramid Power gets harder at the third level

and again at the eighth.

Pyramid Power
The left-arrow symbols in this listing indicate when to press RETURN at the end of each

program line. Do not attempt to type the arrows themselves.

4

setup:4

CLEAR ,250004

CLEAR ,65536&4

SCREEN 1,320,200,2,14

WINDOW I,"11, (0,0)-(311,25), 16, 14

WINDOW 2,M",(0,0)-(311,185),16,14

WINDOW OUTPUT 24

CLS4

39

CHAPTER ONE

PALETTE 0,0,0,04 * |

PALETTE 3,1,1,14 AJ
PALETTE 2,.8,0,.934

PALETTE 1,0,.93,.874 ~,

* 1 J
DIM b(12,7),c(80),f(80)4

sp«.25slev«l:hs-0:RANDOMIZE TIMER4

CLSsLOCATE 4,8a COLOR 2,04

PRINT "PYRAMID- -POME R"4

COLOR 3,0:LOCATE 10,lsGOSUB player4

PRINT "The object of the game is to change theH4

PRINT "color of all the cubes while avoiding"4

PRINT "the bouncing rocks and creatures. Use"4

PRINT "joystick #2 to move. For a fast tripM4

PRINT "up, take the elevators. Be careful not"4

PRINT "to fall off the edges."4

BOSUB creatureshape4

GOSUB button*

4

restart:4

CLS:LOCATE 4,10:PRINT"P1ayer:":PUT(150,20), a4

LOCATE 8,10:PRINT"Creature:":PUT (155,50),q4

LOCATE 12,10:PRINT"Rock:":CIRCLE (158,92),5,34

PAINT (158,92),3,3:LOCATE 16,104

PRINT"Elevator:":LINE(165,123)-(185,112),34

LINE-(205,123),3:LINE-(185,134),3:LINE-(165,123),34

BET(151,87)-(164,97),c:GET(164,111)-(206,135),f4

60SUB button*

4

readdata:4

RESTORE:FOR z«l TO 7:FOR zl»0 TO 124

READ b(zl,z):NEXT zl,z4

4

start:4

CLS:z1=0:FOR z»190 TO 40 STEP -264

FOR z3»70+zl*15 TO 220-zl*15 STEP 304

LINE (z3fz)-<z3,z-18),3:LINE-(z3+15,z-27),34 ~^-^

LINE-(z3,z-36),3:LINE-(z3-15,z-27),3:LINE-(z3,z-18> 1 I
• 34 }
LINE-(z3,z),3:LINE-(z3+15,z-9),3:LINE-(z3+15,z-27),
34 "r^

LINEizZ, z) - (Z3-15,z-9) , 3:LINE- (z3-15, z-27) , 34 4
PAINT(z3+7,z-9),1,3:PAINT(z3-7,z-9),2,34

NEXT:zl»z1+1:NEXT4

4
80SUB playerxy4

j«7:k=2:jl«.5:kl»-.5:k2«1.54

PUT(49+j*15,23+(k-l)*26),c4 *5 |
g-6:h=5:g1=0:h1=04 *—
PUT(50+g*15,13+(h-1)*26),q4

40 .

Recreation

fl»U:f2»5*

PUT(f1*15+56,5*26-3),f*

PUT(27,5*26-3>,f*

checksquares:*

IF xOINT(x) OR yOINT(y) THEN*

6QSUB move*

IF kl»l THEN gameover*

END IF*

IF sq=21 THEN finished*

IF xOINT(x) OR yOINT(y) THEN rock*

LOCATE 1,1:PRINT "Score:"score*

LOCATE 1,32:PRINT "Level:"lev*

IF STICK<2><>0 AND STICK<3><>0 THEN*

QOSUB move*

IF kl=l THEN gameover *

END IF*

*

rock:*

PUT(49+j*15,23+(k-l)*26),c*

IF k-INT(k) AND k1-1.5 AND j-INT(j) THEN*

jl»INT(3*RND<l))-l:jl»jl/2*

kl=-.5:k2»k-.5:S0UND 126,2*

END IF*

IF jl»0 THEN jl=-.5*

IF j=x AND k»y THEN*

60SUB creaturerock*

IF kl=l THEN gameover*

END IF*

j-j+jlak-k+kltXF k»k2 THEN kl=1.5*

IF k«8 THEN k-lsj=6:k2=.5*

PUT (49-t-j *15,23+ (k-1) *26), c*

*

creature:*

PUT <50+g*15,13+(h-1)*26),q*

IF gOINT(g) OR hOINT(h) THEN creaturecont*

IF g<x THEN gl«sp*

IF g>x THEN gl«-sp*

IF h>y THEN hl»-sp*

IF h<y THEN hl=sp*

IF h*y OR g=x THEN gl=0:hl=0*

IF g=x AND h<y THEN*

hl=sp:gl«(INT(3*RND(l))-l)*sp*

IF gl=0 THEN gl»sp*

END IF*

IF g=x AND h>y THEN*

hl«-sp:gl« <INT(3*RND(1))-1)*sp*

IF gl=0 THEN gl=-sp*

END IF*

IF h=y AND g<x THEN*

gl=sp:h1=(INT(3*RND(1))-1)*sp*

41

CHAPTER ONE U

4 /

LJ

IF hl=0 OR h+hl>6 THEN hl=-sp4

END IF4 \ (

IF h=y AND g>x THEN* ^
gl=-sp:h1=(INT <3*RND(1))-1)»sp4

IF hl=0 OR h+hl>6 THEN hl=-sp4 j

END IF4 \Jj
creaturecont:4

g=g+gl:h=h+hl4

PUT <50+g*15,13+(h-1)*26),q4 i"7

IF x=g AND y«h THEN4 LJ

GOSUB creaturerock4

IF kl=l THEN gameover«

END IF4

GOTO checksquares*

4

move:4

GOSUB playerxy4

IF xOINT(x) OR yOINT(y) THEN movecont4

IF STICK (2)»1 AND STICK (3) =1 THEN xl=.5:yl=»-54

IF STICK(2)—1 AND STICK(3)=1 THEN xl=-.5:yl=.54

IF STICK(2)»1 AND STICK(3)»-1 THEN xl=.5:yl«-.54

IF STICK<2)«-1 AND STICK(3)=-1 THEN xl=-.5:yl=-.54

movecont:4

x«x+x1:y=y+y14

IF x»INT(x) OR y=INT(y) THEN xl=0:yl»04

IF x-INT(x) THEN SOUND 880,1 ELSE SOUND 440,24

IF x-INT(x) AND b(x,y)»l THEN4

GOSUB rocky:PAINT<47+x115,30+(y-1)*27),3,34

sq8sq+l:b (x,y)«B0:GOSUB rocky4

nn«l:GOSUB scorecalc4

END IF4

IF sq«21 THEN RETURN4

IF x=INT(x) AND y-INT(y) AND b<x,y)=4 THEN4

GOSUB rightelevator:nn=-l:GOSUB scorecalc4

END IF4

IF x-INT<x> AND y=INT(y> AND b(x,y)=5 THEN4

GOSUB leftelevator:nn»-l:GOSUB scorecalc4

END IF4 'i {
IF x»INT<x) AND y»INT(y) AND b(x,y)=3 THEN4 =LJ
GOSUB edge:IF kl=l THEN RETURN4

END IF4 -7

IF <j«x AND k»y) OR (g»x AND h=y) THEN4 i !
GOSUB creaturerock:IF kl»l THEN RETURN4 ^
END IF4

IF y<l THEN y»l:x»6:x1=0:y1=04 ^,

GOSUB playerxy4 LJ
RETURN*

4 _

rocky:4 1 /
PUT<49+j*15,23+<k-l>*26>,c4 ^->

42 O

n
J. Recreation

H

_ PUT<50+g*15,13+<h-l)*26),q4

ti RETURN4
' ' 4

r i ghtelevator:4

PUT(f1*15+56,5*26-3),f4

z1-5:FOR z«ll TO 7 STEP-.254

80SUB playerzzl4

PUT(z*15+56,z1*26-3), f4

z3»6-zl4

SOUND z3*200,14

60SUB playerzzl4

PUT(z*15+56,z1*26-3),f4

zl»zl-.25:NEXT4

PUT < f1*15+56,5*26-3),f4

x»6:y=l:RETURN*

4

1eftelBvator:4

PUT (27,5*26-3),f4

zl»5:F0R z=0 TO 4 STEP .254

PUT(40+z*14,15+<zl-l)*26),a4

PUT(z*15+27,z1*26-3),f4

z3=6-zl4

SOUND z3*200,14

PUT(40+z*14,15+(zl-l)*26),a4

PUT(z*15+27,zl*26-3),-f4

zl»zl-.25sNEXT4

PUT(27,5*26-3),f4

x-6:y-l:RETURN4

4

finished:*

CLSsFOR Z2»3 TO 0 STEP -14

z»13:zl"104

FOR z3«l TO 114

LINE <155-z,100-z1)-(155+z,100+z1),Z2,b4

z«z+13:zl=»zl+84

SOUND z*10,24

NEXT:NEXT4

score=score+lev* 1000s lev=slev+14 .«

IF lev>2 THEN sp».54

IF lev>7 THEN sp»14

sq»0sCOLOR 3,0sts=ts+21:GOTO readdata4

4

creaturerock:4

GOSUB playerxysFOR zl=l TO 204

x»x+SIN(zl)/5sG0SUB playerxy4

SOUND 255,14

GOSUB playerxysx»x-SIN(zl)/54

NEXT:kl=l:RETURNS

4

edges 4

z-y+.4syl»-.2sIF x<6 THEN xl«-.12 ELSE xl=.124

43

CHAPTER ONE

edgeconts4

IF z>6 THEN z=64

z=z+y1z x«x+x1s yl=y1+.034

PUT<52+x*14,U+<z-l>*26),a4

SOUND 2*180,14

PUT<52+x*14,ll+(z-l)*26>,a4

IF z>6 THEN kl»lsRETURN4

GOTO edgecont4

garneover: 4

CLS:IF score>hs THEN hs=score4

ts=ts+sq:LOCATE 6,9sPRINT"High Scores"hs4

LOCATE 10,9s PRINT"You scoredllscorellpoints-"4

LOCATE 12,9sPRINT"You fi1led"ts"squares."4

LOCATE 14,9sPRINT"You were on level "MID«<STR*<lev>

2) "•"4

LOCATE 20,4sPRINT"Do you wish to play again <Y/N>?"

4

key3s4

z*=UCASE*<INKEY*>4

IF z«="" OR (z*O"Y" AND z*OMN"> THEN key34

IF z$="Y" THEN4

score=0:lev=ls sq=0:ts=0:sp=.25s kl=0:GOTO readdata4

END IF4

GOTO quit4

4

playerxys4

PUT(52+x »14,11+(y-1)*26),as RETURN4

4

playerzzls4

PUT (64-f- (2+1) *14,18+ (z 1-1) *26), as RETURN4

4

scorecalc s 4

score-score+nn*100*1ev:RETURN4

4

griddatas4

DATA 3,3,3,3,3,3,1,3,3,3,3,3,34

DATA 3,3,3,3,3,1,0,1,3,3,3,3,34 < [

DATA 3,3,3,3,1,0,1,0,1,3,3,3,34 —'

DATA 3,3,3,1,0,1,0,1,0,1,3,3,34

DATA 5,3,1,0,1,0,1,0,1,0,1,3,44

DATA 3,1,0,1,0,1,0,1,0,1,0,1,34

DATA 3,3,3,3,3,3,3,3,3,3,3,3,34

4

quits4 - j

WINDOW CLOSE 24 LJ
SCREEN CLOSE 14

WINDOW 1,"Pyramid Power",,31,-14

CLEAR ,250004

END 4

4

44 rj

Recreation

players4

DEFINT a,q: 1=87:DIM ad):RESTORE player4

FOR i-0 TO 18READ a*sa(i)»VAL(ll«ehll+a«) sNEXTsRETURN4

DATA 13,15,2,3F8,0,FFE,0,1FFF4

DATA 0,3FFF,8000,7FFF,C000,E3F8,E000,E3F84

DATA E000,FFFF,E000,FFFF,E000,FFBF,E000,FF1F4

DATA E000,FFFF,E000,FFFF,E000,FC07,E000,FFFF4

DATA E000,7FFF,C000,3FFF,8000,404,0,4044

DATA 0,404,0,3C07,8000,0,0,04

DATA 0,0,0,0,0,0,0,04

DATA 0,0,0,0,0,0,0,04

DATA 0,0,0,0,0,0,0,04

DATA 0,0,0,0,0,0,0,04

DATA 0,0,0,0,0,0,0,04

4

crsatureshape:4

1=87:DIM q(l):RESTORE creatureshape4

FOR i=0 TO 1:READ a*sq(i)»VAL<"8ch"+a*> sNEXT:RETURN4

DATA 11,15,2,0,0,0,0,04

DATA 0,0,0,0,0,0,0,04

DATA 0,0,0,0,0,0,0,04

DATA 380,0,FE0,0,FE0,0,47C4,04

DATA 1FF0,0,3FF8,0,3FF8,0,3FFA,04

DATA 3FFA,0,1FE0,0,2010,1C0,0,3E04

DATA 0,7F0,0,7F0,0,7F0,0,3E04

DATA 0,23E2,0,57F5,0,8FF8,8000,1FFC4

DATA 0,1FFC,0,1FFC,0,3FFE,0,5FFD4

DATA 0,9FFC,8000,9FFC,8000,8FF8,8000,FF84

DATA 0,13E4,0,2002,0,2002,0,04

4

button: 4

LOCATE 22,6:PRINT "Hit the fire button to play."4

WHILE STRIB(3)=0:WEND4

RETURN4

n

n
i i

n

45

Biker Dave
David Schwener

Translation by Tim Midkiff

Here's a game guaranteed to bring out the daredevil

in any computer owner.

As the ramp nears, you focus your mind, tighten your grip on

the handlebars, and accelerate the motorcycle for the final ap

proach. The deep, throaty cry of your machine's powerful en

gine drowns the spectators7 cheers, and the onrushing wind

pushes against your body like a gigantic hand. If your speed

and timing aren't exactly right, you may overshoot the ramp

and lose control or fall short into the line of cars.

Will you earn fame by surviving the jump or tumble into

anonymity with a cartwheeling crash? As your speed mounts

and the sidelines fade into a blur, there's no more time to won

der and no chance to turn back. Only the utmost in coordina

tion and skill will bring you safely to earth on the other side.

Over the Ramp

In the upper left corner of the screen is the garage where you

begin the ride. The rest of the screen contains the racetrack,

with a couple of tunnels along the way, and a formidable ob

stacle which consists of several autos flanked by launching

and landing ramps. Pressing the left mouse button controls

your speed. (Avoid the right button; pressing it may crash the

program.) Your goal is to ride down the track, through the tun

nels, and toward the final obstacle, gaining just enough speed

to jump over the cars without crashing. The game ends when

you manage to jump nine cars at once or crash your last bike.

That may sound easy, but it's not as simple as you might

think. For one thing, your bike is a specially built stunt ma

chine with no brakes, Should you reach too high a speed,

there's no way to slow down again. And if you accelerate too

fast, the bike rises up into a wheelie. That's not bad in itself,

but if you accelerate too hard from a wheelie position, the

bike tips backwards and crashes.

46

Recreation

As you approach the launching ramp, you need to go just

fast enough to clear the parked cars, but not so fast that you

lose control and miss the landing ramp on the other side. A

successful jump requires precise timing and sure control of the

throttle. The score you earn depends on the number of cars

jumped and the number of attempts you made at that level.

Each time you jump over the cars, the racetrack crew

moves the launching ramp and adds another car to the lineup.

Unfortunately, the crew is somewhat unreliable and has been

known to change the launching ramp's angle slightly when

moving it. Thus, even though you may have jumped three

cars with a speed of 100 miles per hour, there's no guarantee

that the same speed will work every time.

Typing It In

Type in and save the program to disk. Before running the pro

gram, set the screen to 80 columns by clicking on the Prefer

ences icon and setting the proper width. To run the program,

select Start from the Run menu.

Biker Dave

The left-arrow symbols in this listing indicate when to press RETURN at the end of each

program line. Do not attempt to type the arrows themselves.

GOSUB Initialize*

*

Setup:*

COLOR 3,0:CLS:RANDOMIZE TIMER*

GOSUB IntScreen*

sp=5:b*=" M:sl=70:s2=l10:jp=100:bi=5:t=0:tr=l:s=0:t

c=3:so=10:f=1000*

?OR i=0 TO 255: IF i<128 THEN pw(i)=127 ELSE pi!*(i>=-
N 128:NEXT:WAVE 3,pw *

GET(283,1)-(307,17),t*

*

StartRun:*

FOR i=l TO 500:NEXT:x=7:y=4:PUT (x,y),d0*

FOR i=l TO 3:LOCATE 6,15:PRINTMGET READY":SOUND 176
x0,2*

>OR j=l TO 250:NEXT:LOCATE 6,15:PRINT" "*
^FOR j=l TO 250:NEXT:NEXT:FOR i=l TO 150:NEXT*
WHILE x<280 AND sp<s2*

x=x+INT(sp*.04)+l:IF MOUSE(0)<>0 THEN sp=sp+5*
LOCATE 21,19:PRINT sp:FOR i=l TO 20-(sp MOD 25):NEX

SOUND sp*so+f,.04,,3*

47

CHAPTER ONE

IF sp>sl THEN PUT(x,y),dl,PSET ELSE PUT(x,y),d0,PSE

T*

J5OUND sp»so+f,.04,,3*

IF sp>sl THEN PUT(x,y),dl,PSET ELSE PUT(x,y),d0,PSE

^T«

PUT(283,l),t,PSET*

WEND*

IF sp>=s2 THEN CrashRightl*

*T

JumpLeft:*

y=68:cl=114+c*B*

WHILE x>cK

x=x-INT(sp».04)-l:IF MOUSE(0)<>0 THEN sp=sp+5*

LOCATE 21,19:PRINT sp:FOR i=l TO 20-(sp MOD 25):NEX

If
^SOUND sp*so+f,.02,9Z<r

PUT(x,y),d2,PSET:PUT(283,65),t,PSET«

WEND*

dx=-3:dy=INT(dx*.35>:k=0:mp=INT(((sp-jp>*.5+jp>*.10

PUT(x,y),d2s60SUB Ramp1:PUT(x,y),d3:cl=cl-9«

10 xl=x:x=x+dxsyl=ysy=y+dysk=k+l:FOR i=l TO 20-(sp

MOD 25):NEXT«

SOUND sptso+f,.02,,3«

IF x<93 THEN IF x>88 THEN IF y<48 OR y>56 THEN Cras

hLeft«

IF x<88 THEN IF y>68 THEN PUT(xl,yl),d3:y=68:dy=0«

IF k=mp THEN dy=-dy*-3«

IF dy=0 THEN PUT(x,y),d2,PSET ELSE PUT(xl,yl),d3:PU

T(x,y),d3«

PUT(3,65),t,PSET:IF x<ll THEN PUT(92,50),hp,PSET:GO

TO JumpRight*

GOTO

JumpRight:*

cl=209-c*16:y=132«

WHILE x<cl«

x=x+INT(sp*-04)+l:IF MOUSE(0)<>0 THEN sp=sp+5«

LOCATE 21,19:PRINT sp:FOR i=l TO 20-(sp MOD 5):NEXT

SOUND sp*so+f,.02,,3*

PUT(x,y),d0,PSET:PUT(3,129),t,PSET«

WEND*

dx=4:dy=-INT(dx«-5):k=0«

PUT(x,y),d0:GOSUB Ramp2:PUT(x,y),dl«

mp=INT(((sp-jp+c)*.5+jp+c)*.105)«

20 xl=x:x=x+dx:yl=y:y=y+dy:k=k+l:FOR i=l TO 20-(sp

MOD 25):NEXT*

sbUND sp*so+f,.02,,3*
IF x>291 THEN PUT(x1,yl),dl:GOTO ResetGame*

IF y>132 THEN y=132:dy=0:IF x<280 OR x>289 THEN Cra

48

Recreation

H

_ shRight2 ELSE GoodJump*

(J IF k=mp THEN dy=-INT(dy*.3)*
PUT(x1,y1),dlsPUT(x,y),dl:GOTO 20*

*

r—| CrashLeft:*

i PUT(xl,yl),d3:y=68:k=0*

WHILE x>ll*

x=x+dx:FOR i = l TO 50-(sp MOD 25):NEXT:SOUND RND*250

r~7 *so+f ,.02,,3*
IF k=0 THEN PUT(x,y),d3,PSET:k=l ELSE PUT(x,y),d2,P

SET:k=0«

PUT(3,65),t,PSET:PUT(92,50),hp,PSET«

WEND*

GOTO ResetBame*

k=0:dx=3«

WHILE x<230<r

x=x+dx:FOR i=l TO 50-(sp MOD 25):NEXT:SOUND RND*250

*so+f,.02,,3«

IF k=0 THEN PUT(x,y),d0,PSET:k=l ELSE PUT(x,y),dl,P

SET:k=0«

PUT(283,l),t,PSET*

WEND*

GOTO ResetGame*

CrashRight2:«

k=0:dx=3*

WHILE x<291«

IF k=0 THEN PUT(xl,y),dl:PUT(x,y),d0:k=l ELSE PUT(x

1,y),d0:PUT(x,y),dl:k=0«

xl=x:x=x+dx:FOR i=l TO 50-(sp MOD 25):NEXT:SOUND RN

D*250*s0+f,- 02,,3*

WEND*

IF k=0 THEN PUT(xl,y),dl ELSE PUT(xl,y),d0*

GOTO ResetGame*

*

'*) l GoodJump: *

1 PUT(xl,yl),dl:PUT(xl,y),d0*
WHILE x<291*

_ PUT(x1,y),d0:PUT(x,y),d0*

; j xl=x:x=x+dx:FOR i=l TO 20-(sp MOD 5):NEXT*
WEND*

PUT(xl,y),d0*

\—j LOCATE 22,14:PRINT tc:c=c+l:tc=tc+c:s=2*(c*10-tr*5)

! l :tr=2*
s1=RND*10+36+8*c:s2=RND*15+81+8*c:jp=RND*20+90*

FOR i=t TO t+s STEP 5*

r~] LOCATE 23,19:PRINT i:SOUND 15000,.001,,3:FOR j=l TO
1 50:NEXT*

NEXT:t=t+s:IF c>9 THEN d=l:EndGame*

49

CHAPTER ONE LI

Li

cl=99+(c-l)*8:PUT<cl,71),rl:GOSUB Rampl*

cl=231-(c-l)»16:PUT(cl, 135),r2:G0SUB Ramp2:G0SUB Ad \ j

dCar*

GOTO 30*

* 1 i
ResetGame: * LJ

bi=bi-l: j=3*

FOR i=l TO 16:FOR k=l TO 255:NEXT*

SOUND 200,.5,RND*255* }

SCROLL (0,0)-(311,153),j ,JTa=-j : NEXT* *-J
30 IF bi>0 THEN tr=tr+l:LOCATE 22,35:PRINT bi ELSE

EndGame*

sp=5*

LOCATE 21,19:PRINT" 0 M:GOTO StartRun*

*

IntScreen:*

LINE(3,17)-(282,17),2*

LINE(282,81)-(28,81),2*

LINE(28,145)-(319,145),2*

COLOR 2*

AREA(287,144):AREA(253,135):AREA(253,144):AREAFILL*

PUT(92,50),hp *

AREA(140,80):AREA(123,71):AREA(123,80):AREAFILL*

GET(123,71)-(140,80),rl*

AREA(183,144):AREA(200,135):AREA(200,144):AREAFILL*

GET(183,135)-(200,144),r2*

FOR c=l TO 3:G0SUB AddCar:NEXT:c=3«

COLOR 14

AREA(283,17):AREA(283,1):AREA(308,1):AREA(308,81):A

REA(283,8D*

AREA(283,65):AREA(291,65):AREA(291,17):AREA(283,17)

:AREAFILL<r

AREA(27,81):AREA(27,65):AREA(3,65):AREA(3,145):AREA

(27,145)4

AREA(27,129):AREA(19,129):AREA(19,81):AREA(27,81):A

REAFILL*

LOCATE 21,13:PRINTMSPEED: 0 MPH"«

PRINT" CARS JUMPED: 0 BIKES LEFT: 5"«] t
LOCATE 23,13:PRINT"SC0RE: 0"« ~^
RETURN*

Ramp1:cl=99+c*8:PUT(c1,71),r1,PSET:RETURN*

Ramp2:cl=231-c*16:PUT(cl,135),r2,PSET:RETURN*

AddCar:c1=253-c*16:PUT(c1,137),a0,PSET:RETURN*

EndGame:*

CLS:COLOR 3*

IF d THEN*

LOCATE 5,5:PRINT"C0NSIDER YOURSELF KING BIKER!!"* 1|
ELSE*

50

Recreation

H

LOCATE 7* 4: PR INT"YOU HAVE WRECKED YOUR LAST BIKE!"*

END IF*

COLOR Is LOCATE 9,5:PRINT"YOU SUCCESSFULLY JUMPED";t

c-c;"CARS"*

LOCATE 11,11:PRINT"FINAL SCORE IS";t:COLOR 3*

LOCATE 14,8:PRINT'rPRESS BUTTON TO PLAY A6AIN":i=M0U

SE(0)*

WHILE MOUSE<0>=0:WEND*

GOTO Setups

*

Initialize:*

DEFINT a-z:DEFSNG r,g,b:DIM t(100),rl(49),r2(49),pw

(255),nw(255)*

SCREEN 1,320,200,2,1*

WINDOW 3,"", (0,0)-(311,185), 16, 1*

WINDOW OUTPUT 3*

WIDTH 40:RESTORE PaletteData:FOR i=0 TO 3:READ r,g,

bsPALETTE i,r,g,b:NEXT*

PaletteData:*

DATA .13,0,-73,.9,.9,.9,0,0,0,-8,.2,0*

*

DaveRi ght: *

DIM d0(55):RESTORE DaveRight *

FOR i=0 TO 55:READ a*:d0(i)=VAL("&H"+a*) :NEXT*

DATA 19,D,2,0,40,0,6000,0*

DATA 6074,1,807F,3,8000,6,4400,C*

DATA 3A00,IF,100,3F,BF94,40,E0FE,0*

DATA C063,0,C03E,0,0,0,0,0*

DATA 0,0,0,0,0,0,0,0*

DATA 400,0,A00,18,100,3E,3F00,7F*

DATA 7F80,63,7180,63,3180,3E,1F00,0*

DaveRightWheel:*

DIM d1(55):RESTORE DaveRightWheel *

FOR i=0 TO 55:READ a*:dl(i)=VAL("&H"+a*):NEXT«

DATA 18,D,2,18,0,18,E0,10*

DATA 80,31,F001,3F,3800,30,4000,30*

DATA C000,3F,8000,3F,8070,41,80C6,1«

DATA 807D,0,0,0,0,0,0,0*

DATA 0,0,0,1,E000,1,3800,04

DATA 7E00,0,E300,1,E300,3C,BE00,7E*

DATA 8000,62,0,63,0,3E,0,0*

*

DaveLeft:*

DIM d2(55):RESTORE DaveLeft*

FOR i=0 TO 55:READ a*:d2(i)=VAL("&H"+a*):NEXT*

DATA 19,D,2,0,0,300,60,300*

DATA 18,C0,7E,E0,0,1130,0,2E18*

DATA 0,407C,0,FEFE,0,83C1,3E,180*

DATA 63,180,3E,0,0,0,0,0*

DATA 0,0,0,0,0,0,0,1000*

51

CHAPTER ONE U

u
DATA 0,2800,0,400C,0,7E3E,0,FF3F*

DATA 0,C763,0,C663,0,7C3E,0,0*

*

DaveLeftWheel:*

DIM d3(55):RESTORE DaveLeftWheel* {

FOR i=0 TO 55: READ a*:d3(i)=VAL("ScH"+a*) :NEXT* [J
DATA 18,D,2,18,18,18,8C,8*

DATA C,F8C,FD,1CFC,82,20C,0,30C*

DATA 0,1FC,0,1FC,80,182,0,180* \ (

DATA 3D,0,46,0,7C,0,0,0* LJ
DATA 0,0,0,780,0,1C80,0,7E00*

DATA 0,C700,0,C780,0,7D3C,0,17E*

DATA 0,46,0,C6,0,7C,0,0*

*

Auto:*

DIM a0(19):RESTORE Auto*

FOR i=0 TO 19:READ a*:a0(i)=VAL("&HM+a*):NEXT*

DATA C,8,2,1F80,2040,4020,FFF0,E070*

DATA FFF0,0,0,1F80, 2040, 4020 , FFF0, 9F90<r

DATA FFF0,C030,C030,0<r

<r

Hoop: <r

DIM hp(45):RESTORE Hoop*

FOR i=0 TO 45:READ a*:hp(i)=VAL("&H"+a*):NEXT«

DATA A,15,2,1E00,3300,6180,6180,C0G0*

DATA C0C0,C0C0,C0C0,C0C0,C0C0,C0C0,C0C0,C0C0*

DATA C0C0,C0C0,C0C0,C0C0,6180,6180,3300,1E00*

DATA 1E00,3300,6180,6180,C0C0,C0C0,C0C0,C0C0*

DATA C0C0,C0E0,C0E0,C0E0,C0E0,C0E0,C0E0,C0C0*

DATA C0C0,6180,6180,3300,1E00,A00,400*

*

RETURN*

*

u

0

u

Li

52: [J

n

n

n Laser Strike
Barbara Schulak

n Translation by Tim Midkiff

In this strategy game for one or two players, your

mission is to locate and vaporize your opponent's

hidden space force before your force suffers the

same fate. Includes speech synthesis and stereo

sound effects.

"Laser Strike" is a strategy game based on several popular

board games (Battleship is probably the most famous). How

ever, unlike the board games, the action in Laser Strike occurs

in outer space. Two players secretly deploy their spaceships

around the galaxy and then try to locate the opponent's ships

by firing laser strikes on the two-dimensional galaxy grid. The

first player to find and destroy all the opponent's ships is the

winner.

Type in the program and save it to disk. Before running

the program, set the screen to 80 columns by clicking on the

Preferences icon and setting the proper width. To run the pro

gram, select Start from the Run menu.

Beginning Play

Laser Strike begins by asking each player to enter his or her

name. If you wish to play against the computer, press RE-

—j TURN without typing anything at the first name prompt. If

1 you press RETURN at both name prompts, the computer plays
the entire game by itself.

p-| The program then displays two grids, one for each player.

i In the first stage of the game, each player decides where to lo
cate the ships in his or her grid. The deployment must be se-

*—I cret, so the second player needs to look away from the screen

\ while the first player deploys ships, and vice versa. To deploy

a ship, simply move the cursor to the desired location on the

i—, screen with the cursor keys and press the space bar. After

1 choosing the location, you must also decide whether to deploy
the ship horizontally or vertically. You cannot place a ship so

CHAPTER ONE U

u

"Laser Strike/' a strategy

game with stereo sound

effects.

U

0

L)

that it overlaps the border. If you attempt to place a ship ille

gally, the program warns you and gives you another chance.

After both players' ships have been placed, the contest

begins. The players alternate firing laser shots on each other's

grids. To fire a shot, move the cursor to the desired location;

then press the space bar. If you hit a ship, that square of the

grid is marked in the color of the ship you hit. If you miss, the

square is marked in a neutral color. The game continues until

one player has found and eliminated all of the other player's

ships. At that point you can exit the program or play a new

game.

To hear the stereo effect, make sure that both of the

Amiga's audio channels are connected to your monitor or am

plifier as explained in the user's manual.

Laser Strike

The left-arrow symbols in this listing indicate when to press RETURN at the end of each

program line. Do not attempt to type the arrows themselves.

DEFINT a-z:DEFSNG r,g,b:SAY '•"«

DIM g(l,9,9),c(l,9,9),nh(l,5),xh(l,5),yh(l,5),dx(l,

5),dy(1,5),ta(1,5),s(27,8),wl(255),w2(255)«•

SCREEN 1,320,200,3,1:WINDOW 3,"",(0,0)-(311,186),16

,1: WINDOW OUTPUT 3: COLOR 6,0<e

FOR i =0 TO 255s w1(i)=RND*255-128:w2(i)=RND*255-128:

NEXT*

RESTORE PaletteDataiFOR i=0 TO 7:READ r,g,b:PALETTE

i,r,g,b:NEXT«

PaletteData:*

DATA .13,0,-73,.13,0,.73,1,.73,0,.8,0,-93,.33,.87,0

, - 8, - 2, 0, . 9, . 9, . 9,0,. 73, - 73*

54

LJ

U

LJ

LJ

U

P]
'—' Recreation

\—! RESTORE VoiceData:FOR i=0 TO 8:READ v%(i):NEXT*

' ! VoiceData:*
DATA 110, 0, 150, 0, 22200, 64, 10, 1, 0*

WIDTH 40:CLS:RANDOMIZE TIMER*

jH FOR co=l TO 7:CLS:LINE(l,l)"-(7,7),co,BF:BET(l,l)-(8

,8>,s(0,co>:NEXT*

CLS: LOCATE 11, 14: CALL Echo ("LASER STRIKE", v7.()): PRI

gx(0)=24:gx(1)=192:gy=64*

b*=" "*

RESTORE ShipNames:FOR i=2 TO 5:READ s$(i):NEXT*

ShipNames:*

DATA Expiorer,Fighter,Bomber,Mothership*

FOR i=0 TO 1*

PRINT "Player"+STR*<i+l>;:INPUT p*(i):IF p*(i)="" T

HEN cp(i)=l:p*<i)="Computer"*

NEXT:CLS:LOCATE 7,6:COLOR 1,0:PRINT"GRID 1"SPC(15)"

GRID 2"*

GOSUB DrawGrid:LOCATE 20,1:COLOR 6,0 *

FOR n=5 TO 2 STEP-1:1=10-LEN (s*(n))<r

PRINT SPC(1)s«(n)SPC(13+1)s*(n):NEXT*

*

Dep1oySh i ps:*

d=0:FOR pp=0 TO l:p=ABS(pp-l):ls(p)=5:F0R n=5 TO 2

STEP-1:er=l*

WHILE er=l*

LOCATE 1,1:PRINT p*(pp>*

PRINT"Deploy your "s*(n)"-";*

FOR i=l TO n:PUT(i*8+POS(0)*8,8),s(0,n),PSET:NEXT*

IF cp(pp)=0 THEN GOSUB Human ELSE x=INT(RND*(10-n))

:y=INT(RND*(10-n)>*

GOSUB SelectDir*

WEND*

GOSUB ClearTop:NEXT:GOSUB DrawGrid:NEXT*

p=l:d=l:GOSUB ClearTop:PALETTE 1,-5,.5,-5*

FOR i=0 TO l:px(i)=0:py(i)=0:NEXT*

Mai nLoop:*

WHILE th(p)<14:p=ABS(p-1):pp=p:WHILE INKEY*<>"":WEN
D*

LOCATE 7, 6: COLOR p, ABS(p-l) :PRINT"GRID I11;:COLOR AB
S(p-l),p:PRINT SPC(15)"GRID 2"*

LOCATE 1,1:COLOR 0,1:PRINT p$(p)*

PRINT"Position and fire laser."*

IF cp(p)=0 THEN GOSUB Human ELSE GOSUB Computer*
GOSUB FireLaser:GOSUB PutFigure:GOSUB ClearTop*
WEND*

*

EndGame:*

COLOR 5,0: CLS: LOCATE 11, 15: CALL Echo ("GAME OVER" v7.
())*

CHAPTER ONE

COLOR 4sL0CATE 13,20-LEN(p*(p))/2:CALL Echo(p*(p),v

(>)

LOCATE 14,9: CALL Echo ("Has freed the galaxy!", v7.())

*

COLOR 2sL0CATE 17,12:PRINT"Play again CY/ND"*

SAY TRANSLATE*("piay again") ,vX:c=K

WHILE k*O"Y" AND k*O"N"*

k*=UCASE* (INKEY*): c=ABS(c-1) *

COLOR 5+c:LOCATE 11,15:PRINT"GAME OVER":FOR i=l TO

200:NEXT*

LOCATE 11,1:PRINT b*:FOR i=l TO 200:NEXT*

WEND*

IF k*="Y" THEN RUN*

IF k*="N" THEN CLS:END*

*

Delay:FOR i=l TO 1500:NEXT:RETURNS

*

ClearTop:LOCATE 1,1:COLOR,d:FOR i=l TO 5:PRINT b*:N

EXT:RETURNS

*

PutFigure:PUT(x*8+gx(p),y*8+gy),s(0,co),PSET:pc=c(p

,x,y):c(p,x,y> =co:RETURN*

DrawGrid:*

co=7:F0R y=0 TO 9:F0R x=0 TO 9:F0R p=0 TO Is IF c(p,

x,y)Ol THEN GOSUB PutFigure*

NEXT p,x,y:RETURN*

*

CheckXY:*

IF x<0 OR x>9 THEN er=l«

IF y<0 OR y>9 THEN er=l*

RETURN*

*

FitShip:*

xl=x*

80 xl=xl+l:IF xl<=9 THEN IF g(p,xl,y)Ol THEN 80*

xp=x1—x:xl=x*

90 xl=xl-l:IF xl>=0 THEN IF g(p,xl,y)Ol THEN 90*

xn=x—x1:tx=xn+xp—1:yl=y*

100 yl=yl+l:IF yl<=9 THEN IF g(p,x,yl)Ol THEN 100*

yp=yl-y:yl=y*

110 yl=yl-l:IF yl>=0 THEN IF g(p,x,yl)Ol THEN 110*

yn=y-y1:ty=yn+yp-l:RETURN*

*

Human:*

x=px(p):y=py(p):xl=x:yl=y:co=6:GOSUB PutFigure:k*="

"*

WHILE k*<>" ":k*=INKEY**

IF k*=CHR*(30> THEN IF xl<9 THEN xl=xl+l*

IF k*=CHR*(31) THEN IF xl>0 THEN xl=xl~l*

IF k*=CHR*(28) THEN IF yl>0 THEN yl=yl-l*

56

_>. Recreation

n

n

IF k*=CHR*<29) THEN IF yl<9 THEN yl=yl+l*

co=pc:GOSUB PutFigure:x=xl:y=yl:co=6:GOSUB PutFigur

e*

WEND:px <p)=x:py<p)=y:RETURN*

*

Computer: *

h=0:FOR n=2 TO 5:IF nh(p,n)>0 AND nh(p,n)<n THEN sh

=n:h=l*

NEXT:IF h=0 THEN 40*

x=xh(p,sh):y=yh(p,sh):IF nh(p,sh)>l THEN 20*

FOR i=0 TO 3:pr<i)=0:NEXT*

10 r=INT(RND*4):IF pr(r)=l THEN 10*

dx(p,sh)=0:dy(p,sh)=0:er=0:pr(r)=1:GOSUB FitShip*

IF r=0 THEN dx(p,sh)=l:IF tx<sh OR xp<xn THEN er=l*

IF r=l THEN dx(p,sh)=-lsIF tx<sh OR xn<xp THEN er=l

IF r=2 THEN dy(p,sh)=lsIF ty<sh OR yp<yn THEN er=l«

IF r=3 THEN dy(p,sh)=-l:IF ty<sh OR yn<yp THEN er=l

<r

x=x+dx (p, sh) sy=y+dy (pjShX-

GOSUB CheckXY:IF er=0 THEN IF g(p,x,y)Ol THEN 50«

x=x~dx (p,sh) :y=y-dy(p,sh) :GOTO 10<-

20 x=x+dx (p9sh) :y=y+dy(p,sh)<-

er=0:GOSUB CheckXY:IF er=l THEN GOSUB 30:GOTO 20«

IF g(p,x,y)=l THEN GOSUB 30:GOTO 20*

IF g(p,x,y)=0 THEN GOSUB 30*

GOTO 50<r

30 IF ta(p,sh)=0 THEN dx(p,sh)=-dx(p,sh):dy(p,sh)=-

dy(p,sh) :ta<p,sh)=l<r

RETURN*

40 x=INT(RND*10):y=INT(RND*10)^

IF <<x+y) AND 1)=0 THEN 40*

IF g(p,x,y)=l THEN 40*

GOSUB FitShip:IF tx<ls(p) AND ty<ls(p) THEN 40*

50 co=6:GOSUB PutFigure:RETURN*

*

SelectDir:*

IF g(p,x,y)<>0 THEN 70*

k*=CHR*(29+INT(RND*2))*

IF cp(pp)=0 THEN *

PRINT"Horizontal CrightD or vertical Cdownl?11*

k*=IIM: WHILE k*OCHR*(30) AND k*OCHR*<29): k*=INKEY*

:WEND*

END IF:er=0*

IF k*=CHR*(30) THEN 60*

IF y+n-l>9 THEN 70*

FOR i=y TO y+n-l:IF g(p,x,i)<>0 THEN er=l*

NEXT:IF er=l THEN 70*

yl=y:FOR y=yl TO yl+n~l:g(p,x,y)=n:IF cp(pp)=0 THEN

co=n:GOSUB PutFigure*

NEXT:RETURN*

57

CHAPTER ONE U

LJ

60 IF x+n-l>9 THEN 70*

FOR i=x TO x+n-l:IF g(p,i,y><>0 THEN er=l* M
NEXT: IF er=l THEN 70* W
xl=xsFOR x=xl TO xl+n-l:g<p,x,y)=n:IF cp(pp)=0 THEN

co=n:GOSUB PutFigure* t j

NEXT:RETURNS U
70 er=l:IF cp(pp)=0 THEN LOCATE 4,1:COLOR 5:PRINT"I

NVALID CHOICE":GOSUB Delay*

COLOR 6:co=pc:G0SUB PutFigure:GOSUB ClearTop:RETURN J j

*

FireLaser:*

WAVE 0,SIN:WAVE l,SIN:k=l*

FOR i=250 TO 1 STEP -75:k=ABS(k-l):SOUND 660,.5,i,k

<•

FOR j=l TO 500:NEXT:SOUND 0,0,0,k:FOR j=l TO 500:NE

XT:NEXT*

n=g(p,x,y>«

IF n=0 THEN PRINT"MISS!":GOSUB Delay:co=l:g(p,x,y)=

1:RETURN*

IF n=l THEN PRINT"ALREADY HIT":co=pc:GOSUB Delay:RE

TURN*

co=n:PRINT"DIRECT HIT!"*

WAVE 0,wl:WAVE I,w2*

FOR i=255 TO 10 STEP-10:SOUND 100,.1,i,0:SOUND 100,

.l,i,3:F0R j=l TO RND*20:NEXT:NEXT*

nh(p,n)=nh(p,n)+l:th(p)=th(p)+l*

g(p,x,y)=l:PUT((10+23*p+nh(p,n))»8,(24-n)*8),s(0,n)

,PSET*

IF n<>nh(p,n) THEN *

xh(p,n)=x:yh(p,n)=y*

ELSE*

FOR i=2 TO 5:IF nh(p,i)=0 THEN ls(p>=i*

NEXT*

IF n<>4 THEN *

SAY TRANSLATE*(sS(n)+" deestroyed"),vX:c=1*

ELSE *

SAY TRANSLATE*("bommer deestroyed"),vX:PRINT s*(n) \ f

* LJ
END IF*

FOR i=l TO 10:c=ABS(c-l):COLOR n+(6-n)*c,c*

LOCATE 4,20-LEN(s*<n))/2:PRINT UCASE*(s*(n))* I I
LOCATE 5, 15: PRINT"DESTROYED!11: FOR j=l TO 50: NEXT: NE ^
XT*

END IF* ;

FOR i=l TO 500:NEXT:RETURN* [J

SUB Echo<s*,vZ(l>) STATIC*

SAY TRANSLATE*(s*),vX:PRINT s*:END SUB*] |%

*

58 !u

o

0

G

Q

J

3

J

a

n

h Pioneer
Martin Mathis

n

A one- to four-player game, "Pioneer" tests your

geography skiJJs. Includes a medium-resolution map

of the United States, speech, and mouse control.

Requires 512K memory.

"Pioneer" is an educational geography game. The program

uses medium-resolution graphics (for a map of the United

States), speech and windows, and part of the game is mouse

controlled. There are several ways to play Pioneer depending

on the number of players, and it includes an Atlas option for

practice or information.

The game is easy to play: Simply answer the questions

about the states. In addition to testing your knowledge of geo

graphical facts, you'll learn how to spell names like Tallahas

see or Pennsylvania.

Typing In and Starting Pioneer

Pioneer is written in Amiga BASIC. It uses DATA statements

for the geographical information, and uses the x and y co

ordinates of the lines and points to draw the map. Be careful

typing these statements. One missing or misplaced DATA

statement can cause the program not to run or, even worse,

cause the program to be confused about which questions go

with which answers.

After you've finished typing, be sure to save a copy.

Before running the program set the screen to 80 columns by

clicking on the Preferences icon and setting the proper width.

Then type RUN or select Start from the Run menu and turn up

the volume. It takes some time for initialization.

Any system request windows will be behind the Pioneer

screen. Right after starting Pioneer, put the Workbench disk in

the drive so the speech file can be loaded.

61

CHAPTER TWO ^

u

Using the Atlas Option r~.

Selecting Fl in the main menu takes you to the atlas mode. I—'
You'll see a prompt and the map. At the prompt you can enter

one of the following: T j

• The name of a state or its mail code.

• The name of the capital or the largest city of a state.

• A number from 1 to 50 (to look for the state by its size rank). [_J

Or you can select a state by pressing the mouse button at

the approximate center of a state. In all of the above cases, the

chosen state will be painted red on the map, and an infor

mation window about it will appear, displaying the state's cap

ital, largest city, area (and rank in brackets), and its percentage

of the total United States area. Click the mouse button or

press the space bar to close the window. Hit ESC to exit the

atlas mode.

The program will protest if you try to choose the ocean, a

borderline, text, or if you type in an invalid city name.

Sometimes the program doesn't recognize a state if you

click the mouse too close to the border. Imagine a rectangle

centered within the state's borders. You can select the state

with your mouse only if you click inside this rectangle. For

that reason, for example, you must place the mouse pointer in

the eastern part of Michigan and the western half of California

to choose those states. Just practice a bit to get the idea.

Playing Alone

If you select the single-player option by pressing F2 from the

main menu, you'll have to decide on the difficulty level. Lev

els 1, 2, and 3 present the easiest questions, but level 3 allows

fewer wrong answers. Levels 4, 5 and 6 have more difficult j j

questions, and levels 7, 8, and 9 contain the most difficult *—*
questions. The more difficult the question, the more points

you'll get for a correct response. ~(

The idea is to make it from Washington D.C. to either the ^
Midwest, the South, or the West Coast (depending on the

level) by answering questions and scoring points. Each point h j

moves you closer to your destination. Correctly answering an ^
easy question gives you one point; a medium-level question is

worth two points, and a hard one yields four points. ^~j

If you don't know the correct answer press the HELP key, *—'

62 \J

EducationH

n

r^ which counts as a wrong answer. At the top of the screen,

! i your current location and the distance remaining are dis

played. Each point equals about 60 miles.

_ At a "Show me..." question, point to the state with the

•) mouse pointer and press the button. The other answers have
to be typed in. The game is over after you reach your destina-

^ tion or when too many questions are answered incorrectly.

| } Your performance will then be rated.

Two to Four Players

If you select F3 from the menu you'll need to also indicate the

number of players and their names. The object is to win as

many states (and their land area) as possible. The final score is

the number of states multiplied by the percentage of land area

owned. The bigger the state you want to go for, the harder the

questions become and the more of them you'll have to answer

correctly. Small states are useful, too, because they can multi

ply your score and are easier to get. Just pick the state you

want to win with your mouse. Note that there will never be

questions about the state you're currently playing for.

At the beginning of a new round you can press the ESC

key to abort the game. Otherwise the game ends after all 50

states are taken. The HELP key is also active again.

When the game is over each player gets his or her own

score window, which will be behind the Hall of Fame window.

Use the drag bar and the size gadget to view the other windows.

Pioneer

The left-arrow symbols in this listing indicate when to press RETURN at the end of each

program line. Do not attempt to type the arrows themselves.

n <
CLS:CLEAR,30000:RANDOMIZE TIMER:OPTION BASE 14

DIM s$(50,5),abc*(50),abc(50),xpos(50),ypos(50),w(5

r-| 0),e(50),n(50),s(50),xtr(89),ytr(89),1ct*(89)4

! usa=35393418c4
clr$="> ll:clrl*="A:

_ "4

[4 SCREEN 1,320,200,2,1: WINDOW 1, MM, (0,0)-(311,185), 16

PALETTE 0,-3,-2,14

r-> PALETTE 1,.33, .87,04

! PALETTE 2,.95,.25,04

PALETTE 3,.3,.2,14

H 63

CHAPTER TWO U

0
babble "just a moment piease"4 _

FOR i«l TO 50:FOR j«l TO 5sREAD s*(i,j):NEXT4 j |
abc*(i)«s*(i,l):abc(i)«VAL(s*(i,5))4 ^
IF s*(i,4)»"s" THEN s*(i ,4)»s*(i ,3)4

NEXT4 T "|

shell=254 \J
shell: array«0:FOR i=l TO 50-shell4

IF abc(i)<abc(i+Bhell) THEN SWAP abc*(i),abc*(i+she

11):SWAP abc(i),abc(i +shel1):array=14

NEXT:IF array-1 THEN shell4

shell-INT(shell/2):IF shell>«1 THEN shell4

RESTORE FillDat:FOR 1=1 TO 50:READ xpos(i),ypos(i):

NEXT4

RESTORE PickDat:FOR i»l TO 50:READ w(i),e(i),n(i),s

(i):NEXT4

x2»62:y2«37:RESTORE USBorderDat:60SUB DrawUS4

COLOR 2,0:LOCATE 3,10:h**"Weicome to the":p*«"U.S.A

."4

FOR i=l TO 14:FOR j«l TO 3:LOCATE j,B+i:PRINT MID*(

LJ

IF j>l THEN LOCATE j-l,8+i:PRINT » "4

FOR k=0 TO 74:NEXT k,j,i4

RESTORE StateBorderDat:60SUB DrawState4

x2»40:y2-124:RESTORE AKDat:60SUB DrawAK4

FOR i*50 TO 1 STEP -1:PAINT(xpos(i),ypos(i)),1,34

IF i=ll THEN c»l:60SUB 984

IF i«22 THEN c»l:GOSUB 994

NEXT4

FOR i-1 TO 0 STEP -.002:PALETTE 3,i/3,i/5,i:NEXT

4

FOR 1=1 TO 6:FOR j»l TO 5:LOCATE j,24+i:PRINT MID*(

p*,i,l>4

IF j>l THEN LOCATE j-l,24+i:PRINT " "4

FOR k"0 TO 124:NEXT k,j,i4

babble "this is the gaim. off py.onier."4

BOSUB clr:LOCATE 5,25:PRINT " "4

RESTORE TrackDat:FOR i=l TO 89:READ xtr(i),ytr(i>,1

ct*(i):NEXT 4 s" j

4 Li
MainMenu:4

WINDOW 2,"Pioneer Menu",(15,20)-(142,52),0,1:COLOR

2,0:WINDOW OUTPUT 24 ({
PRINT "Fl Atlas Mode"4 ^
PRINT "F2 One Pioneer"4

PRINT "F3 Some Pioneers"4 , ,

PRINT "F4 Quit";4 HJ

babble "pleez select"*

keyl:4

b««INKEY«:IF b*<CHR«(129) OR bS>CHR»(132) THEN keyl)' j

4 (J
ON ASC(b*)-128 80T0 Atlas,Pionl,Some,Kwit4

64 Q

Education

n

Atlas:4

WINDOW CLOSE 2:WINDOW OUTPUT l:c*«""4

IF tgl«0 THEN babble "at.lass mode":tgl»14

LOCATE 1,14:COLOR 2,3sPRINT "Atlas mode":COLOR 2,04

3 LOCATE 3,1:PRINT "> "c»5 4

b*«INKEY«:BQSUB Pick:nogo«0:babble x*:IF b*«CHR*<13

) AND c»<>"" THEN 44

IF b»»CHR1KB> AND c*OMI1 THEN c*«LEFT*(c*,LEN<c*)-l

):LOCATE 3,1:PRINT clr*:60T0 34

IF b*»CHR»<27> THEN tgl=0:BOSUB clr:BOTO MainMenu4

IF b*>="0" AND b*<="9" AND VAL<c*+b«><51 AND LEN(c*

)<2 THEN c*»c*+b*:BOTO 34

IF <b*<"A" OR b*>"z"> AND b*<>" " AND b*<>"." THEN

34

c»»c«+b*:IF LEN(c«)>19 THEN c*="":LOCATE 3,1:PRINT

clr*4

BOTO 34

4 IF UCASE*(c«)-"PORTLAND" THEN port=14

IF VAL<c*>>0 AND VAL(c«)<51 THEN c«=abc*<VAL(c*))4

FOR i«l TO 50:FOR j=l TO 44

IF UCASE*(s*<i,j))»UCASE*(c*> THEN ii=i:jj=j:GOTO 5

4

NEXT j,i:babble "sorry, try again.":BOSUB clr:SOTO

Atlas4

5 x*»s«(ii,1)+","+s*(ii,2):PAINT(xpos(ii),ypos(ii))

,2,3 4

IF ii»ll THEN c=2:BOSUB 984

IF ii=22 THEN c»2:BOSUB 994

BOTO Statelnfo4

4

Pionl:4

di di t=0:e$="":d*="questions":xdc»242:ydc=93:curloc$

^"Washington DC"4

CLS:PRINT:PRINT " Choose level":PRINT " (1-9)

?"4

10 b*=INKEY«:IF b*<"l" OR b*>"9" THEN 10 ELSE CLS:P

RINT:PRINT " Level chosen":PRINT SPACE*<6>"("b«")"

4

lev»VAL<b«):e*«"easy II:xd=l?4:yd=82:dest$=nMid West

":mi 1e»860:pstep=61.46:frm«l:tom=144

IF lev>3 THEN e*»e*+Mand meediurn ":xd=«157:yd=135:de

st*»"South": mi 1 e=1490: pstep*55.19: frm«15: tom=»414

IF lev>6 THEN e$«=G*+"and hard ":xd«61:yd»120:dest*«

"West Coast":mi 1e=2950:pstep«61.43:frm«42:tom=894

IF lev=l OR lev=4 OR lev=7 THEN jsm=1.34

IF lev=2 OR lev=5 OR lev=8 THEN jsm=1.24

IF lev=3 OR lev=6 OR lev»9 THEN jsm»l-14

points=tom-frm+l:abspts=INT(points*jQm+-5):mtg=mile

65

CHAPTER TWO u

0
e*«e*+d*:babble e*4

WINDOW CLOSE 2:WIND0W OUTPUT 14 \ J

LOCATE 2,3 s COLOR 2: PRINT "Your destination is the •• Lm4
dest*"."4

LOCATE 4,3:COLOR 1:PRINT "You start from Washington ^
D.C."4 \j

FOR i»0 TO 24

FOR j»0 TO 2:CIRCLE<xdc,ydc),j,3:CIRCLE(xd,yd),j,3:

NEXT: FOR k=0 TO 999:NEXT4 C~\

FOR j»0 TO 2:CIRCLE<xdc,ydc>,j,2:CIRCLE<xd,yd),j,2: J—'
NEXT:FOR k*0 TO 999:NEXT k,i4

babble "try to make it from Washington dc to the "+

dest*4

curloc=frm-l:lev=INT<lev/3+.9>4

town* <1)»"Chicago":town*(2)="Dallas":town*(3)«"Los

Angeles"4

cmnt*<l)»"not getting killed by Al Capone.":cmnt*(2

^"competing with J.R. Ewing."4

cmnt*(3)B|lmessing with Mexican immigrants. ":cmnt*(4

)»"getting into Hollywood's society."4

6ameLoop:4

FOR i=0 TO 9:b*»INKEY*:NEXT4

IF curloc>«frm THEN 4

FOR i»l TO 50:IF lct*(curloc)»s*(i,2) THEN curloc*»

NEXT4

END IF4

GOSUB StatLin4

question»INT(RND(l)*lev)+l:ON question GOSUB easy,m

ediumvhard4

IF question-3 THEN question-44

IF ql"0 AND question«l THEN GOSUB EasPick:60T0 204

c*»"":GOSUB GetAnswer:rl*=c*:eas»04

20 GOSUB Check4

abspts«abspts-question:IF ans=l THEN4

babl«INT(RND(l)*3)4

IF babl»0 THEN babble "yoo are right"4

IF babl«l THEN babble "that's correct. "4 j, (

IF babl»2 THEN babble "you've got that one. "4 L-J
poi nts=points-questi on:mi1e«mi1e-questi ontpstep:cur

Ioc»curloc+question4 - -

IF curloc>tom THEN curloc»tom4 J_J
FOR i»frm TO curloc:PSET<xtr<i),ytr<i)),2:S0UND RND

•500+90,1:NEXT4

curloc*=lct*(curloc)4 j j

IF curloc*»"D" THEN mile=0:didit=l:curloc*=dest*:GO O

SUB StatLin:GOTO Gover4

GOTO GameLoop4 .

END IF4 1J
IF b*OCHR*(139) THEN babble "oops. "4 ^

66 D

Education

IF eas-0 THEN LOCATE 4,1:COLOR 3:PRINT "The right a

nswer is ";:COLOR 2:PRINT r*;:COLOR 3:PRINT ".":FOR

i-0 TO 6999:NEXT4

IF abspts<«0 THEN didit«0:GOSUB StatLin:GOTO Gover4

60T0 GameLoop4

Bover:4

LOCATE 3,12sCOLOR 2,3:PRINT "The Game is Over"4

babble "game over":FOR i-0 TO 7999:NEXT:BOSUB clr4

IF didit=0 THEN*

IF curloc >«frm THEN:FOR j»0 TO 1:CIRCLE(xtr(curloc

>,ytr(curloc)>,j,2:NEXT4

LOCATE 1,1:COLOR 1:PRINT "You didn't make it to you

r destination."4

COLOR 0:PRINT "You wind up in ";:COLOR 2:PRINT curl

oc*;:COLOR 04

PRINT " after":COLOR 2:PRINT INT(mtg-mi1e);:COLOR 0

:PRINT "miles <";4

COLOR 2:PRINT STR* (INT ((mtg-mi le>/mtg*100+. 5) > "y. ";
4

COLOR 0:PRINT "), where you"4

job«INT(RND(l)*5):IF job=0 THEN PRINT "build a log

cabin and become a hunter."4

IF job»l THEN PRINT "get into the lumberjack busine

ss. "4

IF job=2 THEN PRINT "build a house and start tannin

g."«
IF job=3 THEN PRINT "settle down and raise a family

."4

IF job=4 THEN PRINT "die lonely a couple of years 1

ater."4

babble "well, that's tough luck, py.onier.":GOTO Ja

clyn4

END IF4

LOCATE 1,1:COLOR 1:PRINT "You made it to the "dest*

" ! ! ! "4

COLOR 0:PRINT "You build the town of ";:COLOR 2:PRI

NT town*(lev)4

COLOR 0:PRINT "where you have a hard time"4

IF lev»3 AND RNDdX.5 THEN lev«44

PRINT cmnt$(lev):FOR i»0 TO 3999:NEXT4

babble "you are faimous and rich, py.onier"4

Jaclyn:4

babble "hit any key to continue."4

FOR i»0 TO 9:a*=INKEY«:NEXT4

30 a*»INKEY*:FOR i=frm TO curloc:PSET(xtr(i),ytr(i)

),2:NEXT4

FOR i=frm TO curloc:PSET(xtr(i),ytr(i)),3:NEXT4

IF a»=IIM THEN 304

COLOR 1,0:CLS:x2=62:y2=37:RESTORE USBorderDat:GOSUB

DrawUS4

RESTORE StateBorderDat:GOSUB DrawState4

67

CHAPTER TWO u

0
x2=40:y2=124:RESTORE AKDat:BOSUB DrawAK4

FOR i=50 TO 1 STEP -1:PAINT(xpos<i>,ypos<i>>,1,34 1 J
IF i-il THEN c*l:GOSUB 984 v-/
IF i=22 THEN c=l:GOSUB 994

NEXT:GOTO MainMenu 4 —

4 W
StatLin:4

BOSUB clr:COLOR 0,1:FOR i«l TO 40:LOCATE l,i:PRINT

11 ":NEXT4 j (

LOCATE 1,2: PRINT "Loc: "curloc^milea^STRSaNTdnile <—»
+.5))4

LOCATE 1,21 a PRINT "/ "MID* (mi le*, 2,LEN(mi le*) -1) " m

lies to go"4

RETURN4

4

Pion2:4

round»round+l:p2»l:F0R g»l TO p:rl*="":IF sta>49 TH

EN Game0ver4

COLOR 2,3:LOCATE 1,1:PRINT "Round"round4

PRINT "Pioneer "p1Kg>" >":COLOR 1,04

babble "your turn "+p«(g>4

7 IF MOUSE(0)<>0 THEN 74

FOR i-0 TO 9:b*-INKEY*:NEXT4

8 b*«INKEY*4

IF b*«CHR*<27) AND g=l AND round>1 THEN round»round

-1:babble "game aborted after"+STR»(round)+" rounds

11: GOTO Game0ver4

GOSUB Pick:IF nogo=l THEN nogo»0:babble x*:BOTO 8 4

h«ii:are°VAL(s*<h,5>):G0SUB clr:COLOR 2,3:LOCATE 1,

1:PRINT s*(h,l>4

GOSUB easy:IF ql=0 THEN GOSUB EasPick4

c*«"":IF ql>0 THEN GOSUB BetAnswer:rl*=c*:eas=04

GOSUB Check:IF ans»0 THEN nay 4

IF are>9200 THEN4

babble "alrite, but there's more to answer"4

GOSUB clr:COLOR 2,3:LOCATE 1,1:PRINT s*(h,l)4

GOSUB medium:c*»"":GOSUB SetAnswer:rl*=c*:GOSUB Che

ck:eas«04 } j

IF ans«0 THEN nay4 ^
END IF4

IF are>59000Se THEN4 T

babble "really, you're getting closer"4 j
GOSUB clr:COLOR 2,3:L0CATE 1,1:PRINT s*(h,l)4

GOSUB mediurn:c*=IMI:GOSUB GetAnswer:rl*»c*:GOSUB Che

ck:easa04 r~{

IF ans»0 THEN nay4 [j
END IF4

IF are>130000& THEN4 _

babble "yes, but the last question is a hard one."4 ; J

GOSUB clr:COLOR 2,3:LOCATE 1,1:PRINT s*(h,l>4 ^

68 (J

i Education

n

«* GOSUB hardsc*»""sGOSUB GetAnswersrl*«c*sGOSUB Check

IF ans"0 THEN nay*

END IF*

yups4

babble "o.k! you won the state."4

sta«sta+ls score(g)=score(g)+aressta(g)=sta(g)+18GOT

0 goon4

nay: 4

IF b*OCHR»(139) THEN babble "nope"4

PAINT<xpo3<h>,ypos<h>>,l,34

IF h-11 THEN c-liBOSUB 964

IF h«22 THEN c«lsGOSUB 994

IF eas<-0 THEN COLOR 2,0sLOCATE 4,1:PRINT "The corre

ct answer is ";sCOLOR IsPRINT r*; sCOLOR 2sPRINT "."

4

goons4

GOSUB WindwsGOSUB clrsNEXTsGOTO Pion24

4

6ame0vers4

GOSUB clrsCOLOR 2,3sLOCATE 2,14sPRINT "GAME OVERMsC

OLOR 3,0s LOCATE 3,134

PRINT round"Rounds"sbabble"gaifn overMsWind»lsg=14

WINDOW 2,p*(l),(5,13)-(170,73),16,1:WINDOW OUTPUT 2

sGOSUB Wind4

WINDOW 3,p*(2),(136,30)-(306,90),16,1:WINDOW OUTPUT

3sGOSUB Wind4

IF p>2 THEN WINDOW 4,p*(3),(5,103)-(170,163),16,1:W

INDOW OUTPUT 4sGOSUB Wind4

IF p>3 THEN WINDOW 5,p*(4),(136,120)-(306,1S0),16,1

sWINDOW OUTPUT 5sGOSUB Wind4

WINDOW 6," Pioneers' Hall of Fame",(60,40)-(250,160

),19,1:WINDOW OUTPUT 64

SOUND 1100,6sFOR i«l TO psper*«STR*(score<i>)sGOSUB

Percentage4

score(i)-VAL(per*):ttl(i)=sta(i)*score(i>sNEXT4

FOR i»l TO p-lsFOR j«l TO p4

IF ttl(iXttKj) THEN SWAP p»(i) ,pU(j) sSWAP ttl(i>,

ttl(j)sSWAP sta(i)vsta(j)sSWAP scored) fscore(j)4

NEXT j,i4

FOR i«l TO psIF i«l THEN COLOR 2,3 ELSE COLOR 1,34

PRINTSPRINT STR*<i>". "p»(i)M "4

COLOR 2,0:PRINT sta(i)MXMscore(i)M=Mttl(i)4

NEXTsCOLOR lsPRINTsPRINT "Hit any key to continue";

4

FOR i=0 TO 9sb*=INKEY*sNEXT4

11 b**INKEY«sIF b*=llH THEN 114

FOR i»2 TO 6sWINDOW CLOSE isNEXTsWINDOW OUTPUT 14

COLOR IsGOSUB clrsWind»04

FOR i»50 TO 1 STEP -IsPAINT(xpos(i) ,ypos(i)) , 1,34
IF i=ll THEN c=l:BOSUB 964

69

CHAPTER TWO ^

Q
IF i-22 THEN c=l:GOSUB 99*

NEXT* \ j
p2»0:GOTO MainMenu* w
*

GetAnswer: * f~~

COLOR 3,0:LOCATE 3,1:PRINT clrl*:COLOR 1,0:LOCATE 3 \J
,3:PRINT c**

GA:*

b*«INKEY*:IF b»»CHR*<13> AND c$OMI1 THEN RETURN* f j
IF b$»CHR*<139> THEN c*=MII:eas«0:babble "help":RETU i—>

RN4

IF b«=CHR»(8) AND c*OMI1 THEN c»=»LEFT*(c»,LEN(c*)-l

):GOTO GetAnswer*

IF (b*>Hzn OR b*<"0"> AND b«<>" " AND b»<>".M THEN

GA*

c»»c*+b*:IF LEN<c*>>19 THEN c*=MI1*

GOTO GetAnswer*

«

Check:*

ans»0*

IF port=l AND (UCA6E*(rl*)»M0REG0NM OR UCASE*(rl*)=

"MAINE") THEN ans=l:port=0*

IF UCASE*(r*)=UCASE*(rl*) THEN ans=l*

IF hard=0 THEN RETURN*

hard=0:IF ql=0 THEN*

r1«VAL(r$):r2»VAL(rl*):rl=rl-r1/100*15:rh«rl+r1/100

15

IF rl<»r2 AND r2<=rh THEN ans=l:RETURN*

END IF*

IF ql=l THEN*

FOR i=l TO 50:IF UCASE*(abc$(i))=UCASE*(rl$) THEN i

i=i*

NEXT:IF ii=VAL(ar$) THEN ans=l*

END IF*

RETURN*

*

EasPick:*

9 IF MOUSE(0)<>1 THEN 9*

x-M0USE(3):y»M0USE(4):F0R i«=l TO 50*

IF x>w(i) AND x<e(i) AND y>n(i) AND y<s(i) THEN rl*

NEXT:IF rl*«MM THEN 9*

LOCATE 3,3:PRINT rl*:eas»l*

RETURN*

*

Windw:*

WINDOW 2,p*(g>,(g»30,35+g*18)-(170+g*30,100+0*18),0

,1:WINDOW OUTPUT 2*

Wind:*

COLOR 3,0:PRINT "States owned:":COLOR 2:PRINT ota(g

70

H
Education

f^)4

' i COLOR 3:PRINT "Area owned in sq.mi.:":COLOR 2:PRINT
score(g)4

COLOR 3:PRINT "Land area of USA:":COLOR 2:per*«STR*

HI (score(g))4
GOSUB Percentage:PRINT " "per*" %";4

IF Wind»l THEN 4

r-n PRINT:PRINT INT(sta(g)/round*1000)/1000"States/turn

\ \ ";<
g«g+l:SOUND g*200,4:FOR i»0 TO 2999:NEXT:RETURN4

END IF4

COLOR 1:PRINT:PRINT:PRINT "Hit SPACE"54

FOR i=0 TO 9:b*sINKEY«:NEXT4

key3:4

b*-INKEY*:IF b*<>" " AND MOUSE(0)<>1 THEN key34

WINDOW CLOSE 2:WINDOW OUTPUT 1:RETURN4

4

Some:4

CLS:PRINT:PRINT "How many players"4

PRINT " (2 to 4) ?"4

key2:4

b»=INKEY$:IF b*<"2" OR b*>"4" THEN key24

p-VAL(b«):babble b*+" py.oniers-"4

CLS:PRINT "Enter names :"4

FOR i»l TO p:babble "player"+STR*<i>:INPUT p*(i>4

IF p«(i)«"" THEN p»(i)«"Playerll+STR»(i)4

p* < i)«UCASE*(LEFT*<p* < i),15)):score < i)-0:sta(i)»0:N

EXT4

WINDOW OUTPUT 1:WINDOW CLOSE 24

babble "fine, let's start."4

round=0:sta»0:GOTO Pi on24

4

Statelnfo:4

GOSUB clr:av«(w(ii)+e(ii))/2:ar»14

IF av>160 THEN WINDOW 2,x*,(8f25)-(140,98),0,14

IF av<161 THEN WINDOW 2,x»f(170,25)-(302,98),0P14

__ WINDOW OUTPUT 24

It COLOR 3,0:PRINT "Capital:":COLOR 2:PRINT s«(ii,3)4

COLOR 3:PRINT "Largest City:":COLOR 2:PRINT s»(ii,4

)4

^ COLOR 3:PRINT "Area in sq.mi.:":COLOR 2:PRINT s(ii

FOR i»l TO 50:IF abc*(i)«s«(ii,1) THEN ar-i4

NEXT:PRINT "("ar")"4

"1 per*-s*(ii,5):GQSUB Percentage:PRINT per«"y. of USAr

S ea"4
COLOR 1:PRINT:PRINT "Hit SPACE";4

«, FOR i-0 TO 9:b»«INKEY*:NEXT4

i \ 6 b»-INKEY«:IF b«<>" " AND MOUSE(0)<>1 THEN 64
WINDOW CLOSE 2:WINDOW OUTPUT 1:PAINT(xpos(ii),ypos(

71

CHAPTER TWO

0
IF ii-ii THEN c»l:BOSUB 984 --.

IF ii«22 THEN c«l:SOSUB 994 M
IF port«l THEN port«0:ii«37:BOTQ 54

GOTO Atlas*

Percentages4 w

a*«STR*(INT(VAL(per*)/usa*10000)/100)s per*«RIBHT*(a

♦,LEN<a«)-l>4

RETURN4 \ (
4 ^
Pick:4

x*.»»si:n08s«0SIF MOUSE<0)»1 THEN 4

x-MOUSE(3):y»MOUSE(4)s pt=POINT(x,y)4

IF x<4 OR x>308 OR y<4 OR y>182 THEN Pick*

IF pt-0 THEN x*-"salt water, yuch!M:nogo-isRETURN4

IF pt«3 THEN x*«"watch the border patrol!"8nogo-lsR

ETURN4

IF pt-2 THEN x$»"nice try kiddo!":nogo=l:RETURN*

PAINT(x,y),2,3:FOR i«l TO 504

IF x>w(i) AND x<e(i) AND y>n(i) AND y<s(i) THEN x*»

s«(i,l)+","+s*(i,2):jj=l:ii»i:60T0 14

NEXT:PAINT(x,y),l,3:nogo=14

1 IF i-=ll THEN c»2:B0SUB 984

IF i"22 THEN c«2:60SUB 994

IF nogo«l OR p2=l THEN RETURN4

60T0 Statelnfo4

END IF4

nogo«l:RETURN 4

4

easy:4

q=INT(RND*50)+l:IF q=ii THEN easy*

ql«INT(RND*3)4

IF ql-0 THEN q«»"Show me "+s*(q,1)+" on the map.M:r

$«s*(q,l>4

IF ql»l THEN q*»"Mail code for M+s*(q, l)-t-n?N8r«"B«(

q,2)4

IF ql-2 THEN q«»MWhat state's "+s«(q,2>+11 short for

?M:r*-s»<q,l)4 T /

60T0 qa4 LJ
medium:4

q-INT(RND*50)+l:IF q»ii THEN medium* ^

ql"INT(RND*4)4 [\

IF ql«0 THEN q*»s*<q,4>+" is the largest city of?11:

r*«s*<q,l):IF s*(q,4)»MPortland>a THEN port«14

IF ql=l THEN qt>«s»(q,3)+M is the capital of?M:r**s* ^ /

<l>« UU
IF ql=2 THEN q*«MWhat's the capital of "+s*(q,1)+"?
":r*»s*<q,3>4

IF ql«3 THEN q*=uLargest city of "+s«(q,l)+" is?":r }]
*«s«(q,4)4 LJ

72 _ [J

H
' Education

»s 60T0 qa4

L I hards 4

q=INT(RND*50)+lsIF q«ii THEN hard4

ql«INT(RND*2)shard«14

7^ IF ql-0 THEN qH="Area of "+s*(q, 1)+" (+/- 157.)?M:r*

«s»(q,5)4

IF ql»l THEN ar««STR»(INT(RND*48)+2) sq*="Thell+ar*+11

. largest state ?"sr*=abc*(VAL(ar«))4

H qas«
COLOR 3,0:LOCATE 2,IsPRINT MQs";sCOLOR 2,0sPRINT q*

4

COLOR 3,0sLOCATE 3,IsPRINT "AsM;sCOLOR 1,0«

RETURN*

«

Kwits*

WINDOW OUTPUT IsWINDOW CLOSE 24

FOR i=0 TO 1 STEP -002s PALETTE 3,i/3,i/5,iSNEXT4

FOR i«0 TO 1 STEP .002sPALETTE 1,.33,.87-i/1.43,isN

EXT4

LOCATE 11,14s COLOR 2sPRINT "Bye, bye ..."4

babble "thanx for bothering my bits, hurry back"4

FOR i»0 TO 124 STEP .2sPALETTE 2,RND,RND,RNDsLINE(8

0+i,10)-(80+i,175),0s NEXT4

SYSTEM4

4

clrs4

LOCATE 1,1sFOR i«0 TO 3s PRINT "

"4

NEXTsRETURN4

4

DrawUSs4

READ xl,ylsIF xl—1 THEN RETURN4

LINE(x1,y1)-<x2,y2),3sx2«x1sy2«y1s80T0 DrawUS4

4

DrawStates4

READ xlfyl,x2,y2sIF xl—1 THEN RETURN4

LINE(xl,yl)-(x2,y2),3s80T0 DrawState4

^ DrawAKs4
READ xl,ylsIF xl—1 THEN RETURN4

^ LINE(x1,y1)-(x2,y2),3s x2«x1s y2»y1s GOTO DrawAK4

; ? 4
98 PAINT(78,143),c,38PAINT(69,138),c,3sPAINT(98,168

),c,3sPAINT(94,158),c,34

<—! RETURN 4
I 99 PAINT(205,75),c,38PAINT(195,60),c,3sRETURN4

4

GeoDatas4

^ DATA Alabama,AL,Montgomery,Birmingham,50766,Alaska,
AK,Juneau,Anchorage,570833,Arizona,AZ,Phoenix,s,113

5104

73

CHAPTER TWO

DATA Arkansas,AR,Little Rock,s,53187,California,CAf

Sacramento,Los Angeles,1562974

DATA Colorado,CO,Denver,*,103598,Connecticut,CT,Har

tford,Bri dgeport,48724

DATA Delaware,DE,Dover,Wi1mington,1933,Florida,FL,T

allahassee,Jacksonvilie,54157,Georgia,GA,Atlanta,s,

580604

DATA Hawaii,HI,Honolulu,s,6427,Idaho,ID,Boise,s,824

13,Illinois,IL,Springfield,Chicago,556464

DATA Indiana,IN,Indianapolis,s,35936,Iowa,IA,Des Mo

ines,s,55965,Kansas,KS,Topeka,Wichita,817834

DATA Kentucky,KY,Frankfort,Loui svi11e,39674,Loui si a

na,LA,Baton Rouge,New Orleans,445204

DATA Maine,ME,Augusta,Portland,30995,Maryland,MD,An

napolis,Baltimore,98384

DATA Massachusetts,MA,Boston,s,7826,Mi chigan,MI,Lan

si ng,Detroit,569594

DATA Minnesota,MN,St.Paul,Minneapolis,79548,Mississ

ippi,MS,Jackson,s,472344

DATA. Mi ssouri,MO,Jefferson Ci ty,St.Loui s,68945,Mont

ana,MT,Helena,Billings,1453884

DATA Nebraska,NE,Lincoln,Omaha,76639,Nevada,NV,Cars

on City,Las Vegas,1098954

DATA New Hampshire,NH,Concord,Manchester,8992,New J

ersey,NJ,Trenton,Newark,74684

DATA New Mexico,NM,Santa Fe,Albuquerque,121336,New

York,NY,Albany,New York,473794

DATA North Carolina,NC,Raleigh,Charlotte,48843,Nort

h Dakota,ND,Bismarck,Fargo,692994

DATA Ohio,OH,Columbus,Cleveland,41004,Oklahoma,OK,0

klahoma City,s,686564

DATA Oregon,OR,Salem,Portland,96187,Pennsylvania,PA

,Harrisburg,Philadelphia,448924

DATA Rhode Isiand,RI,Providence,Providence,1054,Sou

th Carolina,SC,Columbia,s,302074

DATA South Dakota,SD,Pierre,Sioux Falls,75956,Tenne

ssee,TN,Nashvilie,Memphi s,411544

DATA Texas,TX,Austin,Houston,262015,Utah,UT,Salt La

ke City, s, 82076, Vermont, VT, Montpel ier, Burl ington,92

734

DATA Virginia,VA,Richmond,Norfolk,39700,Washington,
WA,01ympia,Seattle,665124

DATA West Virginia,WV,Charleston,8,24124,Wisconsin,
WI,Madi son,Mi 1waukee,544244

DATA Wyoming,WY,Cheyenne,Casper,969884

USBorderDat:4

DATA 62,37,110,43,164,46,182,52,174,59,187,56,205,6

0,192,65,192,80,196,83,198,80,1994

DATA 65,205,62,214,82,228,68,252,54,254,39,262,38,2

70,50,260,65,263,69,251,80 4

74

u

u

Education

~s DATA 247,101,251,108,228,136,239,159,238,163,230,16

\ 1,218,143,210,146,194,1454

DATA 190,153,171,152,155,162,157,170,148,166,136,15

1,130,150,128,155,112,1374

p. DATA 101,139,65,126,53,113,44,77,56,37,62,43,62,37,

v I -1,-14
4

_ StateBorderDat:4

DATA 46,71,99,83,81,106,135,113,135,112,166,111,86,

81,75,130,63,76,59,914

DATA 59,91,78,116,106,88,101,139,112,137,129,137,12

9,137,129,112,129,1154

DATA 142,115,142,115,142,125,142,125,167,128,167,12

8,170,151,130,44,126,894

DATA 84,40,75,77,128,69,101,66,101,66,98,86,98,86,1

35,90,135,90,134,1124

DATA 87,40,90,62,90,62,100,69,153,46,156,86,156,86,

165,102,165,102,167,1304

DATA 128,63,153,64,127,79,155,80,135,95,162,96,174,

59,171,68,171,684

DATA 181,81,181,81,178,95,178,95,190,108,190,108,18

6,120,186,120,182,1324

DATA 182,132,183,143,183,143,190,143,190,143,193,14

6,194,81,195,103,195,1034

DATA 190,108,180,80,192,79,156,76,176,76,160,92,178

,92,166,114,187,1154

DATA 168,133,181,133,197,82,212,80,206,82,207,96,20

7,96,199,1034

DATA 199,103,195,103,253,53,260,64,260,66,248,69,24

8,69,244,58,251,684

DATA 252,55,248,70,251,78,250,73,257,70,257,70,259,

72,255,71,256,744

DATA 251,78,241,72,241,72,220,77,220,77,225,89,225,

89,245,84,245,844

DATA 244,75,243,84,249,92,248,91,245,91,245,91,242,

85,247,95,238,934

_ DATA 238,93,237,89,237,89,229,90,229,90,229,88,207,

]). 96,217,98,217,984
^ DATA 224,87,234,90,227,102,227,102,219,103,219,103,

216,99,218,102,213,1084

— DATA 188,113,246,102,222,107,212,117,186,121,228,11

/ | 4,228,114,240,121,217,1164

DATA 231,131,206,118,212,140,228,139,201,141,201,14

1,200,145,194,1194

f] DATA 197,145,52,51,79,58,181,58,192,654

t DATA 97,164,103,171,103,171,95,176,95,176,94,168,94
,168,98,164,91,1534

^ DATA 97,158,97,158,92,159,92,159,90,154,84,146,89,1

. I 47,85,151,86,152,794

DATA 140,81,144,81,144,76,144,76,144,75,141,75,141,

H 75

CHAPTER TWO

78,139,71,136,69,1394 --.

DATA 69,139,65,137,65,137,68,134,68,134,72,136,-1,- W
1,-1,-14

AKDat:4

DATA 40,124,53,136,46,153,59,166,58,168,47,158,35,1 f]

54,32,159,26,1584 U
DATA 12,164,14,161,25,153,16,147,18,130,29,124,40,1

24,-1,-14

FillDat:4 *—*
DATA 200,130,34,135,90,120,180,120,60,100,120,100,2

55,75,246,89,230,1504

DATA 220,130,78,143,80,70,190,90,200,90,170,80,140,

100,210,100,180,1404

DATA 260,50,240,90,255,70,205,75,160,60,190,130,170

,100,110,60,140,904

DATA 70,90,255,60,250,80,120,120,240,70,240,110,140

,50,215,90,150,1204

DATA 70,60,230,80,257,72,230,120,140,70,200,115,150

,140,90,90,250,604

DATA 240,100,70,50,225,95,180,70,110,804

4

PickDat:4

DATA 197,207,119,140,15,59,124,168,81,102,110,136,1

69,183,115,133,45,604

DATA 75,120,106,135,90,109,251,257,73,78,244,248,87

,93,202,240,141,1634

DATA 213,224,123,139,67,105,135,177,77,99,68,78,184

,196,80,103,196,2074

DATA 82,98,161,178,77,92,136,163,96,111,201,216,101

,108,170,184,133,1524

DATA 257,271,39,59,238,243,86,94,252,264,67,70,195,

^14, 59,80,156,172,45,764
DATA 185,196,125,143,166,179,92,114,91,128,41,66,13

6,157,80,95,68,82,80,1024

DATA 253,259,61,67,245,252,79,85,105,130,112,137,22

2,246,59,72,222,2514

DATA 106,114,130,154,45,64,207,220,82,96,143,167,11 } f

2,125,47,76,59,714 LJ
DATA 225,245,77,85,256,260,71,75,228,236,119,128,12

9,155,64,79,196,2144 _

DATA 112,118,130,167,129,170,85,105,87,106,247,252, j 4
58,69,231,249,96,1024 L-'
DATA 52,80,38,51,222,228,90,102,180,193,65,79,102,1

27,70,864

♦ U
TrackDat:4

DATA 240,90,MD,238,88,MD,235,88,MD,231,89,MD,227,90 _

,WV,223,89,WV,219,88,0H4 \ j

DATA 215,88,OH,210,89,OH,205,90,IN,201,90,IN,199,87 <—>

,IN,196,85,IN,194,82,D4

76 f]

Education

DATA 241,98,VA,240,101,VA,240,105,NC,239,109,NC,238

,U3,NC,238, U7,NC4

DATA 235,120,SC,232,122,SC,229,124,SC,225,126,6A,22

1,127,6A,217,128,BA4

DATA 213,129,6A,209,130,AL,205,130,AL,201,130,AL,19

7,131,AL,193,132,MS4

DATA 189p133,MS,185,134,MS,181,135,LA,177,135,LA,17

3,135,LA,169,136,LA4

DATA 165,136,TX,161,136,TX,157,135,D,240,96,VA,236,

95,VA,232,95,VA,228,95,WV4

DATA 224,96,WV,220,96,WV,216,97,OH,212,98,KY,208,98

,KY,204,98,IN,200,99,IN4

DATA 196,100,IN,192,100,IL,188,101,IL,184,102,MO,18

0,102,MO,176,103,M04

DATA 172,104,MO,168,105,MO,164,106,KS,160,107,KS,15

6,108,KS,153,110,KS4

DATA 151,113,0K,149,115,0K,145,116,0K,141,116,TX,13

7,117,TX,133,117,TX4

DATA 130,118,TX,125,118,NM,121,118,NM,117,117,NM,11

3,117,NM,109,116,NM4

DATA 105,115,NM,101,114,AZ,97,113,AZ,93,112,AZ,89,1

U,AZ,85,110,AZ4

DATA 81,110,AZ,77,U0,NV,74,U3,CA,71,115,CA,68,117

,CA,65,119,CA,61,120,D4

4

SUB babble <a$> STATIC*

SAY TRANSLATED(a*)4

END SUB4

4

77

Hickory, Dickory,
Dock

u

u

) i

r /

Barbara Schulak

Translation by John Krause) i

Fun and educational, "Hickory, Dickory, Dock'* helps

children learn the concepts of telling time by relating

a digital clock display to a conventional clock face.

Includes speech synthesis.

"Hickory, Dickory, Dock" offers an enjoyable way for children

to learn how to tell time. Type in the program; then save a

copy before running it. You'll also need to set Preferences to

60 columns.

When you run Hickory, Dickory, Dock, it displays a

round clock face as well as a digital display. Four different ac

tivities are available. The first option lets youngsters practice

telling time. As the positions of the clock hands change on the

screen, the digital clock display changes as well. This shows

the relationship between the spatial position of hands on a

clock face and the numeric representation of time.

The other three activities test a youngster's time-telling

ability for hours only, hours and half-hours, or five-minute in

tervals. Pick the option you want from the menu bar using the

right mouse button. Move the hands to the correct position by

using the mouse pointer and left button to change the hours , ->

or minutes. Button detection can be slow; be sure to hold the LJ
button down for about one full second. After five correct an

swers, the program plays a brief song and displays some ,—

graphics as a reward. After three incorrect choices, the pro- L->
gram automatically moves the clock hands to the correct

position. , 7

u

u

78

Education

Hickory, Dickory, Dock
The left-arrow symbols in this listing indicate when to press RETURN at the end of each

program line. Do not attempt to type the arrows themselves.

CLEAR,300004

GOSUB init4

1oop:4

MENU 1,0,14

IF MENU(0)=1 THEN ON MENU(l) GOSUB practice,hours,h

alf,five,quit4

IF p THEN GOSUB SetClock4

GOTO Ioop4

practice:4

COLOR 3,0:LOCATE 2,17:PRINT " Practice "4

SAY TRANSLATE*(''prakt i s.")4

p=l:hour=0:minute=0:GOSUB UpdateAnalog4

HourDigital=0:MinuteDigital=0:GOSUB UpdateDigital4

RETURN4

hours:4

p=0:COLOR 3,0:LOCATE 2,17:PRINT " Hours Test "4

SAY TRANSLATE*("hours test.11)4

FOR count=l TO 54

MinuteDigital=0:HourDigital=INT(RND*12)*124

GOSUB GetAnswer4

NEXT4

GOSUB music*

RETURN4

half:4

p=0:COLOR 3,0:LOCATE 2,17:PRINT "Half Hours Test"4

SAY TRANSLATE*("half hours test-")4

FOR count=l TO 54

MinuteDigital=CINT(RND)«72:HourDigital=INT(RND*12)»

124

GOSUB GetAnswer*

NEXT4

GOSUB music*

RETURN4

five:4

p=0:COLOR 3,0:LOCATE 2,17:PRINT " 5 Minute Test"4

SAY TRANSLATE*("five minut test-")4

FOR count=1 TO 54

MinuteDigital=INT(RND*12)*12:HourDigital=INT(RND*12

)*124

GOSUB GetAnswer*

NEXT4

GOSUB music*

RETURN4

quit:*

SYSTEM4

SetClock:4

answer=04

79

CHAPTER TWO u

u

IF MOUSE(0>=1 THEN*

IF MOUSE<3>>220 AND MOUSE(3X290 THEN*

IF M0USE(4)>27 AND MOUSE(4X36 THEN*

GOSUB IncHour*

IF p THEN BOSUB IncHourDigital* i)

END IF * I—'■
IF M0USE(4)>45 AND MOUSE (4X54 THEN*

GOSUB IncMinute* _

IF p THEN GOSUB IncMinuteDigital* \ I
END IF * t-J
IF M0USE(4)>63 AND MOUSE (4X72 AND p=0 THEN*

COLOR 1,0*

IF INT(hour/12)=HourDigital/12 AND minute=MinuteDig

ital THEN*

LOCATE 10,23:PRINT "Correct!"*

answer=2:SAY TRANSLATE*("corekt-")*

ELSE*

LOCATE 10,23:PRINT "Wrong!"*

answer=l:SAY TRANSLATE*("wrong-")*

END IF*

FOR i=0 TO 2000:NEXT*

LOCATE 10,23:PRINT SPACE*(9)*

END IF*

END IF*

END IF*

RETURN*

GetAnswer:*

MENU 1,0,0*

GOSUB UpdateDi gi tal:wrong=0*

loopl: GOSUB SetClock*

IF answer=0 THEN loopl*

IF answer=2 THEN*

RETURN*

ELSE*

wrong=wrong+1*

IF wrong<3 THEN*

GOTO loopl*

ELSE* ! /
WHILE MinuteDigitalOminute: GOSUB IncMinute: WEND* t*-J

WHILE HourDigital/12<>INT(hour/12):G0SUB IncHour:WE

ND* -7

count=count-l* J_J
FOR t=0 TO 4000:NEXT*

END IF*

END IF*]]

RETURN* Lj
musi c:*

FOR i=0 TO 27:SOUND f(i),t(i):SOUND 0,1:NEXT:RETURN

* j (
IncHourDigital:* (-J
HourDigital=(01dHourDigital+12) MOD 144*

80 \J

Education

GOSUB UpdateDigital*

RETURN*

IncMinuteDigital :*

MinuteDigital=(01dMinuteDigital+12) MOD 144*

HourDigital=(01dHourDigital+l) MOD 144*

GOSUB UpdateDigital*

RETURNS

IncHour:*

hour=(01dHour+12) MOD 144*

GOSUB UpdateAnalog*

RETURNS

IncMinute:*

rninute=(01dMinute+12) MOD 144*

hour=(01dHour+l) MOD 144«

GOSUB UpdateAnalog*

RETURNS

number:^

COLOR l,2<r

LOCATE r(i),c(i)«

IF i>9 THEN PRINT "1";«

PRINT CHR*(48+(i MOD 10))«

RETURNS

UpdateDigital:^

GOSUB DrawDigital*

01dHourDi gi tal=HourDi gi tal:01dMi nuteDi gi tal=Mi nuteD

GOSUB DrawDigital*

RETURNS

DrawDigital:^

IF 01 dHourDi gitaK 12 THEN 01 dHourDi gi tal =01 dHourDi g

ital+144«

IF 01dHourDigital>119 THEN PUT (165,139),d(0,1>«

PUT (200,139),d(0,(01dHourDigital\12) MOD 10)«

PUT (245,139),d(0,INT(01dMinuteDigital*5/120))«

PUT (280,139),d(0,(01dMinuteDigital»5\12) MOD 10)«

RETURNS

Cl rAnalog :■£

GOSUB MinuteHand^

COLOR 2:AREAFILL«

GOSUB HourHand^

AREAFILL*

i=CINT(01dMinute/12):IF i=0 THEN i=12«

GOSUB number*

RETURN*

UpdateAnalog:*

GOSUB ClrAnalog*

01dMinute=minute:GOSUB MinuteHand*

COLOR lsAREAFILL*

01dHour=hour:GOSUB HourHand*

AREAFILL*

RETURN*

n

CHAPTER TWO u

MinuteHand:*

AREA (cx,cy)* 1 {
AREA (cx+60*x((OldMinute+143) MOD 144),cy+60*y((Old ^
Minute+143) MOD 144))*

AREA (cx+80*x(OldMinute MOD 144),cy+80*y(OldMinute ,

MOD 144))* LJ
AREA (cx+60*x((OldMinute+l) MOD 144),cy+60*y((OldMi

nute+1) MOD 144))*

RETURN*) j

HourHand:* <■—i
AREA (cx,cy)*

AREA (cx+40*x((OldHour+142) MOD 144),cy+40*y((OldHo

ur+142) MOD 144))*

AREA (ex+50*x(OldHour MOD 144),cy+50*y(OldHour MOD

144))*

AREA (cx+40*x((OldHour+2) MOD 144),cy+40*y((OldHour

+2) MOD 144))*

RETURN*

init:*

SAY ""*

SCREEN 2,320,200,2,1*

WINDOW 2," Hickory, Dickory, Dock ",,2,2*

PALETTE 0,-6,-5,-3*

PALETTE 1,0,0,0*

PALETTE 2,-7,-7,-7*

PALETTE 3,0,0,0*

DIM s (300,6) , d (300,9) , x (143) , y (143) , r (12) , c (12) , f (2

7),t(27)*

MENU 1,0,1,"Test "*

MENU 1,1,1,"Practice "*

MENU 1,2,1,"Hours "*

MENU 1,3,1,"Half hours"*

MENU 1,4,1,"5 minute "*

MENU 1,5,1,"Quit "*

MENU 2,0,0,"":MENU 3,0,0,"":MENU 4,0,0,""*

RANDOMIZE TIMER*

pi=4*ATN(l):p=l*

FOR i=0 TO 143* I ;

x(i)=COS(pi *(i/72-.5))* Lj

y(i)=SIN(pi *(i/72-.5))*.84*

NEXT*

FOR i=0 TO 6* \"\

CLS:READ k* LJ
FOR j=l TO k:READ x,y:AREA (x,y):NEXT*

AREAFILL:GET (0,0)-(32,48),s(0,i)*

NEXT *] 1
FOR j=0 TO 9* ^
CLS:READ a$*

FOR i=l TO 7* , ;

IF MID*(a*,i,l)="l" THEN PUT (0,0) ,s(0, i-D* LJ
NEXT*

82

Education

GET (0,0)-(32,48),d(0,j) *

NEXT*

CLS: ERASE s*

FOR i = l TO 12:READ r (i) ,c (i) :NEXT*

FOR i=0 TO 27:READ f(i),t(i):NEXT*

cx=100:cy=85*

CIRCLE (ex,cy),100,1:PAINT (cx,cy),l*

CIRCLE (ex,cy),90,2:PAINT (cx,cy),2*

COLOR 1,2*

FOR i=l TO 12:G0SUB number:NEXT*

FOR i=0 TO 143 STEP 12*

CIRCLE (cx+84*x(i),cy+84*y(i)),3*

PAINT (cx+84*x(i),cy+84*y(i))*

NEXT *

FOR i=0 TO 59*

dx=COS(pi *(i/30-.5)):dy=SIN(pi *(i/30--5))*

LINE (cx+82*dx,cy+69*dy)-STEP(4*dx,3*dy)*

NEXT

*

LINE (185,135)-(320,200),2,bf*

CIRCLE (236,151),3:PAINT (236,151)*

CIRCLE (236,171),3:PAINT (236,171)*

GOSUB DrawDigital*

LOCATE 4,23:PRINT " Hours "*

LOCATE 6,23:PRINT "Minutes"*

LOCATE 8,23:PRINT " OK? "*

SAY TRANSLATE*("welcome to hickory dickory dock-")*

GOSUB practice*

RETURN*

DATA 4,0,1,0,21,4,19,4,5 *

DATA 4,1,0,26,0,22,4,5,4*

DATA 4,27,1,27,21,23,19,23,5*

DATA 4,27,23,27,43,23,39,23,25*

DATA 4,26,44,1,44,5,40,22,40*

DATA 4,0,43,0,23,4,25,4,39*

DATA 6, 1, 22, 6, 20, 22, 20, 26, 22, 21, 24, 5, 24*

DATA 1111110,0011000,0110111,0111101,1011001*

DATA 1101101,1101111,0111000,1111111,1111101*

DATA 4,14,7,17,10,18,13,17,16,14,17,11*

DATA 16,7,13,4,10,3,7,4,4,7,3,10*

DATA 783.99,2,783-99,2, 783. 99,2,880,2,880,2,880,2, 7

83-99,11*

DATA 783- 99, 2,659.26,5,659- 26, 2,698- 46,5,698- 46, 2,6

59.26,11*

DATA 659.26, 2,523. 25,5, 523.25,2,659. 26,5, 659. 26, 2,5

87.33,5,587.33,2,880,8*

DATA 783.99,2,880,2,783.99,2,698.46,2,659.26,2,587.

33,2,523.25,11*

*

83

Switchbox

LJ

Li

Todd Heimarck > f

Translation by Philip I. Nelson Lj

A challenging two-player game of strategy,) (

"Switchbox" looks easy at first, but takes time to { '

master and permits many variations. Includes

speech and stereophonic sound effects. Requires

512K of memory.

Playing "Switchbox" is like putting dominos in place for a

chain reaction—either you're setting them in position or

you're knocking them over. Winning requires skill and a sense

of when to go for points and when to lie back and wait for a

better board. The goal is simple: You try to score more points

than your opponent by dropping balls into a box full of two-

way switches. Each switch has a trigger and a platform. If the

ball lands on an empty platform, it stops dead. But if it hits a

trigger, it reverses the switch and continues. In many cases

dropping a single ball creates a cascading effect—one ball sets

another in motion, which sets others in motion, and so on, all

the way down.

Type in the program listing and save a copy before you

run it. Before running the program, make sure that the

Amiga's display is set for 80 columns of text (if it isn't, the

numbers printed on the screen won't match the rest of the dis

play). If you've previously changed the display to 60 columns,

open the Preferences icon and change it back to 80; then close j j

Preferences, activate BASIC, and run the program as usual. '

A Box of Switches [J
Switchbox is a tale of 2's: Each switch has two parts, two posi

tions, two states, two paths in, and two paths out. The two r -

parts are the platform and the trigger. A switch can lean to the Lj

left (platform left, trigger right) or to the right (platform right,

trigger left): ;

84

Education

H

Figure 1. Switch States

Before: After:

Left switch Right switch

The trigger is weak, and always allows balls to pass. But

the platform is strong enough to hold a single ball. So the

platform either holds a ball—it's full—or it does not and is

empty. When a ball sits on a platform, the switch is said to be

loaded, or full.

Figure 2. Loaded Switch

feft

path

in

Right

path

in

H

Figure 2 shows a full switch over two empty switches.

The platform holds a ball and leans to the left. The trigger ex-

tends to the right. Note that the switch on top has two path

ways leading in, the left path and the right, and that the right

85

CHAPTER TWO

path leading out is the left path into one of the switches be- -

low. The left path of the top switch leads into the right path ij

of the switch below and to the left. If you drop a ball down

the righthand path, it hits the trigger and flips that switch to ,

the right. Then it continues down, hits the lefthand trigger be- LJ
low, and flips that switch as well.

In the meantime, the ball on the platform is set in motion

(when the switch is flipped); it then hits the trigger. The top j_J
switch is reset to point to the left. The second ball then drops

a level to the platform below, where it stops. The playing field

is composed of five levels, with four switches in the first level

and eight in the bottom level. At the beginning of the game,

there are no balls on the field—all platforms are empty—and

the position of each switch is chosen randomly.

Moving down the Path

Players alternate dropping balls into one of eight entry points.

These balls (and others) may or may not make it all the way

through the switchbox to one of the 16 exit paths. Balls fall

straight down (with one exception), so a ball's movement is al

ways predictable. When it hits an empty switch, one of two

things can happen. If it lands on the empty platform, it stops

dead in its tracks. But if it lands on a trigger, it falls through to

the next level below.

Moving balls always make it through loaded switches.

Triggers allow balls to continue, and move the switch to the

other position. If the switch is loaded, the dead ball on the

platform is put into motion and it hits the trigger that just

moved over. This makes the switch go back to its original po

sition, but with an empty platform. So when a ball hits the

trigger of a loaded switch, its motion continues unabated. The , ,

switch moves, the ball on the platform begins to fall, and it 1—'
hits the newly placed trigger. The newly emptied switch

moves back again, and the two balls drop to the next level. , 7

There's one more possibility: a ball dropping onto a plat- L>
form that already holds a ball. A platform can't hold any more

than one ball, so when this happens one of the balls slides 1 ,

over to the trigger. So the ball does not move straight down— LJ
it slides over to the next pathway. This is the exception to the

rule that balls drop in a straight line. Of course, when the ball , ,

hits the trigger, the switch changes position, causing the other L^
ball to drop and hit the trigger.

86 n

Education

^ The Chain Reaction

r At the game's start, all platforms are empty, so four of eight

entry paths are blocked. Remember that your turn ends when

'-"I a ball hits an empty platform and stops. As the switches fill

' ' up, the chances increase that a ball will descend through sev

eral levels. The goal is to score points by getting balls to pass

n all the way through the maze of the switchbox. The best way

' ■ to collect a lot of points is to cause a chain reaction.

A ball that hits a loaded switch from either side continues

on its way. And the previously inert ball on the platform starts

moving. One enters; two exit. If both of those balls encounter

full platforms, four drop from the switches. The pathways are

staggered, so the effects can spread outward, with more and

more balls cascading toward the bottom.

Rather than taking an easy point or two, it's often worth

while to build up layers of loaded switches. Watch out for

leaving yourself vulnerable, though. Because players take turns,

you'll want to leave positions where your opponent's move

gives you a chance to create a chain reaction. The best strategy

is to play defensively. Look ahead a move or two, and watch

for an opening that allows you to score several points at once.

Four Quarters

A game of Switchbox always lasts four rounds. In the first

(equality), each exit counts for 2 points. Your goal is to score

10 points. The second quarter has more points available, as

well as a higher goal. If you look at the exits, you'll see that

the further they are away from the middle, the higher their

point value. The numbers increase in a Fibonacci sequence: 1,

2, 3, 5, 8, and so on. Each number is the sum of the previous

\] two (1 + 2 = 3, 2 + 3 = 5, 3 + 5 = 8, and so on). The tar
get score in round 2 is 40.

^ In round 3 the numbers are a bit lower. They increase

/ (arithmetically (1, 2, 3, 4, and up to 8 in the corners). A goal of
20 points brings you to round 4, where you can score big.

Here the numbers are squares: 1, 4, 9, 16, 25—all the way to

) ^ 64 at the edges. In rounds 2-4, it's sometimes prudent to leave

a middle path open for your opponent to score a few points,

in order to gather a high score on the big numbers to the left
} : and right.

Each round lasts until one player has reached the goal. At

! 87

CHAPTER TWO

that point the other player has one last turn before the round

ends. It's possible to win the round on this last-chance play;

watch out for barely topping the goal and leaving a chain re

action open for the other player. An arrow points to the score-

board of the player whose turn it is. On the other side of the

screen, you'll see a number where the arrow should be. That's

the goal for the current round (the Amiga version displays the

goal on both sides of the screen, below the scoreboards).

Bonus points are awarded at the conclusion of each

round. Four numbers appear below the scoreboards. The first

is simply the total at any given point in the game. The second

is the total plus a bonus of the goal for the round if the play

er's points are equal to or greater than the goal. For example,

if the goal is 20 and you get 18, there's no bonus. If you score

22, the bonus is the goal for that round (20) and you'll have

42 points. The third number under the Scoreboard is the dif

ference between scores for the rounds. If you win by 2 points,

2 points are added to your score (and 2 subtracted from the

other player's). The final number is the grand total of the first

three scores and bonuses. Rounds 1 and 3 are fairly low-scoring,

with low goals. You may want to seed the field with extra

balls during these quarters, so you can collect more points in

the second and fourth quarters.

Variations

Although the goal of the game is to score the most points,

there's no reason you couldn't agree to play for low score. In a

"lowball" game, you would try to avoid scoring points. You

wouldn't necessarily play backwards; you would have to ad

just the strategy of where to place the balls. Fill up the board

as much as possible and leave your opponent in a situation

where he or she is forced to score points.

The Setup routine determines the goal for each round and

the point values for the exit paths. You can prolong the game

by doubling the goals; this also dilutes the value of a big score

at the beginning of a round, preventing one player from win

ning on the first or second turn. An interesting variation is to

assign negative values to some slots. If some paths score nega

tive points, you are forced to think harder about where the

balls will drop.

In addition to the numbered keys (1-8), the plus (+) and

88

Education

minus (—) keys are active. Pressing plus drops a ball at ran

dom down one of the eight entry paths. Pressing minus allows

you to pass your turn to your opponent.

Once you've mastered the regular game, you can add

some new rules. Each player gets three passes per half, similar

to the three timeouts in a football game. If you don't like the

looks of the board, press the minus key to use one of your

passes. After one player has skipped a turn, the other player

must play (this prevents the possibility of six passes in a row).

It's also a good idea to make a rule that a player can't pass on

two consecutive turns. You could also give each player two

random moves to be played for the opponent. In other words,

after making a move, you could inform your opponent that

you're going to give him or her one of your random moves,

and then press the plus key.

Here's one more change you could make: Instead of alter

nating turns, allow a player to continue after scoring. When a

player drops a ball and scores some points, the other player

will have to pass (by pressing the minus key). If the first

player scores again, the opponent passes again, and so on un

til no more points are scored.

Playing Solitaire

To drop a ball, press a numbered key (1-8). The numeric

keypad is convenient for choosing a move. By using the pass

and random-turn options, you can play against the computer.

Here are the rules for solitaire play:

1. The computer always scores first. At the beginning of every

round, the computer plays randomly until at least one point

is acquired. Press the plus key for the computer's turn. You

must continue passing (skip your turn with the minus key)

until the computer puts points on the board.

2. After the first score by the computer, you can begin to play.

When the computer has a turn, press the plus key for a ran

dom move.

3. Whenever you make points, you must pass again until the

computer scores. When the computer gets more points, you

can begin to play again. This rule means you should hold
back on the easy scores of a few points; wait until there's an

avalanche available.

4. If you're the first to reach the goal, the computer gets a last

89

CHAPTER TWO u

chance. Don't make this move randomly; figure out the best r ,

opportunity for scoring and play that move for the last- uJ

chance turn.

In the interest of keeping these programs to a manageable \ f

length, no attempt has been made to provide an "intelligent"

computer opponent. Once you become familiar with the game,

you might find it an interesting project to try adding some \(

routines that give the computer a rational basis for picking one

move over another.

Switchbox

The left-arrow symbols in this listing indicate when to press RETURN at the end of each

program line. Do not attempt to type the arrows themselves.

'Switchbox for 512K Amiga*

'Set Preferences for 80 columns*

*

Restarts*

CLEAR:BOSUB Setup*

*

Mains*

FOR Round=l TO 4*

PUT <80,7+Round*8),Ball*

PUT (515,7+Round*8>,Bal1*

GOSUB Values *

SAY TRANSLATE*<Intro* <Round))*

Keepgoings*

Who=l—Who 'alternate players*

GOSUB Taketurn *

IF SC(l-Who,Round)=>Points(Round,0) THEN Nextround*

GOTO Keepgoing*

*

Nextrounds*

FOR j=0 TO Is FOR k=5 TO 8*

SC(j,k > =0s NEXTs NEXT*

FOR j=0 TO Is FOR k=l TO 4* If

gx=Points(k,0)sac=SC(j,k)* LJ
SC(j,5)=SC(j,5)+ac*

SC(j, 6)=SC(j,6)-(ac=>gx)*gx*

SC(j,7)=SC(j,7)+SC(j,k)-SC(l-j,k)* | (
NEXTsNEXT* l—'
FOR j=0 TO Is FOR k=6 TO 7*

SC(j,k)=SC<j,k)+SC(j,5)* i-

NEXTsNEXT* [_j
FOR j=0 TO IsFOR k=5 TO 7*

SC(j,8)=SC(j,8)+SC(j,k>*

NEXTsNEXT*) f

FOR j=0 TO 1 * L-)
FOR k=5 TO 8sy*=STR«(SC(j,k))*

90 LJ

Education

x=LEN(y*) :tx=8+j*64-x:ty=4+k*

LOCATE ty,tx-l:PRINT SPACE*(2)*

LOCATE ty,tx:PRINT y**

NEXT:NEXT*

NEXT Round *

*

Gohome:*

LINE (240,70)-(362,100),2,bf*

LOCATE 11,32: PR INT - Play again? "*

text*=Who* (ABS (SC (1,8) >SC (0,8))) *

text*=text*+" wins this game.."^

text*=text*+"How about another?"*

SAY TRANSLATE* (text*) *

FOR j=0 TO 10:x*=INKEY*:NEXT*

Again:*

x*=INKEY*:IF x*=llM THEN Again*

SAY TRANSLATE* ("OK - ") *

IF xS^-y11 OR x*=MY" THEN WINDOW CLOSE 2:GOTO Restar

t^

SAY TRANSLATE*(" Bye-bye.")«

WINDOW CLOSE 2<r

END*

Taketurn:*

FOR j=0 TO nb:LB<j,0)=0:NEXT:nb=Hr

SAY TRANSLATE* (Who* (Who) +CHR* (46)) <r

PUT (140,5),Larrow:PUT (440,5),Rarrow*

FOR j=0 TO 9:x*=INKEY*:NEXT<r

Getkey:*

a*=INKEY*:IF a*="-" THEN RETURN*

IF a*="+" THEN a*=STR*(INT(RND(1)*8+l))*

a=VAL(a*):IF (a<l) OR (a>8) THEN Getkey*

LB(0,0)=1*

FOR j=l TO 3:LB(0,j)=0:NEXT*

LB(0,4)=a+3*

Moreballs:*

ex=l:FOR j=0 TO nb*

IF LB(j,0) THEN ex=0:GOSUB Moveone*

NEXT:IF ex=0 THEN Moreballs*

x=0:FOR j=13 TO 7 STEP -3:FOR k=x TO 15-x*

PUT (Column(k),Row(j)+l),Blank,AND*

NEXT:x=x+l:NEXT:RETURN*

*

lioveone:*

dy=LB(j,0):dx=LB(j,1):LY=LB(j,2)*

ny=LB(j,3):nx=LB(j,4)*

IF ny THEN*

PUT (Column(nx),Row(ny+(LY*3))+1),Blank,AND*

END IF*

LB(j,3)=(ny+l) MOD 3*

ON ny+1 GOTO Pos0,Posl,Pos2*

91

CHAPTER TWO

u

Pos0:*

IF LY>4 THEN LB(j,0>=0:GOTO Scored

vx=0:GOSUB Whichway*

IF (SW(wx,wy,l>) AND (SW(wx,wy,0)=sd) THEN*

vx=l-2*sd:LB(j,3)=ny+l:LB(j,4)=nx+vx*

GOTO Putball*

END IF*

IF SW(wx,wy,0)=sd THEN*

LB(j,0)=0 *

SW(wx,wy,l)=l:ny=ny+l*

GOTO Putball*

END IF*

LB(j,3)=ny+l:G0T0 Putball*

*

Posl:*

LB(j,l)=0:LB(j,4>=nx+dx:GQTO Putball*

*

Pos2:*

LB(j,2)=LY+1:GOSUB Wh i chway*

SW(wx,wy,0>=l-SW(wx,wy,0> *

IF SW(wx,wy,l) THEN*

PUT (Column(LB(j,4)+l-sd*2),Row(ny+(LY*3))),Blank,A

ND*

LB(nb,0)=1:LB(nb,1)=0 s LB(nb,2)=LY*

LB(nb,3)=0:LB(nb,4)=nx+l-sd*2:nb=nb+l*

SW(wx,wy,l)=0*

END IF*

sx=Xpos(wx,wy):sy=Ypos(wx,wy)*

wp=SW(wx,wy,0)*

'Always -fall thru to switch*

*

Switch:*

PUT (sx,sy),Swblank, AND*

ON wp+1 GOTO Left,Right*

Left:*

PUT (sx5sy),Lswitch,0R:G0T0 Bop*

Right:*

PUT (sx,sy),Rswitch,OR*

Bop:*

SOUND 100,1,64,1*

*

SOUND 250,1,64,3*

RETURN*

*

Putbal1:*

SOUND INT(RND(1)*10)*(30*LY)+200,1,64,0*

PUT (Column(nx),Row(ny+(LY*3)+1>),Ball,OR*

RETURN*

*

Whichway:*

92

Education

wx=LY:wy=INT((nx+LY-4)/2)s sd=(nx+LY) AND 1:RETURN*

*

Score:*

sf=Points(Round, nx+1): sg=SC(Who,Round) +sf*

tx=8+63*Who+(sg>9)+(sg>99)+(sg>999)*

ty=2+Round:a*=MID*(STR*(sg),2)*

LOCATE ty,tx:PRINT a**

SC <Who,Round)=sg*

FOR j=1600 TO 200 STEP -300*

SOUND j,1,64,0*

SOUND j+400,1,64,3*

NEXTsRETURN*

*

Values:*

FOR j=0 TO 1*

k=2+70*j:LOCATE 15,k*

PRINT SPACE*<3):LOCATE 15,k*

PRINT RIGHT*(STR*(Points(Round,0)),3)*

NEXT*

FOR j=l TO 16:k=Points(Round,j)*

m=6+j*3.75*

IF k>9 THEN*

x=INT(k/10)*

x*=MID*(STR*(x),2,1)*

ELSE*

x*=CHR*(32)*

END IF*

LOCATE 22,m:PRINT x*;*

LOCATE 23,m:PRINT RIGHT*(STR*(k),1);*

NEXT:RETURN*

*

Setup:*

RANDOMIZE TIMER*

Greet*="Hi. Welcome to Switchbox."*

PRINT Greet*:SAY TRANSLATE*(Greet*)*

SCREEN 2,640,200,2,2*

PALETTE 0, 0, 0, 0 *

PALETTE 1, 1, 1, 1*

PALETTE 2, 0, - 1, .7 *

PALETTE 3, 1, 1, - 13*

WINDOW 2,HSwitchbox",,0*

DIM Larrow(30),Rarrow(30),WavX(256),Lefthunk(400)*

DIM Righthunk(400),Swblank(100),Rswitch(200)*

DIM Lswitch(200),Column(16),Row(25)*

DIM Blank(70),Ball(60),Piece(80)*

DIM SW(8,8,l),LB(32,4),Points(4,16),SC(l,8)*

FOR j=0 TO 10:LINE (0,5)-(10,j),3*

NEXT*

LINE (10,3)-(20,7),3,bf*

GET (0,0)-(20,10),Larrow*

PUT (0,0),Larrow*

93

CHAPTER TWO

u

FOR j=0 TO 104 \ j

LINE (20,5)-(10,j),34 LJ
NEXT4

LINE (0,3)-(10,7),3,bf4

GET (0,0)-(20,10),Rarrow4 M
PUT (0,0),Rarrow4

GET (8,2)-(22,9),Blank4

CIRCLE (15,4), 7, 14 i^|

PAINT (16,4), 14 L-J

GET (8,0)-(22,9),Ball4

PUT (8,0),Ball4

FOR j=0 TO 127: Wav7.(j) =-1274

Wav7. (j+128) =127: NEXT4

FOR j=0 TO 3:WAVE j,Wav7.4

NEXT4

DATA 10,"round 1. equal scores."4

DATA 2,2,2,2,2,2,2,24

DATA 40,"round 2. fibonachie seequence."4

DATA 1,2,3,5,8,13,21,344

DATA 20,"round 3. arithmetic seequence."4

DATA 2,3,4,5,6,7,8,94

DATA 80,"round 4. seequence of squares."4

DATA 1,4,9,16,25,36,49,644

FOR j= l TO 4:READ Points(j,0)4

READ Intro*(j)4

FOR k=l TO 8:READ x4

Poi nts(j,k+8)=x:Poi nts(j,9-k)=x 4

NEXT ksNEXT j4

a=215:b=24

FOR j=0 TO 44

a=a-30:b=b+304

FOR k=0 TO j+34

Xpos(j,k)=a+k«604

Ypos(j,k)=b4

NEXTsNEXT4

k=04

FOR j=70 TO 520 STEP 304

Column(k)=j4

k=k+l:NEXT4

k=04

FOR j=4 TO 154 STEP 104 j j
Row(k)=j:k=k+l:NEXT4 LJ
4

start:4

SAY TRANSLATE*("First player's name?")4

INPUT"Name of Player i";p0*4

SAY TRANSLATE*("Second player's name?")4

INPUT"Name of Player 2";pl*4

Who*(0)=LEFT*(p0*,6):Who*(1)=LEFT*(pi*,6)4

text*=Who*(0)+" plays "+Who*(l)+". Is this correct"

u

Education

n

PRINT text*;: SAY TRANSLATE* (text*) *

INPUT query*:an*=LEFT*(query*,1)*

IF LEN<an*)=0 OR an*="y" OR an*="Y" THEN Draw«

GOTO start*

*

Draw: *

SAY TRANSLATE* (" OK . ") *

CLS*

LOCATE 1,6:PRINT Nho*(0)*

LOCATE 1,66:PRINT Who*(l)*

x=4:FQR j=0 TO 1 'score boxes*

LINE (x,12)-(x+U0,60),2,bf* shadow*

LINE (x+6,10)-(x+120,58),3,bf*outline*

LINE (x+16,14)-(x+110,48),0,bf'inside*

x=x+480:NEXT *

x=l:FOR j=24 TO 50 STEP 3.7*

LOCATE 2,j:PRINT x*

x=x+l:NEXT*

LINE (180,0)-(182,40),,bf*

6ET (180,0)-(182,40),Piece*

LINE (180,0)-(420,0)*

FOR j=210 TO 420 STEP 60*

LINE (j,0)-(j+2,12),,bf*

PUT (j,40),Piece*

PUT (J,100),Piece*

NEXT*

FOR j=180 TO 420 STEP 60*

PUT (j,0),Piece,OR*

PUT (j,70),Piece*

PUT (j,126),Piece*

NEXT*

PUT (120,126),Piece*

PUT (150,100),Piece*

PUT (450,100),Piece*

PUT (480,126),Piece*

ERASE Piece 'reclaim memory*

FOR j=30 TO 570 STEP 30*

LINE (j,155)-(j+2,170),l,bf*

NEXT*

LINE (176,4)-(186,32),2,bf*

LINE (416,4)-(426,32),2,bf*

LINE (176,32)-(156,42),2*

LINE STEP(0,0)-STEP(-10,0),2*

LINE STEP(0,0)-STEP(35,-32),2*

PAINT (175,31),2*

LINE (426,32)-(446,42),2*

LINE STEP(0,0)-STEP(10,0),2*

LINE STEP(0,0)-STEP(-36,-32),2*

PAINT (427,32),2*

GET (136,12)-(186,69),Lefthunk*

GET (416,12)-(456,62),Righthunk*

95

(I

CHAPTER TWO

u

l=106sr=446sk=42« \ >

FOR j=l TO 4« uJ
PUT (l,k),Lefthunk,OR«

PUT (r,k),Righthunk,OR«

1=1-30s r=v+30s k=k+30«)\
NEXT* {—
ERASE Lefthunk,Ri ghthunk*

LINE (26,153)-(36,165),2,bf« . ,

LINE (564, 153) -(576, 165), 2, bf« L-l
GET (245,32)-(299,40),Swblank«

FOR j«0 TO 18«

LIKE (270+j,40)-(2B0+j,32),3«

hBEXT«

LINE (245, 39) -(280,40), 3, bf<

GET (245,32)-(298,40),Rswi tch«

PUT (184,32),Swblank,AND^

FOR j«0 TO 20<r

LINE (184+j,32)-(193+j,40),3«

L1HE (193,39)-(236,40),3,bf«

GET (184,32)-(236,40),Lswitch«

FOR m«0 TO 4sFOR n=0 TO m+3«

sx^Xpos(m,n) s sy=Ypos (m, n) <-

Who=l-Who:QOSUB Switch^

NEXT nslsEXT m«

PUT (140,5),Larrow«

RETURNS

u

u

LJ

u

n

: \

Amiga Puzzle
Bill Boegelein

"Amiga Puzzle" provides you with an entertaining

puzzle game that pops up as a small window on the

Workbench screen. But more importantly, it demon

strates some interesting and powerful programming

techniques in Amiga BASIC.

A popular game that used to keep kids occupied for hours in

the back of the station wagon was known as the "slide puz
zle." This was simply a plastic frame with 15 numbered or let

tered tiles arranged in a 4 X 4 pattern with one square left

vacant. The object was to slide one tile at a time into the va

cant slot in an attempt to restore the puzzle to its proper nu

meric or alphabetic order. "Amiga Puzzle" is the Amiga

BASIC equivalent of the slide puzzle.

Amiga Puzzle works on any Amiga with Amiga Microsoft

BASIC. To get started, run Amiga BASIC, enter Program 1 be

low, and save a copy on disk. Be sure to set Preferences for a

60-column screen before running Amiga Puzzle. When you

run the program, it pops open as a small window on the

Workbench screen and scrambles the tiles. You can begin

when the program announces "Ready" using the Amiga's

built-in speech capability.

To move a tile into the vacant slot, point to the tile with

the mouse and press the left mouse button. If you try to cheat

by moving a tile diagonally, the program will scold you. The

gadget in the lower right corner of the window, normally re

served for window resizing, has been replaced with a plus

sign (+) in Amiga Puzzle. Clicking on this gadget rescrambles

the puzzle and starts a new game. The other gadgets (front/

back, the move bar, and close window) are all active as usual.

As a final touch, the Puzzle window displays the elapsed

time and number of moves since the start of the game.

97

CHAPTER TWO
u

u

This photo shows two

copies of "Amiga Puzzle"

running simultaneously, an

example of the Amiga's

multitasking capabilities.

u

u

u

How It Works

Amiga Puzzle was adapted from a similar puzzle game avail

able on the Macintosh. Those of you familiar with Microsoft

BASIC 2.0 on the Macintosh will immediately see many simi

larities in Amiga BASIC. In fact, many Macintosh BASIC pro

grams can be converted to Amiga BASIC with little effort.

Both languages support windows, pull-down menus, labels,

many types of graphics commands, and other features.

Amiga Puzzle is divided into seven subroutines named

Init, DrawScreen, Mix, Play, CheckCheat, More, and Done.

There are also two small subprograms, Talk and Position.

Here are descriptions of what these subroutines do:

Init initializes variables and user-defined functions, and

loads the puzzle's characters A-O into the two-dimensional

array c().

DrawScreen displays the puzzle's squares and characters.

Mix mixes only adjacent squares and keeps track of the

blank square's position in variables blankX and blankY.

Play is the main subroutine where the current mouse po

sition is compared to coordinates of each square stored in the

three-dimensional array rat

CheckCheat makes sure the attempted move is a legal

one (adjacent squares only, no diagonal moves).

More checks whether the mouse is clicked on the plus-

sign gadget in Amiga Puzzle's lower right corner. If so, the

program starts a new game by jumping back to Start.

Done ends the program and returns control to BASIC.

98

LJ

U

LJ

U

U

Education

Special Features

Most of the program is standard Microsoft BASIC. The only

lines that merit special attention are the user-defined functions

in the Init subroutine. One function operates the puzzle's

timer, and the other determines whether the puzzle has been

solved.

A quick way to time any event is to define a function that

subtracts the current time from the initial starting time. This is

done with the function FNlaps. The current time is obtained

from TIMER and the initial time stored in the variable starttime.

The other defined function, FNwin, determines whether

the puzzle has been solved by comparing the letter in each

tile—stored in the array c()—with the characters A-O. Each

letter in the correct position returns a value of — 1 (true). So

the puzzle has been solved when all 15 letters are sorted, re

turning a value of —15.

A very powerful feature of Amiga BASIC is its subpro

gram capability. In effect, subprograms let you add new com

mands to the language. The word TALK is not a command in

Amiga BASIC, but has been added to Amiga Puzzle as a sub

program. It lets you execute both a SAY command and the

text-to-speech TRANSLATES function by simply typing TALK

followed by the desired string. Similarly, POSITION is a sub

program that expects parameters of the x and y coordinates as

the location to PRINT the desired string.

Multitasking with BASIC

Since multitasking is built into the Amiga's operating system

as a standard feature, no special programming techniques are

required to write a BASIC program that's capable of running

simultaneously with other tasks. Feel free to move Amiga Puz

zle over or under other windows running different programs

without causing interference. If your computer has at least

512K RAM, you can even click on the Amiga Puzzle icon a

second time and run two of the games at once.

Amiga Puzzle
The left-arrow symbols in this listing indicate when to press RETURN at the end of each

program line. Do not attempt to type the arrows themselves.

4

Start:4

GOSUB Init*

99

CHAPTER TWO ■

LJ

60SUB DrawScreen4 i ,

GOSUB Mix4 lJ
4

WHILE WINDOW (7) O04

GOSUB Play* j {

WEND4 L-)
4

Dones4

BEEP:WINDOW CLOSE 2sWINDOW 14 [_J
END4

4

Init:4

DEFINT a-z4

Talk » » 4

WINDOW CLOSE 14

WINDOW 2,"Puzzle",(230,45)-(230+138,45+96),304

tries=0:RANDOMIZE TIMER4

FOR y=0 TO 34

FOR x»0 TO 34

c(x,y)«x+y*4+ASC("A") 'load chars'4

NEXT x4

NEXT y4

blankX«x-l:blankY=y-14

c(blankX,blankY)=ASC(" ")4

DEF FNlaps!=((TIMER-starttime!)\60)+(((TIMER-startt

ime!) MOD 60)/100)4

DEF FNa= (c (0,0) =65) + (c (1,0) =66) + (c (2,0) -67) + (c (3,0)

=68)4

DEF FNb«(c(0,l)«69)+(c(l,l)=70)+(c(2,l)=71)+(c(3,1)

»72)4

DEF FNc= (c (0,2) =73) + (c (1,2) =74) + (c (2,2) =75) + (c (3,2)

=76)4

DEF FNd=(c(0,3)=77)+(c(1,3)=78)+(c(2,3)=79)+(c(3,3)

=80)4

DEF FNwin»(FNa+FNb+FNc+FNd) 'won if » -15*4

RETURN*

4

DrawScreen:4) (

FOR y=0 TO 34 U"*
FOR x=0 TO 34

Position (x+l)*3,(y+1)*2,CHR«(c(x,y)) 'print char , ,

s'4 " LJ
xl»x*30+10:yl=y*18+3 'draw boxes*4

LINE (xl,yl)-(xl+30,yl+18),l,b4

LINE (xl-l,yl-l)-(xl+30+l,yl+18+l),l,b4 I J

LINE (10-5,3-3)-(4*30+10+5,4*18+3+3), lfb4 1—J
moreX=128:moreY=894

LINE (ffloreX,moreY)-(moreX+10,moreY+10),l,bf 4
Position 14,11,"+" 'new game gadgetf4 I
rat(x,y,0)=xl:rat(x,y,i)»yl4 UJ
NEXT x4

109 Lf

Education

NEXT y«

Position 3,10,"TIME 0.00" 4

Position 3,11,"TRIES 0"4

RETURN*

4

Mix:4

x»blankXsy«blankY4

FOR mixing»333 TO 1 STEP -14

IF (mixing AND 1)=0 THEN4

x=INT(RND*4):y=blankY 'even'4

ELSE 4

y=INT(RND*4):x«blankX 'oddc4

END IF4

QOSUB CheckCheat4

NEXT mixing*

Talk "Ready."4

starttime!-TIMER4

RETURN4

4

PI ay: 4

LOCATE 10,8:PRINT USIN6 "##.##";FNlaps!;4

WHILE MOUSE(0)<>04

mouseXBMOUSE(3):mouseY»MOUSE(4)4

FOR y»0 TO 34

FOR x=0 TO 34

IF (mouseX>rat(x,y,0) AND rnouseX<rat(x,y,0>+30> AND

<mouseY>rat<x,y, 1) AND mouseY<rat (x,y, D+18) THEN 6

OSUB CheckCheat:RETURN4

NEXT x4

NEXT y4

GOSUB More4

WEND4

RETURN4

4

CheckCheat:4

IF (ABS(x-blankX)>l OR ABS(y-blankY) >1> OR ((xObla

nkX AND yOblankY)) THEN4

IF mixing«0 THEN Talk "Cheater." *cheating'4

ELSE 'not cheating'4

SWAP c(x,y),c(blankX,blankY)4

Position (x+l)*3,(y+1)*2,CHR*(c(x,y))4

SWAP x,blankXsSWAP y,blankY4

Position (x+l)*3f(y+l)*2,CHR*(c(x,y>)4

END IF4

IF mixing-0 THEN4

trie3»tries+14

LOCATE 11,8sPRINT tries;4

WHILE MOUSE(0)<>0sWEND4

IF FNwin«-15 THEN Talk "We have a winner."sBOTO Mor

e4

101

CHAPTER TWO

LJ

END IF4 ,

RETURN* LJ

More:4

WHILE MOUSE(0)<>0 OR FNwin«-15 'another game?'4 | 1

mouseX-MOUSE(3):mouseY«MOUSE(4)« •—'
IF MOUSE(0)=0 AND (mouseX>moreX AND mouseX<moreX+10

) AND <mouseY>mor©Y AND mouseY<moreY+10) THEN GOTO .

Starts M
IF WINDOW(7)»0 THEN Done«

WEND4

RETURNS

SUB Talk(a») STATIC*

SAY TRANSLATES<a*>4

END SUB4

<

SUB Position(x,yfa«) STATIC4

LOCATE y,x:PRINT

END SUB4

LJ

LJ

U

U

102 Li

H

n

Hex War
Todd Heimarck

Translation by Philip I. Nelson

You float high above a distant planet, controlling

robot armies below. Can you take control of the

priceless mining turf planetside, or will your oppo

nent's robot crews prevail? To win at this thought

fully designed, engaging strategy game, you'll need

foresight and conceptual skills rather than a quick

hand on the joystick. Requires 512K memory and

features synthesized speech.

"Hex War" is a two-player strategy game that can be played

five different ways, and there are limitless variations. But the

basic premise is always the same: You and an opponent move

armies on a field of hexagons, attempting to capture territory.

The goal of the first two games is simple: capture the cap

ital city of the other player. In game 1, the capital cities are far

apart; you must devote some of your armies to defending your

own capital while attempting to breach the walls of the other

capital. Game 2 puts the capitals near each other, so offense

and defense tend to merge in this scenario. Most of the action

takes place within a small area of the battlefield.

Games 3 and 4 spread the action over a wider area. In the

third game, your object is to occupy 8 of the 12 cities on the

game board. Six cities occupy the periphery, and 6 are in the

center of the playing field. Game 4 requires actual control of 6

cities; you must have an army in the city, one that's not in

volved in a battle, before you're credited with control (this

version will probably take the most amount of time to play).

Although the first four scenarios encourage a commitment

to battle, you employ different tactics in the fifth. The goal

here is to acquire 40 of the 61 hexes, so you need some free

armies to move around. As soon as you claim 40 hexes, you

win the game.

103

CHAPTER TWO
u

Typing It In |J

Hex War is written in Amiga BASIC, with some important

information in DATA statements. Type in the program and be _

sure to save a copy. Before running the program set the screen \J
to 80 columns by clicking on the Preferences icon and setting

the proper width. After the game has been saved, and the col

umn width set, select Start from the Run menu. |_J
When you first run Hex War, the computer pauses to set

up the screen, then displays a menu of five choices. The five

different games are explained in detail below. If you're new to

the game, press the 1 key to choose game 1. There will be an

other short pause while the variables are initialized, and then

you'll see a playing field with 61 hex shapes, containing four

armies on each side.

Hexes and Hexadecimal

A chess board has 64 squares arranged in a rectilinear grid.

Hex War gives you a playing field of 61 hexagons (almost as

many spaces as a chess board), but they're part of a six-sided

honeycomb field. If you've played war games before, you may

recognize the hexes.

Press the cursor-up key to go northeast, the cursor-right

key to go southeast, the cursor-down key to go southwest, and

the cursor-left key to go northwest. At first, the cursor move

ment may seem unusual. If you can turn the keyboard 45 de

grees in a clockwise direction, these directions will seem more

natural.

Use the space bar to select or set an army. Press ESC to

end your turn before all your armies have been moved. A

player indicator appears in the lower right corner to indicate s ,

which player has the current turn. _J
Each hex has six neighbors, so an army can move in six

possible directions. To travel left and right, you'll have to . —.

press two cursor keys (for example, up and right cursor keys % I
to move one hex to the right, which counts as one movement).

Army strengths are listed in hexadecimal (base 16) num

bers, so the four armies labeled 40 actually have strengths of s I
64 (the hexadecimal value 40 equals 64 in our everyday deci

mal numbering system). At the beginning of a turn, any army

has exactly three movement points. It requires one point to -^j

move an army into a neutral or enemy-controlled zone. To

104 U

Education

n

pi move through the same zone also requires a point. To move

into and through a friendly hex requires a total of one point.

This means you can move a single army through two neutral

fi or enemy hexes in any one turn, but the same army can move

through up to three friendly zones during a turn.

Select an army by moving the cursor onto it. Press the

(—7 space bar once; then position the cursor on a neighboring hex

} and press the space bar again. If you wish to stop, press the

space bar again, and two plus signs (+ +) will appear, signal

ing that no more movement can occur. Otherwise, position the

cursor on another neighboring hex and press the space bar.

Zones of Control

Each army controls the six contiguous hexes surrounding its

resident hex. If you enter an enemy's zone of control, you for

feit any additional moves and must prepare for battle. In addi

tion, an army that begins the turn in a zone of control cannot

move until the battle is resolved.

Robots vs. Robots

In this game, you aren't really on the planet, but are parked

high above it in a remote mothership. You've landed some ro

bots to explore the area, and they've encountered robots be

longing to another explorer. Your robots, or hots, as you call

them, follow your orders to advance toward the other bots.

Each bot has a mining laser which can stop or disable the

other bots. Also, your bots have disrupter beams which can

daze another bot, temporarily confusing it. When two bot-

groups come close to each other, they shoot lasers and dis-

/—. rupters until one army of bots is disabled.

' ^ Three things can happen to a robot which suffers a hit. If

the robot suffers a direct hit by a laser in its logic unit, it is va-

r-> porized. It is destroyed forever and never reappears in play.
' I The second thing that can happen is injury. If the laser

beam is deflected, the robot is out of commission until it can

I—, be transported back to a botspital. An injured bot is frozen in

! v place until the battle is finished, after which the victorious
army carts away the injured bots to be repaired and reused.

_ Thus, winning a battle means you evacuate both the

\\ friendly injured and the enemy injured. After all of the injured
bots recover, they join the force in whose botspital they were

H 105

CHAPTER TWO

G

healed. In effect, injured bots eventually become members of j" j

the army which won the battle in which they were damaged. l—'
The third possibility is confusion: The robot is temporarily

disoriented for two turns. When the time has passed, the robot i i

is ready again. ^

Reprogramming Bots]_J

Moving the cursor onto an army of robots brings up a status

window in the upper left corner of the screen. The number in

reverse video is unimportant; it's the army number (which

may change as the game progresses).

The four numbers underneath are significant, however.

The first is the army's active strength (in decimal). The second

is the number of injured robots, which will be transported to

the botspital of whichever side wins the battle. The third—on

the line below—is the number of disrupted robots that will be

available for combat in the next turn. The fourth number is

the number of robots that can join the active force two turns

from now.

If one side is able to reduce the other player's active force

to zero, two things will happen. The winner sends all injured

bots away to be repaired. The winning side also collects all en

emy bots (injured or dazed) and sends them to the reinforce

ment center to be reprogrammed. Eventually, all these bots

will be available to the winner of this particular battle for fu

ture engagements.

Reinforcements and Mergers

At the start of the game, you'll see some armies positioned

outside the hex field. These are reinforcements and reserves in

transit to the battle. Player l's reinforcements enter at the bot

tom right corner; player 2's enter at the top left. The line of

new armies moves counterclockwise; the army next to the en

try point is the next to enter the battlefield.

However, the reinforcements cannot enter the battlefield

if an army (friendly or enemy) is blocking their way. Keep

your armies off your own reinforcement point, and try to

block your opponent's armies from this area if you can. If the
entry hex is owned, but not occupied, by your opponent,
you'll lose some reinforcements.

After completing a turn, you're credited with additional

106

Education

reinforcements according to how much territory you own.

Passing over a hex allows you to claim it; the hex changes

color to indicate ownership. Each piece of property provides

enough ore and energy to build a new robot, available for use

two turns in the future. The numbers in the line of reinforce

ments are updated after you move to show additional robots

being built.

Winning a battle also provides additional armies in the

line of reinforcements. As mentioned above, a victorious army

captures any dazed enemy bots, which are reprogrammed and

available in three turns. At the same time, the winner evacuates

injured bots of both sides. Transportation and repair take five

turns for friendly bots, seven for enemy bots. The two additional

turns are needed for reprogramming the opponent's forces.

If you're losing a battle, the number of injured robots (dis

played in the status window) will begin to rise. Remember

that if your opponent reduces your active strength to zero, he

or she will capture all of your injured bots; they'll be repro

grammed and added to future reinforcements. To prevent this

from happening, you're allowed to bring in a second army for

merging. Simply move another army on top of the army with

which you want to merge. There's just one rule: One or both

of the armies must have a strength less than 32 decimal (less

than 20 hex).

Turning Speech On and Off

Hex War includes synthesized speech to emphasize various

events and provide information during the game. For instance,

when you select an army, the computer tells you the number

(in decimal) of robots in that army. If you're not familiar with

hexadecimal numbers, this feature can help you learn hex

notation.

Either player can turn the speech off or on at any time.

Simply click the mouse button twice: A small window appears

and the computer announces the current voice status. If

speech was previously activated, it now shuts off, and vice

versa. Click the mouse button once to erase the window and

resume play. A similar window appears to announce the out

come at the end of each game.

107

CHAPTER TWO

U

Hex War j j

The left-arrow symbols in this listing indicate when to press RETURN at the end of each >—'

program line. Do not attempt to type the arrows themselves.

* Hex War for 512K Amiga* j j

* <■—

CLEAR ,25000*

CLEAR , 655368c*

Restart:*

60SUB Setup*

*

mainloop:*

GOSUB Reveille*

GOSUB DrawField*

GOSUB PlaceTroops*

GOSUB TakeTurn*

CLS:talk*=MThinking"*

LOCATE 12,17:PRINT talk**

GOSUB talk*

GOSUB Battle*

GOSUB Resolve*

GOSUB Battle*

GOSUB Prisoners*

GOSUB Reinforcements*

GOSUB Outcome*

pn=l-pn:ft=0:pp=0*

GOTO mainloop*

*

DrawField:*

CLS*

FOR r=ll TO 1 STEP -2*

FOR c=12-r TO r+26 STEP 4*

PUT (c*8,r*8)vsl0*

NEXT c9r<r

FOR r=13 TO 21 STEP 2*

FOR c=r-10 TO 49-r STEP 4*

PUT <c*8,r*8),sl0* I (

NEXT c9r<r «—>

FOR r=12 TO 1 STEP -2*

FOR c=14-r TO r+28 STEP r+28-(14-r)-l* ,—-

LOCATE r9c<r I [
PRINT CHR*<32>*

NEXT c9r<r

FOR r=13 TO 21 STEP 2* i >

FOR c=r-ll TO 53-r STEP 53-r-(r-ll)-l* Lj

LOCATE r9c<r

PRINT CHR*(32)*

NEXT c9r<r

FOR j=2 TO 23 STEP 21*

LOCATE j,12*

108 [J

Education

~ PRINT SPACE*(19)*

s NEXT*
FOR j=l TO 12*

—> GOSUB 710*

! i NEXT*
j=l*

IF gn=l THEN GOSUB 718:j=2:GOSUB 715*

rn IF gn=2 THEN GOSUB 718:j=3:GOSUB 715*

1 ^ LOCATE 1,1*
WHILE INKEY*<>"":WEND*

RETURN*

710 k=cit(j,0)*

l=cit(j,l)*

x=(k-l)*2+19*

y=<12-<k+l))*2+3*

PUT <x*8+3,y*8+3),s2,PSET*

RETURN*

715 k=cit(j,0)*

l=cit(j,D*

x=(k-l)*2+19*

y=(12-(k+l))*2+3*

PUT (x*8,y*8),s3,PSET*

RETURN*

718 k=cit(j,0)*

l=cit(j,l>*

x=(k-l)t2+19*

y=(12-(k+l))*2+3*

PUT <x*8,y*8),s4,PSET*

RETURN*

*

TakeTurn:*

IF nx(pn)<2 THEN RETURN*

ht=4:hb=4:GOSUB 1000*

810 mv=0:ct=0*

cb=0:pk=0:k=0*

FOR j=l TO nx(pn)-l*

—) IF army(j,0,pn)>0 AND army(j,6,pn)<l THEN*

J ^ k=l*
j=nx(pn)-l*

END IF*

f^ NEXT j*
IF k=0 THEN RETURN*

Checklt:*

I—, IF a*=CHR*(27) THEN a*="":RETURN*

! ^ ReadMouse:*
IF MOUSE(0)<>2 THEN NoFlag*

* left button clicked twice*

H7 WINDOW 4,"Speech",(65,70)-(225,110),16,1*
1 i IF TalkFlag=l THEN*

talk*="Now I can talk."*

^ PRINT talk**

{ \

109

CHAPTER TWO
u

u

LJ

TalkFlag=l-TalkFlag* \ }

GOSUB talk* <—*
GOTO ClearMouse*

END IF* r ;

IF TalkFlag=0 THEN* (J

talk*="OK, I'll be quiet."*

PRINT talk**

GOSUB talk*

TalkFlag=l-TalkFlag*

END IF*

Cl earMouse: *

WHILE MOUSE(0)<>0:WEND*

PRINT "Press button once11*

PRINT "to continue... "*

* wait for one click*

WHILE MOUSE(0)<>1:WEND*

' purge keyboard, too*

WHILE INKEY*<>"":WEND*

WINDOW CLOSE 4*

NoFlag:*

qv=0sa*=INKEY*sIF a*=Mfl THEN ReadMouse*

IF UCASE*(a*)=llQ" THEN*

GetOut:*

WINDOW CLOSE 3*

SCREEN CLOSE 1*

WINDOW l,"Hex War",,31,-1*

WINDOW OUTPUT 1*

CLEAR ,25000*

END*

END IF*

IF a*=CHR*(30) THEN qv=3:G0T0 Codeit*

IF a*=CHR*<31> THEN qv=7:G0T0 Codeit*

IF a*=CHR*<28> THEN qv=l:GOTO Codeit*

IF a*=CHR*<29) THEN qv=5*

Codeit:*

j=qv-128*(a*=" ")*

IF j=0 THEN CheckIt* <

IF (j AND 128) THEN 1100* LJ

IF (j AND 1)=0 THEN CheckIt*

IF j AND 1 THEN bl=hb+j-2:tl=ht ELSE tl=ht+l-j:bl=h

b*

IF tl<0 OR tl>8 THEN Checklt*

IF bl<0 OR bl>8 THEN Checklt*

sl=tl+bl:IF sl<4 OR sl>12 THEN Checklt*

hb=b1:ht=t1:GOSUB 1000*

LOCATE 1,1*

FOR z=l TO 6* <* I

PRINT SPACE* (8)* «LJ
NEXT*

qn=map(ht,hb, 0) *

110

Education

IF qn=0 THEN LOCATE lfIs GOTO Checklt ELSE ql=map(ht

,hb,l)-l*

LOCATE 1,1*

PRINT USING ll####II;qn:PRINTM "*

FOR j=0 TO 3*

PRINT USING "####";army(qn,j,ql)*

NEXT*

LOCATE 1,1*

GOTO CheckIt*

*

1000 sx=146+16*(ht-hb)*

sy=210-16* (ht+hb) *

IF map(ht,hb,2)=l THEN*

PUT (ox,oy),s8*

PUT <sx,sy),s7«

ox=sx s oy=sy<-

pp=l^

RETURN*

END IF*

IF pp THEN*

PUT (ox,oy),s7*

PUT (sx,sy),s8*

ox=sx:oy=sy*

pp=0*

RETURN*

END IF*

IF ft THEN*

PUT (ox,oy),s8*

PUT (sx,sy),s8*

ox=sx:oy=sy*

RETURN*

END IF*

PUT (sx,sy),s8*

ox=sx:oy=sy:ft=l*

RETURN*

*

1100 IF pk=l THEN 1200*

IF map(ht,hb, l)Opn+l OR map (ht,hb, 0)=0 THEN 810*

an=map(ht,hb,0)*

IF army(an,6,pn)<>0 THEN 810*

pk=l:ct=ht:cb=hb*

cs=army(an,0,pn):SOUND 1100,10*

talk*=STR*(cs)+CHR*(32)+"roahbohts.":GOSUB talk*

GOTO Checklt*

*

1200 j=(ht=ct) AND (hb=cb)*

IF j AND mv=0 THEN 810*

IF j AND mv>0 THEN 1420*

ax=army(map(ht,hb,0),0,pn)*

IF (ax>me AND cs>me) OR (map(ht,hb,l)-l=l~pn AND ax

111

CHAPTER TWO

0

u
>0> THEN Check I t4

dt=ABS(ct-ht)4

db=ABS(cb-hb>4

tl=db+dt4

IF NOT (tl=l OR (ct+cb=ht+hb AND dt=l)> THEN Checkl M
t4

mg=map (ht, hb, 0) 4

IF mg=0 THEN 13004 j j

FOR j=0 TO 34 LJ
army(mg,j,pn)=army(mg,j,pn)+army(an,j,pn)4

army (an, j,pn)=04

NEXT*

army(mg,6,pn)=14

map(ct,cb,0)=04

cs=army(mg,0,pn)4

an=mg:mv=mm+14

GOTO 13804

4

1300 n8=map(ht,hb,l>-14

mv=:mv-»-14

IF n8Opn THEN mv=mv+14

map(ct,cb,0)=04

map(ht,hb,0)=an4

map(ht,hb,l)=pn+14

army(an,4,pn)=ht4

army(an,5,pn)=hb4

IF mv>=mm THEN army(an,6,pn)=14

k=04

FOR j=-l TO 1 STEP 24

jl=ht+j:j2=hb+j:j3=hb-j4

IF jl<0 OR jl>8 THEN 13404

IF map(jl,hb,0)>0 THEN4

IF map(jl,hb,l)=2-pn THEN4

k=l=j=l:GOTO 13604

END IF4

END IF4

1340 IF j2<0 OR j2>8 THEN 13504 j j<

IF map(ht,j2,0)>0 THEN4 Li
IF map(ht,j2,l)=2-pn THEN4

k=l:j=l:GOTO 13604

END IF4 j /

END IF4 *—*

1350 IF j3<0 OR j3>8 OR jl<0 OR jl>8 THEN 13604

IF map(jl,j3,0)>0 THEN4

IF map(jl,j3,l)=2-pn THEN k=l:j=14 [J
END IF4

1360 NEXT j4

IF k=l THEN army(an,6,pn)=l:mv=mm+14

1380 a=pnsj=ct4

k=cb:c=0:d=04

112

Education

GOSUB 1830*

j=ht:k=hb*

c=cs: d=army (an, 6, pn) *

GOSUB 1830*

ct=ht:cb=hb*

IF mv<mm THEN CheckIt*

1420 army(an,6,pn)=l*

j=ht:k=hb*

c=cs:d=l*

GOSUB 1830*

GOTO 810*

*

*

1500 RESTORE Strengths*

FOR j=0 TO 1*

nx(j)=5*

FOR k=l TO 4*

READ a,b,c*

army(k,0,j)=a*

army(k,4,j)=b*

army(k,5,j)=c*

map(b,c,0)=k*

map(b,c,l)=j+l*

NEXT k,j*

Strengths:*

DATA 64,2,8, 64, 3, 7, 64, 5, 6,64, 6, 6*

DATA 64, 2,2, 64, 3,2, 64, 5, 1,64, 6, 0*

FOR j=0 TO 1*

FOR k=0 TO 20*

a=INT(RND(1)*k*3)*

FOR 1=1 TO 5*

a=a+INT(RND(1)*21-8)*

NEXT 1*

IF a<16 THEN a=0 ELSE a=(a+k*8) AND 254*

fq(k,j)=a*

NEXT k,j*

RETURN*

*

PIaceTroops: *

FOR j=0 TO 8*

FOR k=0 TO 8*

a=map (j,k, D*

IF a THEN a=a-l:GOSUB 1800*

NEXT k,j*

FOR a=0 TO 1*

e=13+a*12:f=a*22*

dx=2-4*a:d=0*

FOR j=0 TO 8*

c=fq(j,a):GOSUB 1840*

e=e+dx*2*

IF j>3 THEN f=f+dx:e=e-dx*

113

CHAPTER TWO

0

NEXT j,a* ; |

IF pn THEN* LJ
PUT (280,160),s5,PSET*

ELSE*

PUT (280,160),s6,PSET* 1 j

END IF* L-1
RETURN*

1800 b=map(j,k,0)* j_J
c=army(b,0,a)*

d=army(b,6,a)*

1830 e=(j-k+10)*2-l*

f=(13-j-k)*2+l*

1840 IF a THEN*

PUT (e*8+l,f*8),s5,PSET*

LOCATE f+a+l,e+l*

PRINT SPACE*(2);*

GOTO 1850*

END IF*

PUT (e*8+l,(f+l)*8),s6,PSET*

LOCATE f+a+l,e+l*

PRINT SPACE*(2);*

1850 IF c=0 THEN RETURN*

LOCATE f+a+l,e+l*

PRINT RIGHT*("0"+HEX*(c),2);*

IF d AND a=0 THEN*

LOCATE f+2,e+l*

PRINT SPACE*(2);*

PUT (e*8+l,(f+l)*8+l),sll*

RETURN*

END IF*

IF d AND a=l THEN*

LOCATE f+l,e+l*

PRINT SPACE*(2);*

PUT (e*8+l,f*8+l),s9*

END IF*

RETURN*

Reveille:*

sw=0:e=nx(pn)—1*

IF e<l THEN RETURN* , {

FOR j=l TO e-1* LJ
IF army(j,0,pn)>=l THEN 1970*

t=army(j,4,pn)*

b=army(j,5,pn)* \ j

IF map(t,b,0)=j THEN map(t,b,0)=0* LJ
FOR k=j TO e*

FOR 1=0 TO 6*

army(k,1,pn)=army(k+1,1,pn)*

army(k+1,1,pn)=0*

NEXT 1*

114 o

Education

t=army(k,

b=army (k,5,pn)*

map<t,b,0)=k*

NEXT k*

nx (pn)=nx (pn)—1*

j=es bw=K

1970 NEXT j*

IF sw THEN Reveille*

FOR j = l TO e*

army(j,0,pn)=army(j,0,pn)+army< j,2,pn)*

army (j,2,pn)=army (j,3,pn) *

army (j, 3, pn) =0*

army (j , 6, pn) =0*

NEXT j«

k=nx(1—pn)*

FOR j=l TO k«

army(j,6,l-pn)=0*

NEXT*

GOSUB 2400*

2050 IF bp>0 THEN*

FOR j=0 TO 1*

FOR k=l TO bp*

a=BTL(k,j,0)*

army(a,6,j)=army(a,6,j)+l*

NEXT*

NEXT*

END IF*

RETURN*

*

Battle:*

GOSUB 2400*

a=nx(0)*

IF nx(l)>a THEN a=nx(D*

FOR j=0 TO 1*

FOR k=l TO a*

army(k,6,j)=0*

NEXT k,j*

GOSUB 2050*

RETURN*

*

Prisoners:*

FOR j=0 TO 1*

a=l-j*

b=nx(j)~l*

FOR k=l TO b*

IF army(k,0,j)>=l THEN 2280*

fq(2,a)=fq(2,a)+army(k,2,j)+army(k,3,j)*

IF fq(2,a)>255 THEN*

c=fq(2,a)-255*

fq(3,a)=fq(3,a)+c*

fq(2,a)=255*

115

u

CHAPTER TWO u

LJ

END IF* ■ !

fq(6,a)=fq(6,a)+army(k,l,j)* Lj

IF fq(6,a)>255 THEN*

c=fq<6,a)-255*

fq(7,a)=*q<7,a)+c* j I

fq(6,a)=255* <-J
END IF*

IF map(army(k,4,j),army(k,5,j),0)=k AND map(army(k,

4,j),army(k,5,j),l)=j+l THEN* [J
map(army(k,4,j),army(k,5,j),0)=0*

END IF*

FOR 1=0 TO 6«

army(k,l,j)=0«

NEXT*

2280 IF army(k,6,j)>=l THEN 2320*

fq(4, j)=fq(4, j)+army(k,l,

army(k,1,j)=0*

IF fq(4,j)>255 THEN*

c=fq(4,j)-255*

fq(5,j)=fq(5,j)

fq(4,j)=255*

END IF*

2320 NEXT k,j*

RETURN*

*

2400 bp=0*

FOR j=0 TO 8*

j2=8-(j>4)*(4-j)*

FOR k=jl TO j2*

a=map(j,k,0)*

r=map(j,k,1)*

IF a=0 OR r=0 THEN 2490*

IF army(a,0,r-1X1 THEN 2490*

t=j+l*

b=k: GOSUB 2500*

b=b-l: GOSUB 2500*

t=t-l: GOSUB 2500* j [
2490 NEXT k,j* L"J
RETURN*

2500 IF t<0 OR b<0 OR t>8 OR b>8 THEN RETURN* [_J
pa=map(t,b,0)*

IF pa=0 THEN RETURN*

IF map(t,b,l)=r THEN RETURN*) j

IF army(pa,0,2-rXl THEN RETURN* Lj
bp=bp+l*

BTL(bp,r-l,0)=a*

BTL(bp,2-r,0)=pa*

RETURN* ^ . .

H6 u

I 1

Education

n

Resolve: *

IF bp=0 THEN RETURN*

FOR j=l TO bp*

FOR k=0 TO 14

a=l-k*

an=BTL(j,k,0)*

ax=army <an,0, k)*

ht=army (an, 6, k)*

ct=INT(ax/ht)+l*

BTL(j,a,l)=INT(ct*ka+l)*

BTL(j,a,2)=INT(ct*kb+l)*

BTL<j,a,3)=INT(ct*kc+l)*

NEXT k,j*

FOR j=l TO bp*

j0=BTL<j,0,0)*

jl=BTL(j,l,0)*

GOSUB 3100*

army(j0,0,0)=army(j0,0,0)-a*BTL< j,0,1) *

army(j1,0,1)=army(j1,0,1)-b*BTL(j,1,1)*

60SUB 3100*

c=a*BTL(j,0,2>*

army < j0,0,0)=army(j0,0,0)-c*

army<j0,1,0)=army(j0,1,0)+c*

c=b*BTL(j,l,2)<r

army (j 1,0,1) =army < j 1,0,1) -c*

army(j1,1,1)=army(j1,1,1)+c*

GOSUB 3100*

c=a*BTL<j,0,3)*

army(j0,0,0)=army(j0,0,0)-c*

army(j0,3,0)=army(j0,3,0)+c*

c=b*BTL(j,l,3)*

army(j1,0,1)=army(j1,0,1)-c*

army(j1,3,1)=army(j1,3,1)+c*

NEXT j*

RETURN*

*

Reinforcements:*

a=l-pnsb=0*

FOR j=0 TO 8:FOR k=0 TO 8*

IF map(j,k,l)=pn+l THEN b=b+l*

NEXT k,j*

fq(1,pn)=fq(1,pn)+b*

IF fq(l,pn)>255 THEN*

b=fq(1,pn)-255*

fq(2,pn)=fq(2,pn)+b*

fq(l,pn)=255*

END IF*

t=4:b=pn*8*

IF map(t,b,0)<>0 THEN RETURN*

IF map(t,b,l)=pn+l THEN*

fq (0, a) =0: fq (1, a) =0*

117

CHAPTER TWO

u

GOTO 3060* T j

END IF* LJ
j=nx (a)*

IF j>31 THEN RETURNS

jl=fq(0,a)* } j
IF jl<l THEN 3060* ^
nx(a)=nx(a)+l*

map(t,b,0)=j*

map(t,b, l)=a+l*

army(j,0,a)=jl*

FOR k=l TO 3*

army(j,k,a)=0*

NEXT k*

army (j,4,a)=t*

army(j,5,a)=b*

3060 FOR k=0 TO

fq(k,a)=fq(k+l,a)*

NEXT k*

fq(20,a)=0*

RETURN*

*

3100 a=0:FOR m=l TO 6*

IF RND(1X.5 THEN a=a+l*

NEXT m:b=6-a*

RETURN*

*

3200 talk*="press 1 through 5 to choose seenaireeo.

11 *

GOSUB talk*

WINDOW 4,"Scenario: Press 1-5",(65,70)-(255,120),16

,i«
PRINT "1> Capture capital/far"*

PRINT "2> Capture capital/near"*

PRINT "3> Occupy 8/12 cities"*

PRINT "4> Control 6/12 cities"*

PRINT "5> Occupy 40/61 hexes"*

GrabKey:*

a*=INKEY*:IF a*="" THEN GrabKey* j j
gn=VAL(a*)* L~J
IF gn<l OR gn>5 THEN GrabKey*

WINDOW CLOSE 4*

talk*="seenaireeo"+STR$(gn)+CHR*(46):GOSUB talk*

RETURN*

*

Outcome:*

a=0:ON gn GOSUB 3430,3450,3480,3490,3580*

IF a=0 THEN RETURN*

en$=c$:ea=a*

GOSUB DrawField* j {
GOSUB PlaceTroops* ^
a=ea*

u

118 LJ

Education

n

f"] WINDOW 4, "Outcome", (25, 70)-(300, 120), 16, 1*
PRINT "Player "a" wins"4

MaybeOut: *

_ PRINT c**

I 1 PRINT "Press Q to quit, RETURN to play."*
a*=""*

WHILE a*=""*

!~) a*=INKEY**

I ' WEND*
WINDOW CLOSE 4*

IF UCASE*(a*)="Q" THEN GetOut*

WINDOW CLOSE 2:WINDOW CLOSE 1*

CLEAR ,25000*

RUN*

*

3430 IF map(cit(2,0),cit(2,l),l)=l THEN*

a=2*

c*="Red captured the capital"*

GOSUB Announce*

RETURN*

END IF*

GOTO 3460*

*

3450 IF map(cit(3,0),cit(3,l),l)=l THEN*

a=2*

c*="Red captured the capital"*

GOSUB Announce*

RETURN*

END IF*

*

3460 IF map(cit(l,0),cit(l,l),l)=2 THEN*

a=l*

c*="Yellow captured the capital11*

GOSUB Announce*

RETURN*

END IF*

rn RETURN*

! ! *
3480 1=8:GOTO 3500*

3490 i=6*

3500 c(l)=0:c(2)=0*

FOR j=l TO 12:t=cit(j,0):b=cit(j,D*

r=map(t,b,1):c(r)=c(r)+1*

IF gn=4 THEN*

an=map(t,b,0)*

IF r>0 THEN IF an=0 OR army(an,6,r-l)>0 THEN c(r)=c

(r)-l*

END IF*

NEXT j*

IF c(l)=>l THEN*

a=2*

119

I

CHAPTER TWO
u

D

c*="Red captured"+STR*(c(!>)+" cities11* 1 I

BOSUB Announce* Lj
RETURN*

END IF*

IF c(2)=>l THEN* j I
a=l* ^
c*="Yellow capturedn+STR*(c(2))+" cities11*

GOSUB Announce* , ;

END IF* Lj
RETURN*

*

3580 c(l)=0:c(2>=0*

FOR j=0 TO 8:FOR k=0 TO 8*

r=map(j,k,l):c(r)=c(r)+l*

NEXT k,j*

IF c(l)=>40 THEN*

a=2*

c*="Red occupiesM+STR*(c(l))+H hexes"*

talk*="REHD AA4KYUWPAYZ":SAY talk**

talk*=STR*(c(1))+"hehxes"*

GOSUB talk:RETURN*

END IF*

IF c(2)=>40 THEN*

a=l*

c$="Yellow occupies"+STR*(c(2>)+" hexes11*

talk*="YEHLOH AA4KYUWPAYZ":SAY talk**

talk*=STR*(c(2))+"hehxesM*

GOSUB talk:RETURN*

END IF*

RETURN*

*

Setup:*

DEFINT s*

SCREEN 1,320,200,2,1*

' open window 3 with no *

* gadgets or title bar*

WINDOW I,11", (0,0) -(311,25), 16, 1*

WINDOW 3,"",(0,0)-(311,185),16,1* M
WINDOW OUTPUT 3*

PALETTE 0,0,0,0*

PALETTE 1,-5,1,1* , ,

PALETTE 2,1,0,0* LJ
PALETTE 3,1,1,.1*

WIDTH 40*

CLS*

DIM Voice7.(8)*

RESTORE VoiceData*

FOR j=0 TO 8*

READ VoiceX(j)* I I
NEXT* ^
RESTORE*

120 u

Education

* speech wi11 be synchronous*

VoiceData:*

DATA 110,0,170,0,22200,64,10,1,0*

talk*=" Wei come to Hex War.11*

LOCATE 13,11*

PRINT talk**

GOSUB talk*

Temp*="Click button twice to turn"*

LOCATE 15,8sPRINT Temp**

Demp*=" speech of-f or on during game.11*

LOCATE 16,6:PRINT Demp**

talk*=Temp*+Demp**

GOSUB talk*

' hex shape*

LINE <0,0)-<2,0):LINE (13,0)-(15,0)*

LINE (0,1)-(3,1):LINE (12,1)-(15,1)*

LINE <3,2>-<12,2>:LINE (4,3)-(11,3)*

FOR j=4 TO 11*

LINE <6,j)-(9,j>*

NEXT*

LINE (4,12)-(11,12):LINE (3,13)-<12,13)*

LINE (0,14)-<3,14)sLINE (12,14)-(15,14)*

LINE (0,15)-(2,15):LINE (13,15)-<15,15)*

DIM sl0<225)*

GET (0,0)-(15,15),sl0*

PUT (0,0),sl0*

* cursor shape*

FOR k=0 TO 1*

GOSUB Bracket*

PAINT (32,42),2+k,l*

LINE (30,35)-(48,44),0,bf*

LINE (32,32)-(47,47),0,bf*

GOSUB Bracket*

IF k=0 THEN*

DIM s8(400)*

GET (26,26)-(53,49),s8*

PUT (26,26),s8*

END IF*

IF k=l THEN*

DIM s7(400)*

GET (26,26)-(53,49),s7*

PUT (26,26),s7*

END IF*

NEXT k*

GOTO Blip*

Bracket:*

PUT (16,32),sl0*

PUT (32,48),sl0*

PUT (48,32),sl0*

PUT (32,16),sl0*

RETURN*

121

CHAPTER TWO

u

Blip:* . ,

* city shaped I j
FOR j=0 TO 1*

LINE (2,j)-(7,j)*

LINE (2,j+8)-(7,j+8)* i I

LINE (j,2)-(j,7)* LJ
LINE (j+8,2)-(j+8,7)*

NEXT*

PSET (1, DsPSET (8,1)* I j
PSET (1,8):PSET (8,8)* ^—J
DIM s2(100)*

8ET (0,0)-(9,9),s2*

PUT (0,0),52*

' capital shape*

FOR k=0 TO 1*

FOR j=0 TO 3*

LINE (4,j)-(ll,j),2+k*

LINE (4,j+12)-(ll,j+12),2+k*

LINE (1,4+j)-(14,4+j),2+k*

LINE (l,8+j)-(14,8+j),2+k*

NEXT*

LINE (3,6)-(5,9),0,bf*

LINE (6,3)-(9,5),0,bf*

LINE (6,10)-(9,12),0,bf*

LINE (10,6)-(12,9),0,bf*

IF k=l THEN*

DIM s3(225)*

GET (0,0)-(15,15),s3*

PUT (0,0),s3*

END IF*

IF k=0 THEN*

DIM s4(225)*

GET (0,0)-(15,15),s4*

PUT (0,0),s4*

END IF*

NEXT k*

'army shape*

FOR j=0 TO 14* I I

LINE (7,0)-(j,7),3* I—I
NEXT*

FOR j=4 TO 10*

LINE (7,2)-(j,5),0*

NEXT*

DIM s5(64)*

GET (0,0)-(14,7),s5* , j

PUT (0,0),s5* U
* other army shape*

FOR j=0 TO 14*

LINE (7,7)-(j,0),2* I i

NEXT* I—1*
FOR j=4 TO 10*

122 LJ

> Education

n

n
LINE (7,5)-(j,2),0*

NEXT*

DIM s6(64)*

BET (0,0)-(14,7),s6*

PUT (0,0),s6*

' crosses

FOR k=0 TO K

FOR j=0 TO 1*

LINE (0,2+j)-(13,2+j),2+k*

LINE (10+j,0)-(10+j,5),2+k*

LINE (2+j,0)-(2+j,5),2+k*

FOR j=0 TO 1«

LINE (6+j,0)-(6+j,5),0«

IF k=0 THEN«

DIM si K150X

GET (0,0)~(13,13),sll«

PUT <0,0>,sll<r

END IF^

IF k=l THEN«

DIM s9(150)^

GET (0,0)-(13,13),s9«

PUT (0,0), s9<r

END IF«

NEXT k«

DIM army(31,6,1),BTL(64,1,3)«

DIM map(9,9,2),fq(20,1),nx(1),c (2)*

cn=12:DIM cit(cn,l)«

RANDOMIZE TIMER*

H

n

mm=3 * Maximum number of moves*

ka=l/48:kb=l/48skc=l/32«

RESTORE Whatsit*

FOR j=l TO cn«

FOR k=0 TO 1*

READ cit(j,k)*

NEXT*

map(cit(j,0),cit(j,l),2)=l*

NEXT*

Whatsit:*

DATA 8,4,0,4,8,0,0,8,4,0,4,8*

DATA 5,5,3,3,6,3,2,5,5,2,3,6*

CLS*

GOSUB 3200*

CLS*

GOSUB 1500*

RETURN*

*

123

Announce:4

CHAPTER TWO LJ

u

*

talks*

IF TalkFlag=0 THEN SAY TRANSLATED(talk*),Voice** t

RETURN* LJ

LJ

U

D

U

G

124 0.

Chain Reaction
Mark Tuttle

Translation by Tim Midkiff

In this explosive strategy game, the contest is never

finished until your last bomb has been thrown.

Requires 512K of memory.

"Chain Reaction" is a clever strategy game for one or two

players. Whether you play against the computer or another

human, the objective is the same: to eliminate all of your op

ponent's bomb-shaped pieces from the field of play. The game

is played on a 5 X 6 grid of squares, and the players alternate

turns, placing one bomb in a square on each turn.

The results of a move depend on how many bombs are

already in the chosen square and adjacent squares. Whenever

any square reaches "critical mass," it explodes and sends its

bombs into neighboring squares. If those squares are already

loaded to capacity, they explode too, creating a chain reaction

that can engulf a large area of the board.

Type in the program and save a copy of it. Before running

the program set the screen to 80 columns by clicking on the

Preferences icon and setting the proper width. Select Start

from the Run menu to begin. Use the cursor keys to control

movement and the space bar to place a bomb.

Bomb Begets Bomb

i When you run Chain Reaction, it begins by asking whether

you wish to play with one or two players. If you've never

played before, you may want to play a game or two against

M the computer to learn what sort of strategies it favors. When
you choose to play against the computer, the program also

asks whether you'd like the computer to take the first turn.

!i The first part of most games involves placement of initial
pieces, without many explosions. As the board fills up, how

ever, explosions occur with increasing frequency. Play contin-

H ues until one player's pieces are completely eliminated from
the board.

H 125

CHAPTER TWO '-'

u

The position of a square in the grid determines how many p

bombs it requires to create an explosion. A corner square can LJ
hold a maximum of one bomb. When you place a second

bomb in a corner square that already holds one, both bombs , .

explode, sending a bomb of your color into two neighboring LJ
squares. After an explosion, the original square is emptied.

Other squares require more bombs to create an explosion. , ~t

A border square that isn't on a corner can hold a maximum of LJ

two bombs. When you place a third bomb in a border square,

its explosion sends three bombs into the squares that adjoin it.

Squares in the center of the game board hold the most bombs

and also create the most devastating explosions. When you

place a fourth bomb in a central square, it sends four bombs

into squares which adjoin that position.

When an explosion sends bombs into adjacent squares,

any bombs in that square change color to match the color of

the exploding bombs. Should one of the adjoining squares sur

pass its limit, that square, too, will explode, creating the po

tential for even more explosions. This process continues until

no more explosions are possible.

Thus, the situation in Chain Reaction is often volatile. The

lead frequently seesaws back and forth between players, as each

creates increasingly more widespread chain reactions. Even if

defeat seems almost certain, you can often regain the lead

with clever play. When a game ends, the program announces

the winner and permits you to play a new game or quit.

Like other games of strategy and placement, Chain Reac

tion rewards the player who can think ahead. At first, you

may be tempted to start making explosions as quickly as pos

sible. But that's not always the best long-term tactic. By

spreading bombs of your color throughout the board, you may

be able to survive chain reactions that would otherwise wipe j)
you out.

Chain Reaction 1 j

The left-arrow symbols in this listing indicate when to press RETURN at the end of each h—'
program line. Do not attempt to type the arrows themselves.

DEFINT a-z:DEFSNB r,g,b« j j

SCREEN 1,320,200,3,1:WINDOW 3,"",(0,0)-(311,186),16 ^
,1:WINDOW OUTPUT 3:COLOR 3,04

DIM s(42,l),u(4,5),p(4,5),j(4,5),bx(4,5),by(4,S),n(, ,

l,S),er(S28),wl(255),w2(2S5),rt(30),tr(30),tx(30),t M
y(30)« ^

126 ^ U

Education

FOR i»0 TO 255:wl(i)»RND*255-128:w2(i)«RND*255-128:

NEXT4

RESTORE PaletteData:FOR i-0 TO 7:READ r,g,b:PALETTE

i,r,g,b:NEXT4

PaletteData: 4

DATA 0,0,. 7,0,0,0,. 8,. 8,0,. 7,. 7,. 7,. 33,. 87,0,. 9,. 9,

■ 9, aO, 0,0,0, ■ O , 04

WIDTH 403CLS8RANDOMIZE TIMER*

QOSUB InitShapes:e«04

FOR i»l TO 3:F0R j=l TO 4:j(i,j)«4:NEXT:j<i,0)=3:j(

i,5)»3:NEXT4

RESTORE Corners:FOR j»l TO 4:j(0,j)«3:j(4,j)=3:READ

a,b:j(a,b)-2:NEXT4

Corners: DATA 0,0,0,5,4,0,4,54

RESTORE BombPos:FOR i«l TO 4:FOR j=l TO i:READ bx(i

,J),by(i,j):NEXT j,i4

bx(4,5)°bx(4,4):by(4,5)»by(4,4)4

BombPos: DATA 13,9,6,9,20,9,13,5,4,15,22,15,13,3,13

17 4 9 22 94

LOCATE 8,14:PRINT "CHAIN REACTION"4

LOCATE 12,9:PRINT "Number of players (1/2)?";4

WHILE npOl AND npO2:np=VAL(INKEY»): WEND4

IF np<>2 THEN4

LOCATE 16,10:PRINT "Computer first (Y/N)?";4

WHILE k*O"Y" AND k*O"N": k«-UCASE*(INKEY«) :WEND4

tu»ABS(k«»"Y")4

END IF4

CLS:COLOR 3,1:LOCATE 1,13:PRINT " CHAIN REACTION ";

4

60SUB DrawGricK

4

MainLoop:4

WHILE e«0:tu»-tu+l:co=tu+64

IF np«l AND tu«0 THEN4

BOSUB Computers

ELSE4

QOSUB Human4

rn WHILE p(y,x)Otu+l AND p(y,x):60SUB Human:WEND4

END IF4

u(y,x)=u(y,x)+l:FS(tu)«FS(tu)+l:IF p(y,x)=0 THEN p(

y,x)=tu+14

60SUB PlaceBomb4

IF u(y,x)=j(y,x) THEN 4

CheckGrid: e«0:fg»0:FOR p»0 TO 4:FOR q-0 TO 5:y=p:x

r-i =q4
f IF u(y,x)>=j(y,x) AND e=0 THEN fg=l:GOSUB FullSquar

e4

NEXT q,p:IF fg=l AND e=0 THEN CheckGricK

n END IF4

WEND4

4

n 127

p
CHAPTER TWO u

u

EndGame:* :-,

COLOR 3,1:LOCATE 24,15:PRINT " GAME OVER ";:FOR i=l [J
TO 10000:NEXT*

LOCATE 24,5:PRINT " Press space bar to play again.

"?« {\
k»»»»:WHILE k*<>" ":k*»INKEY*:WEND* lJ
SCREEN CLOSE 3:WINDOW CLOSE 3:RUN*

*

Human: * \ \.

WHILE INKEY$< >"":WEND:x«hx <tu):y=hy(tu):dx=0:dy=0:G l-J
OSUB DrawCursor:k*=""*

WHILE k*<>" n:k*»iNKEY*4

IF k«»CHR«(28) THEN IF y>0 THEN dy=-l«

IF k*«CHR»(29) THEN IF y<4 THEN dy«14

IF k««CHR*<31) THEN IF x>0 THEN dx=-l«

IF k«»CHR«(30) THEN IF x<5 THEN dx=14

IF dx<>0 OR dy<>0 THEN4

co=0:GOSUB DrawCursor4

x»x+dx:y»y+dy:co=tu+6:GOSUB DrawCursor*

END IF*

WEND:hx(tu)=x:hy(tu)=y4

co-0:GOSUB DrawCursor:co=tu+6:RETURN*

*

FullSquare:*

r»0:yy=32*y+15:xx»36*x+50:WAVE 0,wl:WAVE I,w2*

FOR i=l TO 4:PUT(xx+2,yy+2),er,PSET*

FOR j=l TO 4:n(l,j)=INT(RND*3)-l:NEXT*

r—r+l:k-u(y,x)+l:bn»co-6sIF k»6 THEN k«5*

ON k GOSUB b0,bl,b29b3,b4,b4*

FOR m=255 TO 10 STEP-20:SOUND 100,.l,m,0*

SOUND 100,.l,m,3:F0R n=l TO RND*20:NEXT n,m:NEXT*

tx=x:ty=y:J1=0:Kl=k-1:yl=32*y+lS+by(1,1):xl=36*x+50

+bx(1,1)*

IF tx>0 THEN x»tx-l:dx«-l:dy»0:GOSUB ExplodeBombs:G

OSUB AddBomb*

IF tx<5 THEN x=tx+l:dx«l:dy=0:GOSUB ExplodeBombs:BO

SUB AddBomb* i ;

x«tx:IF ty>0 THEN y=ty-l:dy»-l:dx=0:GOSUB ExplodeBo I—'
mbs:GOSUB AddBomb*

IF ty<4 THEN y=ty+l:dy«l:dx»0:GOSUB ExplodeBombs:GO
SUB AddBomb* \ \

IF FS(0)<1 OR FSdXl THEN e»l* ^
yaty:u(y,x)au(y,x)-j(y,x):GOSUB PlaceBomb:IF u(y,x)
=0 THEN p(y,x)=0* ,

RETURN* \J

*

AddBomb:*

IF p(y,x)Otu+l THEN FS(tu)=FS(tu)+u(y,x) :FS(-tu+l) I j
=FS(-tu+1)-u(y,x)* LJ

128 [J

Education

,_ p(y,x)=tu+lzu(y9x)=u(y,x)+1:GOSUB PlaceBomb:RETURN4

DrawGrid:4

FOR y»0 TO 4:yy=32*y+16:F0R x=0 TO 5:xx=36*x+514

pi LINE(xx,yy)-(xx+34,yy+30),2,b4

; I NEXT x,y4
GET(xx+1,yy+1)-(xx+33,yy+29),er:RETURN4

4

j""l DrawCursor: 4

yy=32*y+15:xx=36*x+504

LINE(xx,yy)-(xx+36,yy+32),co,b4

LINE(xx+2,yy+2)-(xx+34,yy+30),co,b 4

RETURN4

PlaceBomb:4

yy»32*y+15:xx»36tx+50:r=0:bn=co-64

PUT(xx+2,yy+2),er,PSET:k=u(y,x)+l:IF k=6 THEN k=54

ON k GOTO b0,blvb2,b3,b4,b44

b0: RETURN4

bl: PUT(xx+bx(l,k-l),yy+by(l,k-l)),s(0,bn):RETURN4

b2: FOR j»i TO k-l:PUT(xx+bx(2,j)+n(r,j),yy+by<2fj)

+n(r,j)),s(0,bn):NEXT:RETURN4

b3: FOR j=l TO k-l:PUT(xx+bx(3,j)+n(r,j),yy+by<3,j)

+n(r,j)),s(0,bn):NEXT:RETURN4

b4: FOR j*l TO k-l:PUT(xx+bx(4,j)+n<r,j),yy+by(4,j)

+n(r,j)),s(0,bn):NEXT:RETURN4

4

CheckNeighbor:4

fp«l:IF y>0 THEN IF p(y-l,x)«2 THEN ay=y-l:RETURN4

IF x>0 THEN IF p(y,x-l>=2 THEN ax»x-l:RETURN4

IF x<5 THEN IF p(y,x+l)»2 THEN ax=x+l:RETURN4

IF y<4 THEN IF p(y+l,x)»2 THEN ay=y+l:RETURN4

fp«0:RETURN4

4

Computer:4

xt»0:FOR y=0 TO 4:FOR x«0 TO 34

IF p(y,x)<>2 THEN xt»xt+l:ty(xt)=y:tx(xt)=x4

f—1 NEXT x,y4

LOCATE 24,15:C0L0R 3,0:PRINT "Thinking...";4
FOR i=l TO xt:rt(i)*0:tr(i)=0:y=ty(i):x=tx(i):GOSUB

CheckNeighbor4

P| IF fg«l AND fp AND u(y,x)>0 THEN EndComputer4
1 IF u(y,x)+l»j(y,x) THEN 4

IF fp»l AND u(ay,ax)+l»j(ay,ax) THEN rt(i)=6:G0T0 C

— heckNext4

I \ IF fp«l THEN rt(i)=2:G0T0 CheckNext4
IF fp»0 THEN rt(i)»l:GOTO CheckNext4

END IF4

H IF j(y,x)«2 THEN4
IF fp»0 AND u(y,x)=l THEN rt(i)=l:GOTO CheckNext4

n 129

CHAPTER TWO

U

IF fp-0 AND u(y,x)==0 THEN rt(i)»4:80T0 CheckNext4 -

IF fp»l AND u(y,x)»l THEN rt<i>=4:B0T0 CheckNext4 |_,
END IF4

IF u(ay,ax)+l=j(ay,ax> THEN rt(i)«l:80T0 CheckNext4

IF u(y,x)+2>=j(y,x) THEN4 , j

IF fp«l AND u(ay,ax)+l<j(ay,ax) THEN rt(i)»5:B0T0 C LJ

heckNext4

IF fp=0 THEN rt(i)=3:Q0T0 ChfcckNext4

rt(i)«2:80T0 CheckNext4 <j j
END IF4 L-'
IF fp=0 THEN rt<i)=2:60T0 CheckNext4

rt<i)=14

CheckNext: NEXT:zt»0:ab»64

WHILE zt=04

FOR i»l TO xt:IF rt(i)=ab THEN zt»zt+l:tr<zt)=14

NEXT:ab«ab-14

WEND4

dh=INT(zt*RND)-H:hd=tr(dh):y»ty(hd):x=tx(hd)4

EndComputer: LOCATE 24,15:PRINT ■• M;:fg=f

g+1:RETURN*

4

ExplodeBombs: 4

J1»J1+1:xx»x1-bx(1,1):yy=yl-by(1,1):s=1087:bn«co-64

WAVE 0,SIN:SOUND 660,.5,2554

FOR j=l TO 500:NEXT:SOUND 0,0,04

PUT(xx+bx(Kl,Jl)+n(r,Jl),yy+by(Kl,Jl)+n(r,Jl)),s(09

bn)4

IF dy-0 THEN 4

X2-xl+35*dx:dx«dxt4:PUT(xl,yl),s<0,bn>4

FOR i=xl TO X2 STEP dx:s«=s-40: SOUND s, 1,504

PUT<i,yl),s(0,bn):PUT<i+dx,yl>,s<0,bn):NEXT4

PUT(xx+3,yy+3),er4

ELSE4

Y2=yl+31*dy:dy=dy*4:PUT(xl,yl),s(0,bn)4

FOR i=yl TO Y2 STEP dy:s=s-40:SOUND s,1,504

PUT(x1,i),s(0,bn):PUT(x1,i +dy),s(0,bn):NEXT4

PUT<xx+3,yy+3>,er4

END IF4 r

RETURN4 LJ
4

InitShapes:4

RESTORE RodBomb4 \ \
FOR j=0 TO 1:FOR i»0 TO 424 "—

READ a»: s (i , j) »VAL ("fcH-'+alO : NEXT 1, j: RETURN4

RedBomb: DATA B,D,3,200,400,400,0,18004 1]
DATA 3000,1B00,A00,400,A00,1B00,0,04

DATA 0,0,0,E00,2780,4FC0,E4E0,F5E04 _

DATA FBE0,F5E0,64C0,3F80,E00,200,400,4004 I i

DATA E00,3F80,7FC0,E4E0,F5E0,FBE0,F5E0,64C04 t-J
DATA 3F80,E00,3F804

130 n

Education

n

< \ GreenBomb: DATA B,D,3,200,400,400,E00,3F804

DATA 7FC0,FFE0,FFE0,FFE0,FFE0,7FC0,3F80,E00«

DATA 0,0,0,E00,2780,4FC0,E4E0,F5E0*

pv DATA FBE0,F5E0,64C0,3F80,E00,200,400,4004

DATA E00,3F80,7FC0,E4E0,F5E0,FBE0,F5E0,64C04

DATA 3F80,E00,3F804

n :

131

o

0

G

Q

J

3

J

a

o

0

G

Q

J

3

J

a

Amiga BASIC Style
Jim Butterfield

Learn to manage custom menus and output windows,

read mouse input, trap background events, and

master other techniques which give Amiga BASIC its

unique character. The article also highlights some of

the differences between Amiga BASIC and earlier

BASICs, and includes a useful program for

calculating mortgages.

There's a different style to BASIC programming on the Amiga.

You should take a close look at new features; you'll discover

concepts that lead to a radically different style of programming

and user interaction.

To illustrate some of these concepts, let's construct a sim

ple Amiga BASIC program which analyzes the five important

variables in a home mortgage: principal (amount borrowed),

interest rate, period of loan, monthly payment, and balance

due. Since interest-compounding schedules are different in

Canada from in the United States, the program includes an

option for choosing either schedule. We'll discuss elements of

the program as we go through it.

Initialization

_ REM Mortgage (Version 1)4

I DIM title*(6> pBite*(2)ppudef4(5)vvaluett(5),peryear(

2)p compound(2)4

cal«4sBite-14

/-* 4

■ ' The REM identifies the program and version. The DIM state

ment defines the six arrays used in the program, which we'll

(—t discuss as we go along. Note that there are no line numbers in

^ s Amiga BASIC. They are not needed. Even with GOTO or
GOSUB, it's usual to identify a line with a label, not a num-

f~» ber. (You may include line numbers if you like—a feature in-

; -> eluded for the sake of compatibility with other BASICs—but

since the line numbers are treated simply as labels, numeric

n 135

CHAPTER THREE u

■ C
order is irrelevant.) (—,

Also, notice that we use descriptive words for variable LJ

names. In the versions of BASIC on earlier Commodore com

puters, only the first two characters of the variable name were . —

significant (HO$ and HOUSEHOLDS would be considered the U
same name). In Amiga BASIC, names can be up to 40 charac

ters long with every character significant (Householdbudgetl . >

and Householdbudget2 are recognized as distinct names). De- LJ
scriptive variable names make the program much easier to un

derstand and reduce the need for explanatory REM statements.

We also set the default value of the two variables that deter

mine which menu items are selected. The loan variable to be

calculated (cal) is 4, the payment amount. The default interest

compounding schedule (site) is that for country 1, Canada.

Change either of these if you wish.

DATA Principal,Rate,Year*fPayment,Balance,Quit4

MENU 5,0,1,"Calculate"4

FOR j-i TO 6sREAD title*<j)4

MENU 5,jpl-<j»cal)pM M+title*<j)iNEXT j«

4

The DATA statement contains the items for the first of

our custom menus, as well as the captions for the output win

dow (the array title$). One of the most significant features of

Amiga BASIC is that the programmer can easily construct cus

tom menus.

We'll choose menu 5 for our first custom menu so that

menus 1-4 can retain their default uses: Project, Edit, Run,

and Windows. The first MENU statement sets Calculate as the

title for the menu; then the FOR-NEXT loop reads the DATA

items into the corresponding menu slots. Note the expression

l—(j=cal) for the third parameter of the MENU statement in

the loop. Just like earlier Commodore BASICs, Amiga BASIC

interprets a true expression as — 1 and a false expression as 0,

so 1—(j=cal) will evaluate to 1—(—1) = 2 when the value of

/ equals the value of cal, and 1 — (0) = 1, otherwise. A value

of 2 for this parameter puts a check to the left of the menu

item, so this feature is used to indicate which calculation op

tion is currently selected. A value of 1 displays the menu item

without a checkmark, but still makes it active; a value of 0 de

activates the menu item, leaving it dimmed, or ghosted, and

impossible to select.

136

BASIC Programming

_ DATA Canada,2,6,USA,12Pi«

I | MENU 6,0,1,"CountryM«

FOR j-1 TO 2s READ mit««(j),peryear(J),compound(j)4

MENU 6,j,l-(j«*ite>,M "+»ite*<j)iNEXT J4

Different rules are used in the U.S. and Canada to work

out a monthly interest rate based on the annual interest figure.

f* In the U.S., the annual amount is simply divided by 12. In

■■ ' Canada, semiannual compounding is used, which involves di
viding by 2 to get the semiannual rate and then using a more

complex formula. The user will be able to pick the appropriate

system from menu 6, which is titled Country. It would not be

too hard to add extra menu items, such as compounding quar

terly (the numeric DATA items would be 4,3). The FOR-NEXT

loop here uses the same technique for flagging the current

menu selection as the one above.

Format with PRINT USING

DATA "«,###,##«.##"«

DATA " ##».##«% "4

DATA " ###.### "«

DATA "#,###, ###.##"<•

DATA "#,##«,«*#.«•"«

FOR j-1 TO 9sREAD pudef♦(j)sNEXT J4

These are the PRINT USING templates that tell how the nu

meric values of the five loan variables are to be printed. The

principal amount, for example, is printed as a dollars-and-

cents value. The annual interest rate, in contrast, will be

shown to three decimal places with a percent sign.

[DATA 10000,10,10,0,04

FOR j-1 TO 5sREAD value#(j)sNEXT j4

p? These are just arbitrary figures to appear on the initial

* screen. I've picked a principal amount of $10,000 at 10 percent
over ten years. Your own default values may be substituted.

j—j Once the program is running, any of these values can easily

" be changed.

An important point: Note that the array into which the

/—> values are read, valued, has an extra symbol at the end. The #

J 5 sign (pound sign, hash mark, or whatever you want to call it)

137

CHAPTER THREE

indicates that these variables are double precision. If you've

worked with previous Commodore machines which offered

only one level of numeric precision, you might be unclear

about this issue. Here's the story: In earlier Commodore BA-

SICs, variables worked to about ten digits of accuracy. That

was enough—just barely enough—to do most home finance

calculations. Normal (single-precision) Amiga BASIC vari

ables—the type you usually get if you don't add a type identi

fier after the variable name—are reliable to only about seven

digits. This means that it can't handle amounts of more than

about $167,000 without losing pennies.

Computer scientists will tell you that single-precision

Amiga BASIC variables have a 24-bit mantissa, as opposed to

the 32-bit mantissa in earlier Commodore BASICs. This means

that whenever you need to deal with dollars-and-cents val

ues—or with other values requiring a high accuracy—you

need to call for a double-precision variable. Such a variable

will have more accuracy—enough to cover a federal budget

and still be exact on the pennies. To specify double precision,

add a # sign to the end of the variable name. Be careful to in

clude the sign each time you use the variable name, however.

Amiga BASIC will consider value and value# to be two differ

ent variables.

A Custom Window

4

WINDOW 2,"Mortgage",(10,10)-(400,100),84

WINDOW OUTPUT 24

80SUB calc:60SUB showval4

LOCATE 7,14

PRINT "Use menu buttons to select option."4

PRINT "Click on existing values to change."4

QOSUB hang*

WINDOW CLOSE 24

END4

Now we open a new window in which the calculations will

appear. The only gadget we put on the window is the closing

gadget (code 8). It's there so that the user can still put away

the window manually in case the program is stopped. The

window is not only created, but also selected for output. Then

the initial calculations are displayed, along with brief instruc

tions near the bottom of the window.

138

u

BASIC Programming

The program's main job is a subroutine called hang. We'll

stay in that subroutine until the user wants to quit, at which

time the window will be closed. Here is the hang subroutine:

«

hangs4

ON MENU QOSUB event4

ON MOUSE QOSUB event4

MOUSE 0N4

MENU 0N4

kwit-04

WHILE kwitOiaWEND*

MOUSE 0FF4

MENU OFF*

MENU RESET*

RETURN*

We define an action for the mouse and for the menus we

previously defined. Clicking the left mouse button or selecting

a menu item invokes the event subroutine. These two activities

are interrupts or event traps. After they are activated with

MENU ON and MOUSE ON, they will remain in place, wait

ing for the appropriate event to happen, until they are can

celed or turned off. While they are active, it doesn't matter

what the program is doing; a suitable stimulus will immedi

ately cause the program to jump to the specified subroutine.

A variable called kivit is used by the program to tell when

it's time to quit. As long as it's 0, the program stays in the

WHILE-WEND loop. How does it ever get out of this seem

ingly endless loop? Remember the event traps we just en

abled. Pressing the left mouse button or selecting a menu item

will trigger a GOSUB to the event routine, which in turn calls

subroutines to process the button click or menu selection. One

menu selection, the Quit option from the Calculate menu, will

change the value of kwit to 1 to end the loop. After exiting the

loop, we'll shut off the menu and mouse, disconnect the event

traps, and return to the main program, which ties things up.

A Major Event

«

event:4

ms-MOUSE(0):mn-MENU(0)4

IF mn THEN QOSUB menunit*

IF ffls THEN GOSUB eek«

IF kwit-0 THEN GOSUB calc:QOSUB showval*

RETURN*

139

CHAPTER THREE U

U

Now let's look at the routine where the real action takes place. , j

When we arrive at the event subroutine, we know that one of Lj
two things has happened. Either the left mouse button has

been clicked or a menu item has been selected by using the , ;

right mouse button. The MOUSE and MENU functions are U
used to check which, and the appropriate service subroutine is

called. Once the new value for cal or site has been established, < ;

we're ready to calculate new values, but first we check that lj

kwit is still 0—we don't want to calculate values if the Quit

option from the Calculate menu was selected. The new finan

cial values are determined by calling the subroutine calc, then

displayed using the showval subroutine. Keep in mind that

we'll come back to this routine to recalculate anytime the data

elements—or the rules—are changed.

4

calcs4

ON ERROR GOTO oop»4

pri ncipaltt-valu»«(1)4

r1#«(valu»#(2)/100/p»ry«ar(site)+1)*(1/compound(sit

•))4

rate#-rl#-14

month«-valu«#(3)t124

payment#*value#(4)4

balance#-value*(9)4

ON cal Q03UB fprin,fintrpfp»r,fpay,fbal4

•cal•-100:IF cal-2 OR cal-3 THEN seal•-10004

value«(cal)-INT(value*(cal)*scale+.99)/scal«4

ON ERROR GOTO 04

RETURN4

The calc subroutine is where the dirty work begins. The

principal, interest rate, number of periods, payment amount,

and final balance are extracted from the valued array so that

they can be used by the various calculation programs more j

easily. Note that in most cases, we retain double-precision ac- LJ
curacy with the # sign. The monthly interest rate is worked

out by a fairly complex formula, and the number of months r-

equals the number of years times 12. LJ
The variable cal tells us what to calculate. Depending on

its value, well call fprin (find principal), fintr (find interest (

rate), fper (find period), fpay (find payment), or foal (find bal- LJ
ance). The calculation with scale rounds any calculated value

to the next highest penny, or, if not a money figure, to three

decimal places. j_J
The calculation subroutine also includes an error trap,

140 I I

BASIC Programming

since some calculations are impossible or ridiculous (for ex

ample, how long would it take to pay off a $1,000 mortgage

with a payment of $0 per month?). Problems are directed to

an event trap named oops.

4

oops:4

valu«#(cal>-04

RESUME oops24

oops2s4

WINDOW 24

RETURN*

4

If there's any calculation problem, we set the calculated

value to 0 and give up. We do not go back to the detailed cal

culation program. Instead, using oops2, we return to the main

cole routine. But first, it's necessary to reopen WINDOW 2,

since the Amiga always closes any secondary windows when

an error occurs. Notice that the message at the bottom of the

window is not reprinted. So if you see the window blink and

then reappear minus the message and with the value being

calculated set to 0, an error has been trapped. If this occurs

when you enter what seem to be legitimate values, it may in

dicate that you made an error while entering the program. For

this reason you may want to omit the ON ERROR statements

until you are confident that you have eliminated all typing

mistakes in the program.

Here are the five calculation routines. We won't plunge

into details of the math here, since it's rather complex.

fprins4

val ue# < 1) - (bal anc«#+payment#* <r 1#-Nnonths-1) /rate*) /

rl#"months4

RETURN*

4

fintrs4

r0#»0:rl#-EXP(75/months):IF rl«>2 THEN rl#-2 4

ratett-rltt-1:r9#-rate#*1004

p0#»balanca#+paym»nt#tmonths-pri nci pal#4

p9««<balance#+payment#« <rl#-Nnonth«-l>/rate#>/rl«"no

nthc-princi pal#4

IF p0#<0 GR p9tt>0 THEN 4

r2#«04

ELSE4

flopX-04

WHILE ABS(r9#-r0«)>.0014

•flopX«l-flop%4

141

CHAPTER THREE

u
IF flop%>0 THEN*

r2#-(r0#+r9#)/2« [J
ELSE*

r2#-r0#-p0#»<r9#-r0#>/<p9#-p0#> <

END IF4 (

rltt«<l+r2«/100/peryear (site))-^< 1/compound (site))« LJ
rate#«rl#-l«

p2#=<balance#+payment#* (rl^months-1) /rate#) /rl#^mo

nth©-principal#4 \ \
IF p2#>0 THEN4 *—*
r0««r2#:p0#-p2«4

ELSE4

r9#-r2«s p9tt-p2«4

END IF4

WEND4

END IF4

valuett(2)*r2#4

RETURN4

«

fper:4

value*(3) «=LOQ ((paym«nt#-rate#*balancett) / (paymenttt-r

ate**principal#))/L06(rl#)/12#4

RETURNS

4

fpay:«

value#(4)«ratett* <pri ncipal#*rl#^months-balance#)/(r

RETURNS

fbals4

value#(5)-principal#*rl#^month»-paym«nt#t(rl#"Nnon

m-l)/rate#4

RETURN4

<

The only one of the above routines that's lengthy is fintr.

There's no simple formula for the interest rate, so we must

zero in on the correct value by repeated calculations. [J

Displaying Results , ,

Now to display the calculated values: «—»

showval& 4

FOR j-1 TO S« jl
LOCATE jpl«

IF j-cal THEN 4

PRINT "t11!*) ,

ELSE4 U
PRINT " "5«

END IF4

I I.

142 LJ

BASIC Programming

_ PRINT title»<j>jSPACE*<20>*

\ LOCATE j,12*

' PRINT USING pudef»(j);valu»#(j)4

NEXT j*

—r RETURNS

! \ *

For a good human interface, I wanted to distinguish be-

f"T tween the calculated item and the entered values. The title for

' the value being calculated will be preceded by an asterisk.

SPACES is used to generate a string of blanks to wipe out any

old values.

A Choice Is Made

manuhits*

ms-0*

IF mn>4 THEN*

mnl-MENU<l>*

ON mn-4 BOSUB newcalc,style*

END IF*

RETURN*

Here's the routine to handle menu selections. The value mn,

given the value of MENU(O) in the calling routine, is used to

determine which menu is involved. MENU(l) tells us which

item from the menu has been selected. We then subtract 4 from

mn to get an offset of 1 or 2 for the ON-GOSUB statement.

*

newcalc:*

IF mnl<6 THEN*

MENU 5vcalpl*

c«l«mnl*

MENU 5,cal,2*

r-r ELSE*

! ! IF mnl-6 THEN kwit»l*

ENP IF*

RETURN*

n *
style:*

IF mnl<3 THEN*

_, MENU 6,sit«fl*

jj «ito»mnl*

MENU 6fsit«p2*

END IF*

r—; RETURN*

i : *

143

CHAPTER THREE u

D

The newcalc subroutine is called when menu 5, the Calcu- j~

late menu, is selected. If the item selected from that menu is Lj
1-5, the previously selected menu item has its checkmark re

moved, and a checkmark is placed beside the newly selected r~i

item. The value of cal is updated to show which variable is LJ
now being calculated. If menu item 6, Quit, is chosen, we in

stead set the value of kwit accordingly. The style subroutine r ,

sets site to the selected country when an item is selected from 1 1
menu 6, the Country menu.

eek:*

x"MOUSE(3):y"MOUSE(4)4

IF x>5 AND x<190 THEN*

v«INT<<y+8>/B>*

IF v>0 AND v<6 AND vOcal THEN*

LOCATE v,12sPRINT SPACE*<20>*

LOCATE v,12:INPUT value#<v>*

LOCATE v,12:PRINT USING pudof*<v);value*<v>«

END IF*

END IF*

RETURN*

*

When the left mouse button is clicked, the eek subroutine

allows entry of a new value. It's important to read MOUSE(O)

before reading the mouse's position, but in this case, that's al

ready been done in the event routine that calls eek. The x and

y coordinates of the mouse pointer's current position come

from MOUSE(3) and MOUSE(4), since those functions return

the position of the mouse when the button was clicked.

MOUSE(l) and MOUSE(2) return the mouse's position at the

time of the MOUSE(O) call, so either would probably give

comparable results in this case. Remember that we are reading

pixel positions, not character positions. Before recognizing a -> ■»

click as a request to enter input, we check that the pointer was 1 I
reasonably close to one of the displayed values. One more

limitation is that we won't allow an entry for the cal variable: r «

The computer calculates that valulp. I !
Once we know it's a valid variable, we clear the old value

using SPACE$, input a new value; and then print it neatly for- , -,

matted in the space provided. LJ

Maiden Voyage < j

Let's give the program a trial run. First, you'll see the window *—>

appear. If you have used the initial values suggested, you'll

144 LJ

BASIC Programming

notice that the program has calculated a payment of $131.04.

That's the Canadian computation. Now press the right button,

slide the mouse pointer up to the Country menu, and move

down to USA before you release the button. The payment

should change to $132.16.

This is a ten-year mortgage. Let's see what the balance

would be after five years. Use the right button (also called the

menu button, for obvious reasons) to select the Balance option

from the Calculate menu. The balance will show a slightly

negative amount. That's okay (each payment is rounded up a

fraction of a penny, so the final payment will be slightly less

than 0). Next, move the pointer up to the Years value in the

display window menu and click the left button. The computer

is inviting you to enter a new value: Enter 5 for five years.

Observe that the balance still due after five years is a little

over $6,000.00.

How long to pay it off at $150 a month? Select Years

from the Calculate menu. Change the Balance value to 0 and

the Payment value to 150. The answer is, a little more than

eight years. If you change the interest rate to 12 percent, you'll

see that it would take over nine years to pay off the loan. At

18 percent, you wouldn't live long enough to pay it off at

$150 a month, and at 20 percent, it's impossible (note that the

Years value is set to 0 to indicate the error). When you've

snooped through the combinations enough to satisfy yourself,

select Quit. And don't forget to save the program. If your an

swers don't match these, check the formulae for typographical

errors.

After running through this exercise, think how different

things would be on any eight-bit computer. It's not just the

mortgage calculation; it's the style of the machine. With a

fresh approach, you can make your Amiga more flexible and

useful than any computer you've used before.

145

u

u

Foolproof Input for lj

Amiga BASIC j
Tom Bunker

u
Amiga BASIC programmers will find this routine

quite handy—a routine that creates edit-field boxes

for accepting various kinds of keyboard input. The

routine also demonstrates how well-designed

subprograms can, in effect, add new commands

to Amiga BASIC.

Amiga BASIC'S ability to use custom subprograms is one of its

most valuable features: It allows programmers to accumulate a

library of very useful routines that can be attached to virtually

any BASIC program. The simple requester window subpro

gram presented later in this chapter is just one example. An

other subprogram that should be in every programmer's

collection is a foolproof input routine.

The ideal input routine would simulate the Amiga operat

ing system's own edit-field boxes. An example of such an edit

field appears when you select the Save as option in Amiga BA-

SIC's Project menu. A similar routine in BASIC would give

your programs much more control than provided by the stan

dard INPUT statement. It would be helpful, for instance, to be

able to limit the number of characters that can be entered or to

limit numeric input to integers rather than print error mes- i >

sages after the fact. The input routine shown here has all of LJ
these capabilities and more.

Edit Fields in BASIC ^
The complete input routine consists of two subprograms:

Getline, which gets a line of input from the keyboard, and jj

Box, which Getline calls to draw an edit-field box and cursor

on the screen. The Box subprogram is very useful in its own

right and can be used independently of Getline. M

146 Q

BASIC Programming

Getline lets you create the equivalent of an edit-field box

in Amiga BASIC. Here are some of its features:

• The main program which calls Getline sets the maximum

length of input allowed.

• The Box subprogram draws an edit-field box of appropriate

size.

• The cursor inside the box can be flashing or nonflashing.

• The main program can select the type of input allowed: al

phanumeric characters, real numbers, or integers.

• The range of alphanumeric characters accepted for input can

be adjusted.

• Pressing the ESCape key aborts the input operation.

• A single keystroke can erase all input within the edit-field

box.

• The main program can display a default entry within the

edit-field box which the user can edit.

Getline can be used any time your program needs to ac

cept input from the keyboard, for entry of data, filenames, or

whatever. To use Getline, your program should first print any

desired prompt message and leave the cursor at the point on

the screen where input is to begin. Then you must call Getline

using this general format:

CALL Getline (string$,maxlength%inputtype°/o)

The string variable string$ holds whatever default text you

want to display inside the edit-field box for the user to edit,

and also returns the input entered by the user. For instance, if

Getline is called as part of a save-data-to-disk routine, you

could suggest a default filename or use a filename which the

user has previously indicated. If you don't want to display

anything within the edit-field box when it appears, set this

string variable to a null string (" ") before calling Getline. In

any case, Getline returns the user's input in this string variable

after the subprogram passes control back to your main program.

The second parameter (maxlength%) is an integer which

sets the maximum input length. For instance, if you want to

limit input to 30 characters, you'd specify a 30 for this param

eter by supplying either an integer variable or a constant.

The last parameter (inputtype%) is an integer which tells

147

CHAPTER THREE

Getline which type of input to accept. There are three possible

values:

0 accepts all alphanumeric characters without restriction.

1 accepts real numbers—the digits 0-9 and the decimal point.

2 accepts integers—only the digits 0-9.

The real and integer types also accept the plus and minus

signs, but only in the first character position. Getline simply

ignores all keystrokes that do not conform to the type of input

selected.

CALLing Getline

Here are a couple of examples. Let's say you want the user to

enter his or her name, up to 14 characters long, and you want

your program to store the information in the string variable

NAME$. The proper CALL would be:

CALL Getline (NAME$,14,0)

If you want the user to enter a three-digit integer number

(perhaps a telephone area code), the proper CALL would be:

CALL Getline (NUMBER$,3,2)

Note that Getline always returns the user's input in a

string variable. If the input you're seeking is an integer or a

real number, you can convert it from string to numeric form

with the VAL function after Getline returns control to your

main program.

Remember, too, that Amiga BASIC'S CALL statement has

an alternate syntax: You can omit the CALL keyword if you

delete the parentheses surrounding the arguments. The follow

ing statements work the same as the examples above:

Getline NAME$,14,0

Getline NUMBER$,3,2

This syntax saves a bit of program space, but also sacrifices a

certain amount of program clarity. If you include the CALL

keyword, it is always clear to others that the program is calling

a subprogram.

Special Keystrokes

When called, the Getline subprogram first draws an edit-field

box the proper size to hold the input. If the string variable

148

H
' ' BASIC Programming

H| supplied in the call is not a null string (two quotes with noth-

! > ing between them), the subprogram prints the string inside the

box. A flashing cursor indicates that the program is awaiting

f—1 keyboard input. Like the Amiga operating system's own edit

' - fields, Getline recognizes the following special keystrokes:

• ESCape exits the edit field and leaves the string variable with

P| the value it had when Getline was called.
• RETURN exits the edit field and assigns the user's entry to

the string variable.

• BACKSPACE deletes the character to the left of the cursor.

• DELete removes the entry currently in the edit field.

• CURSOR LEFT moves the cursor one space to the left.

• CURSOR RIGHT moves the cursor one space to the right.

The last four commands, of course, are valid only if at

least one character is within the edit field.

Customizing Getline

Note that Getline is designed to work only when Amiga BA-

SIC's default font is used and Preferences is set to 80 columns.

If you're using a 60-column screen or a different font, the text

doesn't appear properly within the edit-field box. You can

modify the subprograms to solve this problem if you don't

regularly use the default 80-column font.

If you don't want to bother with three parameters every

time you call Getline, you can omit either the maximum string

length or input type or both, as long as you also delete the

corresponding items from the parameter list of the SUB state

ment. The Getline call can be made as simple as this:

^ Getline NAME$

1 In this case, the SUB statement would have to be changed
to look for only one argument:

["] SUB Getline(inputstring$) STATIC

Getline substitutes default values for maxlength% or

p-j inputtype% when they are missing from the parameter list.

' J Maxlength% defaults to 40, and inputtype% defaults to 0
(thus accepting all types of input). You can change these de-

f—j faults too, if you wish.

1 j Two variables in the Getline subprogram—asc.low and

149

CHAPTER THREE LJ

U

asc.high—determine the ASCII range of characters that are ac- —.

cepted in the edit field. You can change these variables to LJ
make the subprogram accept any range of characters desired,

even to the extent of restricting input to only one key. They

could also be declared in a SHARED statement and set by LJ
your main program.

The ESCape key aborts the input and exits the edit field.

If your main program needs to know whether or not the edit [_j
field was terminated by ESCape (as opposed to a RETURN

with no other input), add the following line to the Getline

subprogram immediately following the SUB statement:

SHARED K

After the subprogram ends, your main program can test the

value of K. If K = 27, the ESCape key was pressed.

You can also program one or more of the special function

keys to work in a similiar fashion by adding additional lines

directly below the ESCape-key line to test for any other ASCII

value. For example, the addition of

IF K>=129 AND K<=138 THEN EXIT SUB

makes all the function keys abort the input like ESCape. Your

main program could then test to see if K is equal to the ASCII

value of any of the function keys and take whatever action is

desired.

By deleting a single line as instructed by comments within

the subprogram, Getline will always start with an empty

string. Other comments show how the flashing cursor can be

changed to a nonflashing cursor and how the box around the

edit field can be eliminated. To make these changes, it's not

necessary to actually delete the lines which are indicated. Sim

ply insert a REM at the beginning of the line to disable it; this M

has the same effect and is more easily reversed.

The Box Subprogram [J
To draw the box around the edit field, Getline calls the Box

subprogram. This subprogram selects a rectangular area of the

screen and alters it in one of four ways. You may find this LJ
technique useful for other purposes as well. Here is the gen

eral format of the Box subprogram call: . ,

CALL Box (wide°/o,high%border%mode0/o) *-J

150 G

BASIC Programming

or

Box wide%high0/o,border%tnode°/o

The first two parameters (wide% and high%) set the size

of the boxed area by specifying the width and height in num

ber of characters. The third parameter (border%) changes the

size selected by increasing or decreasing the area on all four

sides by the number of pixels specified. If this argument is 0,

the perimeter of the area falls on the character boundaries.

The last parameter (mode%) can range from 0 to 3:

0 fills the box interior using a PATTERN statement.

1 inverts the interior of the box.

2 outlines the area using the foreground color.

3 fills the box interior using the foreground color.

The Box subprogram can be very useful when you want

to erase a word or clear any rectangular section of the screen.

Consider this statement:

COLOR background#:Box 30,1,0,3:COLOR foreground*

This erases a section of the screen 30 characters long

without affecting any surrounding text. It sets the foreground

color equal to the background color, fills the area, and resets

the color. Of course, you can achieve the same effect by print

ing spaces, but the Box subprogram works much faster.

Getline Input Routine
The left-arrow symbols in this listing indicate when to press RETURN at the end of each

program line. Do not attempt to type the arrows themselves.

SUB Getline(inputstring*, maxlength%, type%) STATIC

4

'Value o-f typeX should be 0 for character, 1 for re

al, 2 for integer4

'Set default maximum length:4

default1ength°404

IF maxlength7.=0 THEN maxlength%=defaultlength 4

y=CSRLIN:x=POS(o):a*"""4

asc.low"32:asc.high-125 'Set ASCII limits*

'Delete next line to disable edit mode:4

a*«inputstring* 4

cursor»LEN <a«):strlength-LEN(a*)4

'Delete next line to eliminate input box:4

Box maxlengthXplp2p2 4
Print.line:4

LOCATE y,x:PRINT a*+SPACE* <max1engthZ-LEN(a*))4
Getkey:4

151

CHAPTER THREE

k*»INKEY* 4

'Delete next line for nonflashing cursors4

count=count-l 4

IF count<-0 AND cursor<maxlength* THEN*

LOCATE y,x+cursor:Box 1,1,0,14

count=100 'Set cursor flash rate:4

END IF4

IF k»»"" THEN Betkey*

k«ASC<k*>:count"04

IF k»13 THEN inputstring*=a*:GOTO Done 'Return key4

IF k=27 THEN Done 'ESCape key4

IF k>=asc.low AND k<=asc.high AND strlength<maxleng

th% THEN4

IF type7.>0 THEN 'Check if real or integer4

IF k<43 OR k>57 OR k=44 OR k=47 THEN Print.Iine4

IF (k=43 OR k»45) AND cursor>0 THEN Print.Iine4

IF type%>l AND k=46 THEN Print.Iine4

END IF 4

LOCATE y,x+cursor:cursor=cursor+l:strlength«strleng

th+1 4

a»=LEFT*<a$,cursor-1)+k*+MID*(a*,cursor)4

PRINT MID*(a*,cursor):GOTO Getkey4

END IF4

IF k»31 AND cursor>0 THEN 'Cursor Ieft4

cursor=cursor-l 4

ELSEIF k=30 AND cursor<strlength THEN 'Cursor righ

t4

cursor«cursor+14

ELSEIF k»127 THEN 'Delete entry4

a*=MII:cursor«05strlength«0 4

ELSEIF k»8 AND cursor>0 THEN 'Backspace key4

cursor=cursor—l:strlength=strlength-14

a*=LEFT*(a*,cursor)+MID*(a*,cursor+2)4

END IF4

GOTO Print-Iine4

Done:4

LOCATE yfx4

PRINT inputstring$+SPACE*(maxlength%-LEN(inputstrin

g«)>4

END SUB4

4

SUB Box (wide"/., highX, border"/., mode'/.) STATIC4

'wideX and highX set size expressed as number of ch

aracters4

'border7. is to be given as number of pixels4

'mode'/- - use 0 for pattern fill; 1 to invert area*

'mode% - use 2 for area outline; 3 to fill area wit

h foreground color4

y»CSRLIN*8-9-borderX:yl=y:IF yl<0 THEN yl=04

x=P0S(o)*8-9-bordery.:xl=x: IF xl<0 THEN xl»04

x2»x+widey.*8+l+2*border% 4

152

n

n

BASIC Programming

IF x2>«WIND0W<2> THEN x2=WIND0W(2)-1 4

y2«y+high7.*8+l+2*border% 4

IF y2>«WIND0W(3> THEN y2«WIND0W<3>-14

IF xl>x2 THEN xl«x2 4

IF yl>y2 THEN yl»y24

IF roodeX»2 THEN LINE (xl,yl)-(x2,y2),,b:EXIT SUB4

IF mode7-»3 THEN LINE <xl,yl)-(x2,y2) f ,b-f :EXIT SUB4

AREA <xl,yl):AREA (x2,yl):AREA (x29y2):AREA (xl,y2)

AREAFILL mode7.4

END SUB4

4

H

n
153

Amiga Math

Graphics
Warren Block

Is math boring? Before you answer, take a look at

this Amiga BASIC program. It creates graceful,

multicolored graphic designs based on a variety of

interesting mathematical junctions.

As one of my first Amiga programming projects, I decided to

convert several Apple 11+ hi-res graphics routines to run on

my new machine. Originally, all these routines were written as

one-liners: That is, the entire program would fit (just barely,

sometimes) on one BASIC line. "Amiga Math Graphics" com

bines all of them into a single program. At the very least,

these routines demonstrate the speed and power of the Amiga,

while creating a pleasing visual display. At their best, perhaps

they will convince you to explore the field of microcomputer

graphics—a field which many people avoid because it seems

difficult. Pictures are a fundamental part of communication,

and being able to use graphics on the computer will improve

your ability to communicate through that medium.

Type in the program and save a copy before you run it.

The small <- character indicates where each program line ends.

Don't try to type this character—we deliberately chose one

that's not on the Amiga keyboard. The <- character merely

shows where you should press RETURN to end one program

line and start another.

Labeled Subroutines

Although the routines in this program were originally one-

liners, it seemed a shame to keep them that way when Amiga-

BASIC makes it so easy to write neat, readable code. Each

routine is marked with a descriptive label. Let's look at each of

them in turn.

154

BASIC Programming

n

RightOvals. The basic formula used in this routine forms

j] the basis for several different plotting routines. They all in
volve drawing a line from the perimeter of one oval to the pe

rimeter of another. In this case, the line is drawn from a point

! I on the first oval to a point halfway along the other.
SideOvals. Only minor changes were made to RightOvals

to produce this interesting display. The second oval was tilted

ji with respect to the first, and the line is plotted with an offset
added to the x coordinate of the second oval.

Scaling Graphic Shapes

When the trigonometric functions sine and cosine are used for

graphics, a problem arises because both of these functions re

turn only values between 0 and 1. Without scaling (adjusting)

the figures to fit the computer's display, you would see only

three or four pixels in the middle of the screen. Scaling the

display involves multiplying a set of coordinates by a constant

amount. However, if you multiply both the x (horizontal) and

y (vertical) coordinates by the same amount, the graph appears

to be squashed horizontally on the screen. This occurs because

the Amiga's aspect ratio (the ratio of horizontal to vertical

pixels) is greater than 1. In plain English, there are more pixels

across the screen than there are from top to bottom. To adjust

for the aspect ratio, you must make the horizontal scaling fac

tor larger than the vertical factor.

Other factors influence aspect ratio, including the type of

monitor you have and the physical shape and relative loca

tions of the pixels it displays. Some experimentation is re

quired to find the best scaling values for any given display. In

this program, the R variables (Rl, R2, and so on) set the scal

ing factors for various routines. By changing these values, you

can squash the shapes vertically or horizontally.

TwistedBand. Using a minor variation on the double-oval

effect, this routine creates a display that looks remarkably like

a twisted loop of paper. The only real difference from

SideOvals is that an offset is added to the y coordinate of the

second oval, not to its x coordinate.

MultiLobe. This routine employs a common polar func

tion which involves multiplying an angle, theta, by a fixed

constant, then using this new value to compute the R value

(theta and R are discussed at the end of this article). The effect

is that of several squashed, distorted lobes instead of a plain

155

CHAPTER THREE

"Amiga Math Graphics"

creates these graceful

shapes with short routines

based on polar functions.

circle. By setting the variable Lobes to 4, eight lobes are

drawn. Try changing Lobes to different values (including

nonintegers) for some interesting variations.

Show Your Colors

Before you bought an Amiga, you may have heard that it can

display 4096 different colors. The low-resolution graphics

screen lets you display as many as 32 different colors at once.

If you're familiar with earlier computers, the Amiga's color

system may seem confusing at first. On a Commodore 64, for

example, color 2 is always red, and so on. But the Amiga, like

the PC/PCjr, allows you to assign any color to color 2. The

156

n
BASIC Programming

PALETTE statement allows you to define color 2 as black, ma-

genta, or whatever you like. The color number simply provides

a means for referring to that color—however you define it.

To use PALETTE, imagine that you have three cans of

paint: one red, one green, and one blue. By mixing various

portions of these cans together, you can create almost any

conceivable color. For example, to make a bright red, take 90

percent of the paint in the red can and mix it with 20 percent

of the paint in the green can (you don't need any blue). By co

incidence, this is just the way the PALETTE statement works.

The statement PALETTE 5,.90,.20,0 assigns a bright red color

to color 5. (Strictly speaking, color mixing in Amiga BASIC is

more like mixing colors of light than colors of paint. Thus, the

statement PALETTE 5,1,1,1 sets red, green, and blue to maxi

mum intensity, creating a white color. If you mix red, green,

and blue pigments of equal intensities, the result is a very

dark brown or black.)

SpiralCone. Using a method similar to that used by

MultiLobe, this routine multiplies the theta value by 3, result

ing in a six-lobed figure. However, only the x coordinate for

this figure is used. The y coordinate is calculated using the

normal value of theta. A conelike shape is formed by drawing

all lines from the center of the display to the calculated points.

SideSpiralCone. This is merely SpiralCone drawn side

ways, with different scaling values. The difference in appear

ance is substantial enough to prevent most viewers from

detecting the similarities.

The last two routines in the program rely on similar func

tions, but produce patterns that look very different on the

screen.

Circles. This routine defines a small circle surrounded by

a larger one; then it picks 6 equally spaced points on the inner

circle. The final design is created by drawing a line from each

of those points to 20 or so equally spaced points on the outer

circle.

Spikes. Although this routine looks nearly identical to

Circles, the shape it draws is completely different.

There's a System to This

You can enjoy and experiment with this program without un

derstanding the math that underlies the graphics. For those

who are interested, here's a further explanation of how it works.

157

CHAPTER THREE

u

In the field of mathematics, there are many systems for r i

expressing the location of a point in a plane. Generally, the *—'

center of the system is referred to as the origin. The origin is

simply a reference point; the location of all other points is de- 1 i

fined with respect to the origin. '—'
Most people are familiar with the Cartesian coordinate

system, in which the location of any point is expressed in * i~{

terms of x and y coordinates. The x value represents the ^
point's horizontal distance from the point of origin. Similarly,

the y coordinate represents the point's vertical distance from

the origin.

The Cartesian system works well for representing two-

and three-dimensional shapes on a two-dimensional surface

such as the computer's display screen. However, the polar co

ordinate system is much more convenient when you're using

trigonometric functions such as sine and cosine. In this

scheme, a point's location is expressed as a distance from the

origin (conventionally labeled R) and an angle (usually labeled

theta, or with the Greek letter 9) from a reference line.

Polar Functions

The routines in this program are all based on polar functions.

Since Amiga BASIC commands use Cartesian coordinates

(roughly—see below), it's necessary to convert from polar to

Cartesian coordinates. In general, this operation can be per

formed by the expressions X=R*COS(theta) and Y=R*SIN

(theta).

There are a few difficulties in adapting the graph of a po

lar function to a computer display. The easiest problem to

allow for is the fact that most graphics displays (including the

Amiga's) use an upside-down Cartesian system: That is, a Jj

point's y coordinate specifies how far down the screen the

point lies—the exact opposite of the normal Cartesian system. _

Since all of our shapes are vertically symmetrical, this problem jj

can simply be ignored.

Another difficulty arises because the Amiga's display does

not allow for negative coordinates. The Amiga's origin point is ji

in the upper left corner of the screen, not the center of the

viewing area as in the Cartesian system. This can easily be

corrected by considering the middle of the display to be the jj

origin. In the calculations, all this involves is adding an x and

y offset to the points you wish to plot.

u

BASIC Programming

Amiga Math Graphics

The left-arrow symbols in this listing indicate when to press RETURN at the end of each

program line. Do not attempt to type the arrows themselves.

MathGraphi ess *

GOSUB Initialize*

' Repeat until the user presses a key.

*

WHILE INKEY*=""*

* Module 1:RightOvals *

Rl=150*

R2=25 *

R3=25 *

R4=85*

Inc=Pi/64*

FOR Theta=0 TO 2*TwoPi STEP Inc *

Xl=FNPol arX (Rl, Theta) *

Yl=FNPol arY (R2, Theta) *

X2=FNPolarX(R3,Theta+Pi)*

Y2=FNPolarY(R4,Theta+Pi)*

LINE(X2,Y2)-<X1,Y1),INT(RND*31)+1 *

NEXT*

Pause*

' Module 2sSide0vals—*

* Same thing, only different-*

Rl=150*

R2=35*

R3=65 *

R4=85*

Inc=Pi/64*

0ffset=Pi/3*

FOR Theta=0 TO 3*TwoPi STEP Inc*

Xl=FNPolarX(Rl,Theta)*

Yl=FNPolarY(R2,Theta)*

X2=FNPolarX(R3,Theta+0ffset)*

Y2=FNPolarY(R4,Theta)*

LINE(X1,Y1)-(X2,Y2),INT(RND*31)+1*

NEXT*

Pause*

' Module 3:TwistedBand*

' Yet another variation on the double oval theme.*

Rl=150*

R2=35*

R3=65 *

R4=85*

Inc=Pi/64*

0ffset=Pi/3*

FOR Theta=0 TO 3*TwoPi STEP Inc*

Xl=FNPolarX(Rl,Theta)*

Yl=FNPolarY(R2,Theta)*

X2=FNPolarX(R3,Theta)*

159

CHAPTER THREE U

LJ

U

Y2=FNPolarY(R4,Theta+Offset)*

LINE(X1,Y1)-(X2,Y2),INT(RND*31)+1*

NEXT*

Pause*

' Module 4:Multilobe*

Rl=100*

Inc=Pi/128*

Lobes=4* —

FOR Theta=0 TO 2*TwoPi STEP Inc* { /
R2=Rl*SIN(Lobes*Theta)* "L-'
Xl=FNPolarX(R2,Theta)*

Yl=FNPolarY(R2,Theta)*

LINE (XCenter,YCenter)-(XI,Yl),INT(RND*31)+1*

NEXT*

Pause*

' Module 5:SpiralCone*

Rl=100*

R2=85*

Inc=Pi/160*

Lobes=3*

FOR Theta=0 TO 2*TwoPi STEP Inc*

Xl=FNPolarX(Rl,ThetatLobes)*

Yl=FNPolarY(R2,Theta)*

LINE (XCenter,YCenter)-(XI,Yl),INT(RND*31)+1*

NEXT*

Pause*

' Module 6:SideSpiralCone*

Rl=130*

R2=80*

Inc=Pi/160*

Lobes=3*

FOR Theta=0 TO 2*TwoPi STEP Inc*

Xl=FNPolarX(Rl,Theta)*

Yl=FNPolarY(R2,ThetatLobes)*

LINE (XCenter,YCenter)-(Xl,Yl),INT(RND*31)+1*

NEXT*

Pause*

* Module 7:Circles* j f

Rl=115* LJ
R2=85*

R3=40* % _

Incl=Pi/3* l—/
Inc2=Pi/20*

FOR Thetal=0 TO TwoPi STEP Incl*

FOR Theta2= 0 TO TwoPi STEP Inc2* Lj
Xl=FNPolarX(Rl,Theta2)*

Yl=FNPolarY(R2,Theta2)*

X2=FNPolarX(R3,ThetaD* j i

Y2=FNPolarY(R4,Thetal)* I—►
LINE (X1,Y1)-(X2,Y2),INT(RND*31)+1*

160 (J

BASIC Programming

NEXT*

NEXT*

Pause*

' Module 8:Spikes*

Rl=115*

R2=85*

R3=40*

Incl=Pi/3*

Inc2=Pi/18*

FOR Thetal=0 TO TwoPi STEP Incl*

FOR Theta2= 0 TO TwoPi STEP Inc2*

Xl=FNPolarX(Rl,Theta2)*

Yl=FNPolarY(R2,Thetal)*

X2=FNPolarX(R3,Thetal)*

Y2=FNPolarY(R4,Theta2)*

LINE (X1,Y1)-(X2,Y2),INT(RND*31)+1*

NEXT*

NEXT*

Pause*

MEND*

* Shut everything down and quit.*

WINDOW CLOSE 2 *

SCREEN CLOSE 2*

WINDOW OUTPUT 1*

END*

*

SUB Pause STATIC*

FOR Delay=l TO 5000*

NEXT*

CLS*

END SUB*

*

Initialize:*

* Set up a 32 color low-res screen-*

SCREEN 2,320,200,5,1*

WINDOW 2,"AmigaBASIC Braphics",(0,0)-(297,185),23,2

*

CLS*

* Color 0 (background) is black.*

PALETTE 0,0,0,0*

* Set up the other 31 colors as random combinations

.*

FOR L=l TO 31 *

PALETTE L,RND,RND,RND*

NEXT*

* Keep the random sequence random.*

RANDOMIZE TIMER*

* De-fine constants.*

Pi=3.14159 *

TwoPi =2*Pi *

161

CHAPTER THREE

u

XCenter=151<r j "}

YCenter=93* LJ
* Define polar to Cartesian conversion functions.*

DEF FNPolarX(R,Theta)=R*COS(Theta)+XCenter<

DEF FNPolarY(R,Theta)=R*SIN(Theta)+YCenter* j {

RETURN <: ^

LJ

162

LJ

0

U

U

Q

Requester Windows

in Amiga BASIC
Tom R. Halfhill

Add your own custom requester windows to any

Amiga BASIC program. Like dialog boxes on the

Macintosh, requester windows allow your programs

to flag errors or request confirmation before carrying

out important functions.

Amiga BASIC is the most powerful BASIC interpreter supplied

with any personal computer on the market. Written by Micro

soft, it combines in a single language almost every feature

found in IBM PC Advanced BASIC plus Microsoft BASIC for

the Macintosh. In fact, many IBM BASICA and Macintosh

BASIC programs will run on the Amiga with minor modifications.

However, Amiga BASIC does lack two key statements

found in Macintosh BASIC: DIALOG and BUTTON. Both are

important for writing BASIC programs which retain the

mouse-and-window user interface common to the Macintosh

and Amiga Workbench. Fortunately, both commands can be

simulated fairly easily with Amiga BASIC'S WINDOW and

MOUSE statements.

In Macintosh BASIC, the DIALOG command lets a pro

gram open a dialog box (a small window) like those displayed

by the Macintosh's operating system whenever the user must

choose between two or more options. Dialog boxes also flag

errors and alert users when they're about to activate a function

that has irreversible consequences—such as quitting a program

without saving the data on disk. For example, if the user pulls

down a menu and selects Quit, a dialog box might open up

and ask, "Quit program? (Data file not saved.)" Below this

message is usually a pair of small boxes or circles called but

tons which might be labeled OK and CANCEL. Pointing and

163

CHAPTER THREE

clicking the mouse on the OK button exits the program; point

ing and clicking on the CANCEL button cancels the Quit func

tion and returns to the main program so the user can save his

or her data if desired.

In Amiga BASIC, the DIALOG and BUTTON commands

must be simulated by a routine that uses the WINDOW and

MOUSE statements. For greater convenience, the routine can

be written as a subprogram, another advanced feature included

in Amiga BASIC. Subprograms are similar to subroutines, ex

cept they can have local variables. These are variables which

are independent of the main program. For instance, if your

main program uses a variable X for some purpose, a subpro

gram can also use a variable named X, and it is treated as a

separate variable. If the subprogram changes the value of its

variable X, the main program's variable X is unaffected, and

vice versa. On the other hand, a subprogram can also specify

shared variables, sometimes known as global variables—those

which are common to both the subprogram and the main

program.

A major advantage of subprograms is that you can build

up a library of useful routines on disk and add them to any

new programs you write. This saves you the trouble of writing

the same subprograms again and again. Although you can do

the same thing with ordinary BASIC subroutines, there's al

ways the chance that a subroutine variable might conflict with

an identically named variable in your main program. Since

subprogram variables are local, you're freed from this worry.

Subprograms are truly programs within a program.

The Requester Subprogram

On the Amiga, dialog boxes are called requesters. Probably the

most frequently encountered requester is the one that pops up

when the Amiga asks you to insert a different disk. For the

sake of consistency, an Amiga requester generally appears as a

small window in the upper left corner of the screen, has a title

bar labeled System Request, has two or three buttons, does

not have a resizing gadget or close gadget, and cannot be

moved elsewhere on the screen.

The "Requester Window Subprogram" listed below dupli

cates most of these features. It creates a window that appears

in the upper left corner of the screen (or up to the full width

of the screen in low-resolution modes); the window has a title

164

BASIC Programming

f~\ bar labeled Program Request (to distinguish it from System

Request windows); there is no resizing gadget or close gadget;

and the window cannot be moved elsewhere on the screen.

p! Unlike system requesters, this requester always displays two

1 buttons, and they're always labeled OK and CANCEL.
The subprogram lets you display one or two lines of your

r-^ own text in the Program Request window. The maximum

; number of characters allowed in each line depends on whether

the Amiga has been set for 60- or 80-column text with the

Preferences tool. If Preferences is set for 60 columns, each re-

qdester line can be up to 31 characters long. If Preferences is

set for 80 columns, each line can be up to 39 characters. (You

can adjust the subprogram for either mode by changing a sin

gle program statement; see the remarks in the listing.) If you

try to display a line of text which exceeds these limits, the

subprogram leaves off the extra characters. Since you won't

know how Preferences is set if you're writing programs that

might be used by other people, it's safest to assume 60 col

umns and restrict each line of your message to 31 characters.

Opening a Program Request window is this simple:

requestl$="This is the first line/'

request2$="This is the second line/'

CALL Requester

The two lines of your message are defined in the string

variables requestl$ and request2$, and the CALL statement

runs the subprogram (similar to GOSUB). The subprogram

opens the requester window and waits for the user to click on

the OK or CANCEL button. Clicks outside the buttons are ig

nored, although a click outside the requester window itself de-

^ selects it as the active window. It can be reselected, of course,
I \ by clicking within the window.

If the user clicks on OK, the subprogram returns a value
of 1 in the variable answer. If the user clicks on CANCEL, an-

i 1 swer equals 0. In either case, the subprogram closes the re
quester window after the button click and passes control back

* to the line following the CALL Requester statement. By testing
' } answer, your program can branch to different routines to han

dle the user's response as required.

165

CHAPTER THREE

Hints for Use

Here's an example. Suppose your BASIC program sets up a

Project menu with a Quit selection (a consistent feature in

Amiga software). When your MENU statement detects that

Quit has been selected, it can GOSUB Quit:

Quit:

MENU OFF:CLS

requestl$="Quit program?"

request2$="(OK exits to Workbench or CLI.)"

CALL Requester

IF answer=0 THEN RETURN

SYSTEM

If the user selects Quit by accident or changes his mind,

he can click on CANCEL and no harm is done—the Quit rou

tine merely RETURNS. Otherwise, a click on OK stops the

program and exits BASIC with the SYSTEM command. Of

course, you could also include a check to see if any data cre

ated with the program has been saved, and if necessary,

prompt the user to save it before quitting.

There are only two more details to keep in mind when

using the requester routine. First, the WINDOW statement

near the beginning of the subprogram opens WINDOW 2. If

there's a chance that your program might already have two or

more windows open when the requester is called, change this

statement to WINDOW 3, or WINDOW 4, or whatever is nec

essary to avoid a conflict.

Second, the WINDOW statement defaults to the primary

(Workbench) screen. That means the requester window always

pops up on the primary screen. If your main program creates a

secondary screen with the SCREEN statement, you'll want the

requester window to appear on that screen instead of the pri

mary screen. Otherwise, the requester will be invisible. To
make the requester window appear on your program's second

ary screen, append the screen's number to the WINDOW

statement.

For instance, if your program creates a secondary screen

with a statement such as this:

SCREEN 1,320,200,1,1

166

BASIC Programming

fl change the WINDOW statement in the requester subprogram

as follows:

—. WINDOW 2/Trogram Request^(0A>H31M5),16,l
I \

This makes sure the requester will be visible.

r-t Requester Window Subprogram
i ,' The left-arrow symbols in this listing indicate when to press RETURN at the end of each

program line. Do not attempt to type the arrows themselves.

RequesterSub:4

SUB Requester STATIC*

SHARED requestl*,request2«,answer:' Global variable

s.4

' Add screen parameter if needed to next line.4

WINDOW 2,"Program Request",(0,0)-(311,45),164

' If Preferences is set for 60 columns,4

' use maxwidth-INT(WINDOW(2)/10) for next line;4

' otherwise use maxwidth-INT(WINDOW(2)/8).4

maxwidth«INT(WINDOW(2)/8) 4

request1*=LEFT*(request1*,maxwidth)4

request2*«LEFT*(request2$,maxwidth)4

PRINT request1*:PRINT request2*4

' This section draws buttons.4

LINE (12,20)-(50,38),l,b4

LINE (152,20)-(228,38),l,b4

LOCATE 4,1:PRINT PTAB(20);"OK";4

PRINT PTAB(160);"CANCEL"4

' This section gets input.4

reqloop:4

WHILE MOUSE(0)»0:WEND:' Wait for button click. 4

ml"MOUSE(1):m2»M0USE(2)4

IF ml>12 AND ml<50 AND m2>20 AND m2<38 THEN4

answer«1:' OK was selected.4

LINE (12,20)-(50,38),l,bf:' Flash OK box.4

WHILE MOUSE(0)<>0:WEND:' Wait for button release.4

PI WINDOW CLOSE 2:EXIT SUB4
ELSE4

IF ml>152 AND ml<228 AND m2>20 AND m2<38 THEN4

—, answer«0:' CANCEL was selected.4

; ! LINE (152,20)-(228,38),l,bf:' Flash CANCEL box.4
WHILE MOUSE(0)<>0:WEND:' Wait for button release.4

WINDOW CLOSE 2:EXIT SUB4

pi ELSE4

■ ? GOTO reqloop4

END IF4

END IF4

jl GOTO reqloop4
' END SUB4

4

167

o

0

G

Q

J

3

J

a

S^^

o

0

G

Q

J

3

J

a

Meet ED, the
AmigaDOS Editor

Christopher J. Flynn

AmigaDOS—the command-driven operating system

which underlies the graphics-oriented Workbench—

contains two text editors. Although they aren't full-

fledged word processors, these editors are ideal for

entering program source code, creating batch files,

and even writing short documents.

The Amiga comes with more software than most people real

ize. Besides Amiga BASIC, Electronic Arts' Kaleidoscope, Mind-

scape's Amiga Tutor, the RAM disk, the speech synthesizer,

the printer drivers, the icon editor, the calculator, the clock,

and numerous demo programs, there are also three complete

text editors. Most people know about the Notepad because it's

available from the Workbench. But the other two text edi

tors—ED and EDIT—don't show up as icons and must be run

from an AmigaDOS CLI (Command line Interface) window.

The most powerful of these text editors is ED. Although it

doesn't handle multiple fonts and styles like the Notepad, it

has many more editing functions and is the ideal tool for writ

ing AmigaDOS batch files or program source code. EDIT, on

the other hand, is a little more specialized. It is a sequential

file editor. In practice, EDIT is best used to make changes to

an existing disk file. You'll probably prefer to use ED for com

posing new text.

We'll be exploring ED version 1.10. Future releases of ED

may change things around a little and introduce new features,

so keep this in mind.

Starting ED

Where is ED hiding? Even if you peek through every nook

and cranny of the Workbench, you will not find an icon for

ED. It turns out that ED is actually an AmigaDOS command.

171

CHAPTER FOUR

This means that you have to start ED from a CLI window.

If you've never used a CLI window before, your first step

will be to activate the CLI. Open the Workbench and check

the contents of the System drawer. If CLIs are activated, you'll

see a cube-shaped icon labeled CLI in this drawer. If the icon

is not present, point to the Preferences icon and double-click

the mouse's left button. Look for the CLI On/Off selector on

the Preferences screen and click on the On box; then exit Pref

erences by specifying Save (not Use). Now when you reopen

the System drawer, it should contain a CLI icon. If not, go

back to Preferences and make sure CLI is turned on. (If you

find yourself using the CLI often, you may want to drag the

CLI icon from the System drawer into the main Workbench

window to avoid the extra step of opening the System

drawer.) To open a CLI window, double-click on the CLI icon.

Now you'll have a window in which you can type AmigaDOS

commands.

ED can be started in two ways:

ED filename [SIZE n]

RUN ED filename [SIZE n]

The first method starts ED from the CLI which you've just

activated. It ties up the CLI until you're finished with ED. In

other words, you have to leave ED before issuing other Amiga-

DOS commands. When you specify RUN ED, AmigaDOS

automatically starts another CLI task for you and starts ED in

this new CLI. Thus, you can temporarily suspend ED by mov

ing the mouse to another window. You can go back to the

original CLI and issue other AmigaDOS commands. If you are

adventuresome, you can even have multiple ED sessions in

progress at the same time. (What you're really doing is multi

tasking more than one AmigaDOS command simultaneously.)

In either case, the ED command requires a filename. You

can either supply the name of an existing disk file you wish to

edit, or create a new file by specifying a new filename. Re

member that Amiga filenames can be up to 30 characters long.

So, choose filenames that take advantage of this feature. It

helps you recognize your files later on.

There is a SIZE option for the ED command. (Don't type

in the brackets, by the way. Brackets just signify options.) A

text document must be able to fit entirely in memory. ED just

172

Beyond BASIC

p7 cannot handle a document partly on disk and partly in mem-

' ory. The SIZE option gives you a way of telling ED how much

memory you want to set aside for working on the document.

n If you don't type in SIZE, ED will set aside 40K for you. The

maximum SIZE is determined by the amount of memory you

have.

r-\ Here are a few examples of commands for starting up ED:

ED GROCERY-LIST

ED WAR-PEACE-BOOK-REPORT SIZE 90000

When SIZE is used, type out the number. Note that

90,000 bytes is typed as 90000 and not as 90,000 or 90K.

Leaving ED

When ED has been successfully started, its display occupies

the entire screen. So, how can you return to the CLI? There is

no close gadget on ED's window. There is nothing to point at

and click. Instead, ED requires either a Quit or an Exit com

mand. Press the ESC (escape) key. An asterisk appears on the

last line of the display. Type either Q for Quit or X for Exit

and then RETURN. That's all there is to it.

There is a difference between Quit and Exit. Q leaves the

editor without saving the document to disk. Anything you

have typed will be lost. ED recognizes that this can be quite

an inconvenience, so if you do type Q, ED displays the follow

ing warning message:

Edits will be lost - type Y to confirm:

Pressing Y at this point gets you out of ED, and no text is

saved. If you type anything else, ED lets you continue work-

j | ing on your document.
ESC-X, the Exit option, does save the document on disk,

using the filename you specified when you started ED. No

f"l messages are given. When ED finishes, you're back in the CLI
and can then proceed with other AmigaDOS commands.

0mm When you've finished with the CLI, type ENDCLI. If you've

n got only one CLI window running, this returns you to the
Workbench.

173

CHAPTER FOUR

D

ED Commands :

There are two types of editor commands in ED. The more di

rect ones are called immediate commands because you can enter

them while typing text. Examples are line insertions and dele- j (

tions. Immediate commands are always CTRL key combina-

tions. The other category—extended commands—can be typed

only when in the command mode. ESC-Q and ESC-X are ex- 1 j

amples. Pressing ESC opens the lowest display line on your ^
screen for these extended commands.

When ED starts, it positions the cursor at the upper left

corner of the screen. If you are working on a new document,

the screen is blank. Otherwise, the screen shows the first page

of the document.

If you're creating a new document, just start typing. No

tice what happens when the text approaches the right side of

the screen. If a word is too long to fit on the remainder of the

line, ED pulls the word down to the next line. You can keep

typing without being concerned about hitting RETURN at the

end of a line as you would on a typewriter.

There are several ways of correcting typos. The BACK

SPACE key deletes the character to the left of the cursor. DEL

deletes the character under the cursor. Table 1 lists other ways

of deleting text.

ED is a full-screen editor, so you can move the cursor

wherever you want with the arrow keys. To insert text, posi

tion the cursor at the desired location and begin typing. Notice

that ED does not have a strikeover mode. Unwanted text has

to be deleted—you can't just type over it.

The Insertion Gotcha

Try typing a few fairly long lines. Now, move the cursor to j_J
the beginning of the text. Start typing again. The existing text

on the current line is moved to the right off the edge of the

screen. During insertions, ED neither brings the excess text [_j
down to the next line nor enforces margins.

The disappearing text is not lost, however. ED has made

one long line. The long line can be split at any point by plac- [_j
ing the cursor where you want and pressing RETURN. If

you're working with ordinary text, not source code or batch

files, this may leave gaps of several spaces between sentences. j^J
To clean up the appearance, the extra spaces will have to be

removed. Some other lines may need adjusting as well.

174 L)

Beyond BASIC

Using the Extended Commands

Extended commands (Table 2) can be typed only when ED is

in the extended-command mode, entered by pressing the ESC

key. The cursor appears on the last line of the display. At this

point, you can type one or more extended commands. It's

quite handy to be able to give ED a series of commands sepa

rated by semicolons (;). When you press RETURN, ED acts on

the command or commands you've requested.

Extended commands can move the cursor, mark blocks of

text for certain operations, and perform searches and ex

changes. Some of the operations are tricky and require care.

Cursor commands apply only to the cursor position in the text

and not to the command line. This is fine except that you can't

see the cursor in the text. You have to remember where the

cursor is before you use some of the extended commands.

Sections of text can be marked by block start (BS) and

block end (BE) commands. Blocks can be deleted, copied else

where in the document, or saved to disk. Marking a block in

volves moving the cursor to the first line in the block and

executing the BS extended command. The end of the block is

marked similarly with BE. Unfortunately, there is no visible

indication of the defined text. Be very careful of cursor move

ments. The only help ED offers is the show (SH) command. It

displays the first and last line of the block and some other

information.

Text search-and-exchange operations work without a

hitch. You can search forward (F) or backward (BF) through

the document. You can exchange (E or EQ) one text string for

another. Lowercase text can be treated as matching uppercase

text (UC), or it can be treated as not matching (LC).

The repeat (RP) command is often used for exchanges. RP

causes the command following it to be executed repeatedly

until something (an error, for example) stops it. Thus, RP E

carries out multiple exchange operations. Here is an example:

T; RP E /Compute/COMPUTE/

Here, the typing of COMPUTE is being corrected. T

moves the cursor to the top of the document so that the entire

document will be examined. RP precedes the exchange com

mand. Note that the two text strings are delimited by slashes.

This is ED's convention when text strings are used. A "Search

failed" error occurs when Compute can no longer be found in

175

CHAPTER FOUR

the text. This halts the repeat command, and the entire docu

ment will have been corrected.

The save command (SA) saves the document to disk with

out exiting ED. You should do this periodically to prevent di

sasters in the event of a power failure.

Overall, ED is an excellent general-purpose text editor.

You can use it when programming, since it works with any

language that accepts ASCII text files as input (including

Amiga BASIC). ED can also prepare data files or help you

write short letters and notes. It's not a fancy word processor,

but it can handle smaller, less complex tasks quite well.

Table 1. ED Immediate Commands

Command Description

Special Keys

BACK SPACE Deletes the character to the left of the cursor.

DEL Deletes the character under the cursor.

ESC Switches to extended-command mode.

RETURN Ends the line at the cursor and starts a new line.

TAB Moves the cursor right, adding spaces, to the next

tab position.

up-arrow Moves the cursor up one line,

down-arrow Moves the cursor down one line,

left-arrow Moves the cursor one character position to the left,

right-arrow Moves the cursor one character position to the right.

Control Key Combinations

CTRL-A Inserts a line after the line on which the cursor is

located.

CTRL-B Deletes the line on which the cursor is located.

CTRL-D Scrolls the text down 12 lines toward the beginning

of the document.

CTRL-E If the cursor is at the top of the screen, moves the

cursor to the bottom of the screen. If the cursor is at

the bottom of the screen, moves the cursor to the top

of the screen.

CTRL-F Switches the case (upper- to lower- or lower- to

upper-) of the character under the cursor.

CTRL-G Repeats the last extended command which was

issued.

CTRL-H Deletes the character to the left of the cursor.

Equivalent to the BACK SPACE key.

CTRL-I Moves the cursor right to the next tab position.

Equivalent to the TAB key.

176

Beyond BASIC

CTRL-M Equivalent to the RETURN key.

CTRL-O If the cursor is on a nonblank character, deletes all
characters from the cursor to the first space. If the

cursor is on a space, deletes all spaces from the

cursor to the first nonblank character.

CTRL-R Moves the cursor left to the first space after the pre

vious word on the current line.

CTRL-T Moves the cursor right to the first character of the

next word on the current line.

CTRL-U Scrolls the text up 12 lines toward the end of the

document.

CTRL-V Redisplays (verifies) the screen. Insures that all the
text is visible and is useful after moving or sizing the

display window.

CTRL-Y Deletes all characters on the line starting with the

character under the cursor.

CTRL-[Switches to the extended-command mode.

Equivalent to the ESC key.

CTRL-] If the cursor is at the start of the line, moves the
cursor to the end of the line. If the cursor is at the

end of the line, moves the cursor to the start of the

line.

Table 2. ED Extended Commands

Note: /s/ refers to a single text string (/this is a string/).

/s/t/ refers to two text strings (/brown/blue/).

Command Description

A /s/ Inserts the string on a new line after the current line.

B Moves the cursor to the end (bottom) of the

document.

BE Places an end-of-block marker at the cursor.

BF /s/ Searches the document for the string going in a di

rection from the cursor toward the beginning of the

document (backward find).

BS Places a start-of-block marker at the cursor.

CE Moves the cursor to the end of the current line.

CL Moves the cursor one character position to the left.

CR Moves the cursor one character position to the right.

CS Moves the cursor to the start of the line.

D Deletes the current line. Moves all following lines up.

DB Deletes the text marked by start-block and end-block

markers.

DC Deletes the character at the current cursor position.

E /s/t/ Replaces (exchanges) occurrences of the first string

with the second string.

177

CHAPTER FOUR

EQ /s/t/ The same as E, but asks you to confirm the replace

ment each time a match is found. Type Y or N in re

sponse to the Exchange ? prompt.

EX Extends the right margin, allowing additional text to
be typed.

F /s/ Searches the document for the string going in a di
rection from the cursor position toward the end of

the document (find).

I /s/ Inserts the string on a new line before the current
line.

IB Inserts the block of text marked by start-block and
end-block markers after the current line.

IF /s/ Inserts the contents of a file before the current line.
The filename is given by /s/.

J Joins the current line with the next line. This makes

one new line where there were formerly two.

LC Treats upper- and lowercase characters as different
in searches.

M n Moves the cursor to the line number given by n.

N Moves the cursor to the starting position of the next

line.

P Moves the cursor to the starting position of the pre

vious line.

Q Quits ED without first saving the text. A warning

message will be given stating that the text may be

lost.

RP Repeats commands. Commands are typed following

RP. For example, T; RP E /brown/red/ moves the

cursor to the top of the document. The Exchange

command is repeated, thus changing all occurrences

of brown to red. Repeat ends when an error is found.

In this case, an error occurs after all the changes

have been made since brown can no longer be found.

S Splits the current line at the cursor location. This

makes two lines where there was formerly one.

SA Saves the document to the file specified by the origi

nal ED command. Use SA periodically to make sure

you have a good copy of the text on disk.

SB Shows the text block marked by start-block and end-

block markers. The block (and any following text)

will be displayed starting at the top of the screen.

SH Shows the filename, tab distance, margin settings,

first and last lines of any marked text block, and the

buffer-full percentage.

178

Beyond BASIC

SL n Sets the left margin to the position specified by n. SL

affects the margin setting for the entire document.

New text will be typed within the margins. Existing

text is not automatically reformatted when the mar

gins change.

SR n Sets the right margin to the position specified by n.

SR affects the margin setting for the entire docu

ment. New text will be typed within the margins.

Existing text is not automatically reformatted when

the margins change.

ST n Sets the distance the cursor moves when the TAB

key is pressed.

T Moves the cursor to the top of the document.

U Undoes any changes made to the current line. This

does not restore line deletes (D). It also does not

work if you have moved the cursor from the current

line.

UC Treats upper- and lowercase characters as equivalent

for searches (for example, A will match a).

WB /s/ Writes the text block marked by start-block and end-

block markers to the file specified by /s/.

X Exits ED, first making sure that the document has

been saved on disk.

179

u

u

AmigaDOS Batch u

Files u
Charles Brannon

U

AmigaDOS is more than a console-driven disk

operating system. By executing a sequence 0/

AmigaDOS commands stored in a file, AmigaDOS

takes on some 0/ the characteristics 0/ a program

ming language. Whether you want to simplify repeti

tive disk commands or create personalized custom

commands, batch files further extend the range and

flexibility of AmigaDOS.

No matter how easy it is to use a program, the most popular

programs are those that give users more power. And although

a program may have scads of powerful commands, the most

powerful programs are those which let users put the com

mands together in new ways—in effect, to write programs.

Instead of forcing you to always issue commands one at a

time, a programmable application lets you create a script of

commands to customize the behavior of the program. Whether

we're talking about word processing macros, spreadsheet tem

plates, relational database languages, or advanced machine

language, programmability is the real key to software power.

If you feel limited by a certain range of commands, you can

combine the commands in new ways to create personalized

features, just as we combine the vocabulary of English words

to create a wealth of literature. Why just read when you can

write?

Scripts, Sequences, and Batches

AmigaDOS is more than just a disk operating system—it's a

programmable system that can process lists of its own com

mands as well as individual commands. In effect, AmigaDOS

is a simple disk-oriented programming language.

A list of AmigaDOS commands can be stored in a disk

180

Beyond BASIC

file variously known as a script, a sequence, or a batch file. The

term batch file is most commonly used by those who work

with PC-DOS, MS-DOS, and CP/M, which are also pro

grammable disk operating systems. To keep things straight,

we'll use batch files synonymously with scripts or sequences.

Even if you don't program in BASIC or any other lan

guage, you may be interested in learning about AmigaDOS

batch files. The batch file "language" is simply made up of the

same AmigaDOS commands you've probably been using all

along. (For information about AmigaDOS see COMPUTEI's

AmigaDOS Reference Guide by Sheldon Leemon and Arlan R.

Levitan, or COMPUTEI's Amiga Programmer's Guide.) There are

also a few AmigaDOS commands designed especially for

batch files.

Creating and running batch files is easy. Using a text edi

tor, you just type in a list of AmigaDOS commands. Then you

save the list on disk under a filename. To run the batch file,

you type EXECUTE filename at an AmigaDOS prompt. Amiga-

DOS reads the batch file and executes the list of commands,

just as if you had typed them one by one yourself.

We won't cover some of the more advanced features of

batch files, useful only to advanced C and machine language

programmers. Instead, we'll concentrate on the everyday util

ity of batch-file programming.

A Quick Example

In a moment, we'll show how to create batch files with ED,

the AmigaDOS full-screen text editor, but first there's a sim

pler way to create a short batch file (see the previous article or

more complete instructions for using ED). Enter this line at an

AmigaDOS prompt:

COPY * TO Hello

(Note that AmigaDOS commands can be entered in uppercase

or lowercase.)

Although nothing seems to happen, AmigaDOS is waiting

for you to enter some lines. We'll use the ECHO command to

display a friendly message. ECHO displays any text that fol

lows it within quotation marks, just like the PRINT statement

in BASIC. One difference is that if you want to ECHO only a

single word, the quotes aren't necessary.

181

CHAPTER FOUR

At an AmigaDOS prompt, enter the following text, press
ing RETURN after each line:

ECHO "Hello!"

ECHO "I am your friend, the Amiga"

ECHO "personal computer."

After the last line, press CTRL- \. The \ key is the one

to the left of the BACKSPACE key. CTRL- \ tells AmigaDOS

that you're finished, and that it should finish writing and close
the file. This key represents EOF, for End Of File.

To confirm that you've typed the file correctly, enter

TYPE Hello

You should see the same lines you typed. Now you can start

this simple program:

EXECUTE Hello

This should print on the screen:

Hello!

I am your friend, the Amiga

personal computer.

Using ED

It would be nice to have the Amiga actually speak this greet

ing. Rather than type in a whole new file, we'll use ED, the

screen editor, to make the simple changes we're interested in.

Enter

ED Hello

This runs ED and also loads the batch file named Hello.

When you start ED, you can give it the name of any file to

edit. If the filename doesn't exist, it will be created; otherwise

the file is automatically displayed on the editor screen.

We'll make the Amiga speak the ECHO messages aloud

by taking advantage of the system's built-in speech synthesis

via the AmigaDOS SAY command (added to AmigaDOS ver

sion 1.1). To learn more about SAY, just enter SAY by itself to

enter an interactive mode with onscreen instructions.

After you start ED by typing ED Hello, the batch file we

previously entered should be on the screen, with the cursor at

the beginning of the first line. ED is a full-screen text editor,

so you can move the cursor anywhere within the file (but not

182

Beyond BASIC

P7 past the last line). To insert some text, just start typing. The

; DEL and BACKSPACE keys can be used to delete characters.
Move the cursor to the second ECHO line and press RE-

f> TURN. This inserts a blank line. Cursor up to the blank line

f ' and enter

_^ SAY HELLO!

■ > You don't need to press RETURN at the end of the line, since

you already did this to open up a line for typing.

Now cursor to the end of the file and type:

SAY I am your friend, the Amiga personal computer.

(Notice that SAY is the only AmigaDOS command that

doesn't require you to enclose text containing spaces with

quotes.) This is how your screen should look:

ECHO "Hello!"

SAY Hello!

ECHO "I am your friend, the Amiga"

ECHO "personal computer."

SAY I am your friend, the Amiga personal computer.

With the cursor at the end of the file, press the ESC key.

An asterisk (*) should appear. Press the X key, then RETURN.

This exits ED and saves your changes back to disk.

Finally, type EXECUTE Hello to try out your talking

batch file.

Although these techniques are sufficient for simple

editing, ED has dozens of editing commands. For example,

CTRL-B (press CTRL and B at the same time) blanks out and

deletes the line the cursor is on. ESC-J RETURN (press the ES-

Cape and J keys; then press RETURN) joins two lines to-

["1 gether. For a list of ED commands see the previous article.

r^ Startup-Sequence

I < A special AmigaDOS batch file, called the startup-sequence, is
executed automatically when you boot up an AmigaDOS or

r-i Workbench disk by inserting it at the Workbench prompt.

! ! Startup-sequence normally just displays a message, then
launches the Workbench and ends the command line

—I interface.

' \ To edit this batch file, enter:

ED s/startup-sequence

j I

183

CHAPTER FOUR

This runs ED and calls up the file "startup-sequence"

from the S subdirectory. This subdirectory, which can also be
accessed as the S: device, is a convenient place for batch files.

Just as AmigaDOS, by default, searches for AmigaDOS com

mands in the C subdirectory, the EXECUTE command first

looks for a batch file in the S subdirectory. If AmigaDOS can't
find the batch file in this subdirectory, it looks for it in the

current directory. So no matter what your current directory is,

you can always use your batch file if you place it in the S di
rectory on your startup disk.

When you first load startup-sequence into ED, you'll see
something like this:

ECHO "Workbench disk. Release 1.1"

ECHO ""ECHO "Use Preferences tool to set date"
ECHO""

LoadWb

endcli > nil:

Since this message appears every time you start up your

disk, you may want to change the ECHO statements for a

personalized message. Likewise, if you'd rather use

AmigaDOS instead of the Workbench, delete the last two

lines. The "> nil:" sequence makes AmigaDOS throw away

the output of a command; here, it's the message "CLI task 1

ending."

Startup-sequence is a good place to put personalized com

mands. For example, if you like to keep your command direc

tory in RAM for speed and convenience, you could insert

these lines above the LoadWb line:

makedir ramie

copy c to ramrc all quiet

cd ram:c

This copies all of the AmigaDOS commands from the C

subdirectory on the floppy disk into a C subdirectory on the

RAM disk. It also changes the current directory to the C sub

directory in RAM:, so any AmigaDOS commands you type

from that point on will be loaded from RAM: instead of from

the floppy. In effect, this turns AmigaDOS into a memory-resi

dent DOS, with all commands intrinsic instead of extrinsic.

AmigaDOS responds much faster this way. However, this also

uses up quite a bit of memory, so you may want to copy only

the commands you use frequently.

184

Beyond BASIC

,—v Another useful startup action is to set the date and time.

I > You can always do this with the Preferences tool or by open
ing a CLI and using the DATE command. However, it can be

_i more convenient to enter the date when you first turn on your

! * Amiga, allowing all files subsequently saved to be stamped
with the current date and time. Just insert this line into

—. startup-sequence:

' ^ DATE ?
The ? operator can be used in place of the parameter of a

command. Instead of specifying the date, ? prompts the user

to enter the date. It also displays the template for the DATE

command (TIME,DATE, TO=VER/K:).If you like, use ECHO

to display your own prompt, and > nil: to discard the template:

ECHO "Please enter the date and time/'

ECHO "DD-MMM-YY HH:MM:SS"

date > nil: ?

From then on, whenever you boot up from this disk, you'll re

spond to the prompt by typing something like this:

27-jan-86 15:12

which automatically sets the system clock.

Variable Parameters

You can also send special options to your batch file. You enter

these options on the command line along with the EXECUTE

command. Just as with variables in BASIC, you can manipu

late these parameters symbolically.

Let's say you'd like a batch file that gives you complete

information on a file. It uses LIST to display the information

| i about the file, and TYPE to display the file. You would use a
command like EXECUTE SHOW RODEO to display the file

RODEO. Use ED SHOW or COPY * TO SHOW to create this

i j batch file:

.KEY name

i—y LIST <name>

I TYPE <name>

.KEY (don't forget the leading period) sets up a name for

Pj substitution text. Whatever you typed on the same line with

EXECUTE is substituted wherever you use <name>. You must

H 185

CHAPTER FOUR U

U
use the angular brackets, or LIST and TYPE would look liter

ally for the file "name." JJ
After creating this batch file, type this at an AmigaDOS

prompt:

EXECUTE SHOW S/STARTUP-SEQUENCE U

The result is the same as if you had typed LIST S/STARTUP-

SEQUENCE followed by TYPE S/STARTUP-SEQUENCE. M

Other AmigaDOS commands let you check to see if the

user has entered a specific string and check to see if a file ex

ists. To prevent an error message, we can check to see

whether the file exists before we use LIST and TYPE:

.KEY name

IF EXISTS <name>

LIST <name>

TYPE <name>

ELSE

ECHO "<name> does not exist!"

ENDIF

Notice the use of IF, ELSE, and ENDIF. Looks like Amiga

BASIC, doesn't it? In fact, the AmigaDOS IF-ELSE-ENDIF

commands function very much like BASIC'S. When the IF con

dition is true, AmigaDOS executes the following statements;

otherwise the following statements are ignored. ELSE executes

the statements following it only if the preceding IF was false.

ENDIF cancels conditional processing and returns to executing

all commands.

Any Parameters Missing?

Here's how to use the IF EQ option to test for the existence of

a command-line parameter. If there is no parameter, <name>

is null, so "<name>z" is simply "z". We use NOT to reverse

the test. If the parameter "<name>z" is NOT equal to "z",

then we must have a command line parameter. (We can't just

test IF <name> NOT EQ " ", since EQ requires two param

eters, and the null string " " is not a parameter, but the ab

sence of one.)

.KEY name

IF <name>z NOT EQ z

LIST <name>

TYPE <name>

186

Beyond BASIC

ELSE

ECHO "You didn't give me anything to

SHOW/'

ENDIF

Although you can't use leading spaces in the actual batch

file, it's easier to follow the IF-ENDIF structures when you use

indentation. Just don't type in the leading spaces. This version

of the batch file SHOW checks both for the existence of the

filename and for the presence of the filename parameter:

.KEY name

IF <name>z NOT EQ z

IF EXISTS <name>

LIST <name>

TYPE <name>

ELSE

ECHO "<name> does not exist!"

ENDIF

ELSE

ECHO "You didn't give me anything

to SHOW."

ENDIF

You can use more than one parameter in the .KEY state

ment, just as many commands, such as DATE, accept two

inputs.

If the user doesn't enter anything for the parameter, you

can assign a default value using either .DEF or $. If you use

.DEF, the default phrase is used throughout the batch file. In

this example, SHOW displays itself if you don't give it a

filename.

.KEY name

.DEF s/show

LIST <name>

TYPE <name>

You can use $ to substitute a default value only for the

current substitution. Several batch commands may use the

value in different ways, so each command may have its own

default value. In the following example, LIST displays the

whole directory if <name> is null, but TYPE types the file

'TEMP" if <name> is null:

•KEY name

LIST <name>

TYPE <name$temp>

187

CHAPTER FOUR

Labels and Branching

You can jump forward to a label with the SKIP command.

You'd typically use SKIP along with an IF condition if you

want to skip over a block of statements that shouldn't be exe- { ■

cuted if the IF was true. You declare the label with LAB. The L->

SKIP command can't skip backward, only forward to a LAB

statement. You can usually use IF and ELSE, though, to < ,

accomplish the same thing. Lj

.KEY name

IF exists <name>

TYPE <name>

SKIP ToMyLou

ENDIF

ECHO "<name> doesn't exist/'

LAB ToMyLou

ECHO "Finished."

An EXECUTE command can execute another batch file, or

even itself. This permits backward looping to some degree.

Nested batch files can be quite handy. You can test and debug

individual batch programs, then execute them together from a

master execute script:

EXECUTE Greeting

EXECUTE GetDate

EXECUTE Assignments

The individual files could themselves contain other EXE

CUTE references.

ASSIGNing Shortcuts

If you're using EXECUTE a lot, you may grow weary of typing

it. You can always rename EXECUTE to something short like It

x, but other batch programs may contain EXECUTE state-

ments, requiring you to rename it again. Instead, you can use

the ASSIGN command to assign any filename to a device name. i j

ASSIGN x: sys:c/EXECUTE

You can now use x: whenever you want to use the EXE- i i

CUTE command. (The prefix sysx/ makes sure that EXECUTE •—'
can be found no matter what directory you're in.)

The device name you create should not conflict with an j i

existing one. To get a list of the current assignments, just type ^

188 U

;-' Beyond BASIC

n

r-* ASSIGN. You may want to ASSIGN d: c:list for a convenient

■ ! and quick shorthand for directories (c: is synonymous with the
C directory). You can then just type d: to get a LIST.

, s ASSIGN can be so handy for this kind of thing that you'll

probably want to include your own sequence of ASSIGN com

mands within startup-sequence. If you put your ASSIGN

r^ statement within startup-sequence, you'll get these assign-

! ! ments for every session. Just remember that ASSIGN can only

be used to attach a device name to a particular filename. AS

SIGN d: "clist quick" doesn't seem to work. Although LIST is

a filename in the c directory, the "quick" parameter is not part

of the filename.

189

Printers for the

Amiga
Charles Brannon

A printer is one of those optional but essential add

ons for your computer. It lets you reap something

tangible from your word processor, terminal

program, spreadsheet, or drawing program.

Most serial or parallel printers will work with the Amiga. The

Amiga sports an RS-232 serial port as well as a standard par

allel printer port. All it takes is the right cable to link the

Amiga with almost any printer.

The commonly available IBM printer cables appear similar

to Amiga cables except that the end of the cable that plugs into

the IBM is a DB-25 male connector and the Amiga port is also

a DB-25 male connector. Since printer cables specifically for

the Amiga can be difficult to obtain, you might be tempted to

use a "gender-changer" (a box or cable with a male connector

on one end and a female connector on the other) to connect

the IBM cable to your Amiga. Don't do this. Such an arrange

ment could damage your Amiga or your printer, or both.

The Amiga parallel port does not use exactly the same pin

assignments as the IBM port. (Refer to page 7-13 of the Intro

duction to Amiga manual for a pinout chart.) Even more impor

tant, pin 23 on the Amiga parallel port is a +5-volt power

supply, while pin 23 on an IBM-type printer cable may be [J
connected to voltage ground. If the cable carries this voltage,

and if the printer connector has a grounded pin at that posi

tion, the power supply in your Amiga may be damaged. _]
If you have a serial (RS-232) printer connected via the

Amiga's serial port instead of the parallel port, a similar cau

tion applies: Pins 14, 21, and 23 on the serial port carry power jj
supply voltages. (Refer to page 7-12 of the Introduction to

Amiga manual for a pinout chart.) Since these pins are often

unused in devices like modems and printers, it may be safe to [J
use IBM-type serial printer cables. Check the manual for your

190 U

Beyond BASIC

printer carefully to be sure that your particular model does not

make any connection to these pins. Again, a gender-changer

plug will be required to attach an IBM-style cable to the

Amiga serial port. It's best to check with your dealer before

using a suspect cable.

Printer Drivers

Once you've hooked up the hardware, you need to "attach"
the printer to your software. Although every printer manufac

turer uses different specifications for software control over

printing features, the Amiga is capable of adapting to a variety

of popular printers.

What complicates things is that every printer has its own

unique set of codes, even for common effects such as under

lining or boldfacing. For example, the Epson MX-80 uses the

ASCII sequence 27-53 ("ESC-4") to turn on italics mode, and

27-54 ("ESC-5") to turn off italics. On the other hand, the

Okimate 20, which is similar in many other ways, uses the se

quence 27-37-71 (ESC-%G) to turn on italics, and 27-37-72

(ESC-%H) to turn italics off.

When an Amiga program wants to print italics, it can't

just use the code for one printer model, because the program

would be incompatible with other printers. Instead of sending

the actual code for italics, then, Amiga programs send a sym

bolic code for italics. If you tell the Amiga which printer driver

to use, the driver translates these symbolic codes into the ac

tual codes for your printer.

Use Preferences to install your printer driver, following

the instructions given in Introduction to Amiga, pages 7-6 to 7-

11. Printer drivers currently exist for the Alphacom Alphapro

101 (no longer in production); Commodore CBM-MPS 1000;

Epson FX-80, RX-80; HP LaserJet/LaserJet Plus; Brother HR-

15XL; Diablo Advantage C-150, D25, 630; Qume LetterPro-20;

and Okimate-20. If your printer is not on this list, try some of

the drivers to see if they work with your printer. For example,

the Juki 5510 dot-matrix printer is Epson JX-80-compatible, so

you can use the Epson JX-80 printer driver.

If none of the drivers work, select the Custom printer

driver. If you have the version 1.1 operating system upgrade,

by default the Custom selection looks for a printer driver

named Generic. The Generic driver works with any properly

cabled printer by ignoring all special printer codes. If your

191

CHAPTER FOUR

printer won't respond to the codes used by any of the printers

on the list, you can at least get a plain-vanilla text printout

with the Generic driver.

Unfortunately, the Generic driver won't let you use any

special printing effects such as underlining, boldface, italics, or

bit-image graphics. You need a printer driver created espe

cially for your brand of printer. Many people are working on

drivers for unsupported printers, including one company that

has developed a printer-driver builder that a nonprogrammer

can use to design a new custom driver. Nevertheless, if you

are looking for a printer for your Amiga, it's best to buy one

that is compatible with one of the above printers.

192

i !

Programming in

Modula-2
Charles Brannon

There are a plethora of programming languages for the Amiga,

giving programmers and developers a wide choice of program

ming styles and systems. There are various versions of BASIC,

C compilers, macro assembler/editors, versions of Pascal, and

even an implementation of LISP. Numerous programming

tools, such as editors and debuggers, are also available.

A relative newcomer to the scene, TDI's Modula-2, is now

getting some attention. Some programmers consider it easier

to learn and use than C, since it shares many of the high-level

aspects of Pascal while still retaining a machine-level interface

for maximum efficiency.

Modula-2 is a descendent of the language Modula, which

in turn is a descendent of Pascal. Nicklaus Wirth, the inventor

of Pascal, designed Modula from the roots of Pascal, but pur

posely kept it very simple so that it could be used with very

small computers—primarily for controlling hardware devices

such as robot arms. The original Modula had little application

outside a very specialized world, so Wirth put back most of

the features of Pascal to create Modula-2. TDI has worked di

rectly with Wirth to implement versions of Modula-2 for the

Amiga and Atari ST.

p

Software Chips

r-i The concept of Modula-2 is echoed in its name. It's a language

I j designed specifically for the techniques of modular program

ming, just as Pascal was designed to make structured program-

j—| ming convenient and elegant. Modular programming—the art

i i of breaking a large, complex problem into small, independent

tasks—is at the heart of all programming, but Modula-2 tries

r^ to bring to software the modularity inherent in computer hard-

! I ware, based on off-the-shelf chips and components. With "soft

ware chips," Wirth envisioned, software technology could

n 193

CHAPTER FOUR U

Q

advance apace with the remarkable speed of hardware evolution. ;-.

If software chips are possible, they have to be based on LJ
program modules that can be truly independent, and hence,

individually testable. You can compile a module without hav- , ;

ing to recompile the entire program. A module, once devel- ui
oped, becomes a "black box" routine that accepts input

and/or provides output. You no longer need to know how this , ;

module works internally to use it—you just plug it in and go. LJ
Writing a program becomes a task of putting together these

building blocks in the right way without ever needing to re

invent the wheel. Why solve a problem when someone else

has already found the solution?

TDI's Modula-2 comes with a standard library containing

modules for input/output, math routines, and access to special

machine features. You use only the routines you're interested

in, and only these routines (and the underlying routines they

are based on) need to be included in your compiled code. This

lets you control the size of your final program.

You can easily add your own library modules. First, you

write the definition module, which simply contains the proce

dure headers that specify the inputs and outputs of a module.

The definition module primarily specifies the names of these

procedures. It compiles to a symbol file for use by the com

piler. The implementation module contains the actual code of

the module. You compile the definition module separately

from the implementation module.

You can change and recompile the implementation mod

ule without changing the definition module, as long as your

procedure headings remain the same. When you're referencing

library modules, the compiler can check the compact, com

piled symbol file rather than the full-length definition module,

speeding up compilation. After compilation, a linker combines [J
your main program with the compiled implementation mod

ules to create the final executable program.

Reminiscent of Pascal

One of the best ways to learn about a language is to study an j i

example program. The program accompanying this column is W

written to demonstrate some of the features of Modula-2 with

out getting bogged down in tricky algorithms. It's a simple j >

"guess my number" game. The RandomNumbers module thinks U
of a number from 1 to 100. The program then gives you ten

194 Q

Beyond BASIC

tries to guess the number, helping out with hints. If you guess

too high, the program recommends that you try a smaller

number. If you guess too low, you should try a higher number.

Here's how the program works. The first line declares the

name of the module. Next, the IMPORT statements specify

which external library calls we'll be using. Then we declare

the variables. We define the procedure SkipEOL, used to strip

away the rest of a line after getting a single-character re

sponse. The main loop follows, enclosed by the keywords BE

GIN and END. (All Modula-2 keywords must be typed in

uppercase, which can be annoying.)

Most of the program looks very much like Pascal, espe

cially the use of : = for assignments and the required semi

colon at the end of each logical line. Also, you won't find

GOTO anywhere in this or any Modula-2 program. Instead,

you can control looping and program execution with state

ments like LOOP-EXIT-END, WHILE-END, REPEAT-UNTIL,

and IF-THEN-ELSE-END.

You might be interested to know that this program com

piles in 35 seconds when the source code is stored in the RAM

disk; it takes 37 seconds to compile when the source code is

stored on a floppy disk. Linking takes 45 seconds from the

RAM disk, and just one minute from a floppy disk. This is

quite a bit faster than Lattice C and compares well with Aztec G

There's much more to Modula-2 than this discussion can

encompass. The language even permits procedures to run as

multitasking programs. Our example doesn't show how easily

Modula-2 can take advantage of the Amiga operating system—

even a small program would be too large to demonstrate

here—but the interface is similar to C's, using Pascal-style

RECORDS instead of C structures. It's possible to develop

modules that support the Amiga operating system on a higher

level, using calls like Screen(320,200,5) to open a custom screen,

as opposed to filling in the blanks of a NewScreen structure,

opening the Intuition library, and calling OpenScreen(). Some

high-level modules are included in the library. When these

modules are developed and shared between Modula-2 pro

grammers, Amiga programming in Modula-2 can seem almost

as easy as in BASIC, but with every advantage of a modern

compiled language.

195

CHAPTER FOUR

Guess the Number

MODULE Example;

FROM InOut IMPORT EOL,Read,ReadInt,ReadString,

WriteLn,WriteString,WriteInt;

FROM RandomNumbers IMPORT Random;

VAR

MyNum, Guess, Tries : INTEGER;

Again : CHAR;

(* Skips until end of line is reached *)

PROCEDURE SkipEOL;

VAR temp : CHAR;

BEGIN

REPEAT

Read(temp);

UNTIL temp=EOL;

END SkipEOL;

(* The main loop *)

BEGIN

1 LOOP

MyNum := Random(100)+l;

WriteStringC'I'm thinking of a ");

WriteString("number from 1 to 100");

WriteLn;

Tries :=0;

LOOP

Tries := Tries+1;

IF Tries>10 THEN EXIT; END;

WriteString("Guess #");

Writelnt(Tries,2);

WriteString("? ");

Readlnt(Guess);

WriteLn;

IF (Guess=MyNum) OR (Guess=0) THEN EXIT; END;

IF Guess<MyNum THEN

WriteString("Try a larger number.");

ELSE

WriteString("Try a smaller number.");

END; (* IF *)

WriteLn; WriteLn;

END; (* LOOP *)

IF Tries>10 THEN

WriteStringC'You only get 10 tries!");

END; (* IF *)

IF Guess=MyNum THEN

WriteString("You guessed my numberI");

196

Beyond BASIC

_ WriteLn;

[) WriteStringC1After ");
Writelnt(Tries, 2);

WriteString(" tries.");

f-> END; (* IF *)

' i WriteLn; WriteLn;
WriteString("Play again? (Y/N): ");
Read(Again);

i J SkipEOL; (* skip ahead to next line *)

IF (Again=lNl) OR (Again=lnl) THEN EXIT; END;
END; (* LOOP *)

END Example.

197

o

0

G

Q

J

3

J

a

o

0

G

Q

J

3

J

a

n

h Getting Online
Charles Brannon

Your Amiga can be a terminal to other, much larger

computers all over the world. Included here is a

quick overview of the basics of telecommunications

with your Amiga.

Any computer can become an information appliance with the

addition of a modem. Hayes-compatible 1200-baud modems

can be bought for under $200 now. You may find one small

complication when connecting a modem to your Amiga. When

purchasing a cable to connect the modem to your Amiga, you

must pay close attention to the types of plugs on the cable.

The Amiga serial-port connector—where you plug in the mo

dem cable—is the gender opposite that of the IBM serial port.

(The Amiga port uses a female connector while the IBM uses a

male.) Since IBM-style modem cables are more common than

Amiga modem cables, you may find it simpler to use an IBM

cable with a gender-changer module. I'm using one with my

Amiga at home. A gender-changer is a small box that attaches

to the female plug on the end of the modem cable, terminat

ing in a male connection that plugs into the female connector

on the Amiga. Be aware, though, that there is voltage on pins

14, 21, and 23 on the Amiga port, although these pins are not

normally used in most RS-232 cables. Check your modem

manual to make sure these pins are not connected or grounded

on your modem's connector.

When using a direct-connect modem, you are required to

call your local phone company to register the modem, as it be-

comes part of the phone system when you plug it in. Have at

hand the FCC registration and ringer-equivalence numbers,

usually found on the bottom of the modem or in the manual.

Next comes terminal software. In its simplest form, this is

a program that monitors the modem for input, which is dis

played on your screen, and checks the keyboard for your typ-

ing, which is sent out over the phone lines. The Amiga BASIC

Extras disk contains a simple terminal program in the Basic-

Demos folder. More complex terminal programs allow you to

201

CHAPTER FIVE

transmit a file (uploading) or store incoming data to disk

(downloading). "AmigaTerm," included in this chapter, is a

powerful terminal program written in BASIC. It includes most

of the features most users want. ,

U
Error-Free and Automatic

Programs such as XMODEM allow error-free file transmission.

XON/XOFF allows either computer to pause when necessary

without missing any characters. Advanced modem software

lets you create scripts to automate the process of calling a re

mote computer, entering your password, and seeking and

downloading information—even if you aren't there to monitor

your computer.

What can you do with a modem? First, you can call up lo

cal bulletin boards, including Amiga-specific ones. This is a

great way to meet people. Public bulletin boards offer services

where callers discuss everything from the nuts and bolts of

computing to controversial political issues. Usually, there are

also public domain programs for you to download. It's ex

pected you'll upload some of your own programs in exchange.

Then there are the commercial information services such

as CompuServe, The Source, Delphi, and GEnie. These ser

vices provide information such as stock quotes, daily news/

weather/sports, and online encyclopedias and books. Via elec

tronic mail, you can send and receive letters directly over the

phone. Most of these services let you play games with other

users. The popular CB simulation allows dozens of callers to

talk via keyboard in a conversational free-for-all. You can also

shop by phone, make airline and ticket reservations—even

buy and sell commodities.

Always a popular part of these services is the forum spe- j /

cific to your machine. AH these services have Commodore or ^
Amiga forums, containing databases of the most popular pub

lic domain software. The forums allow you to exchange mes- j j

sages with other members. It's like belonging to an electronic ^—'
user group. It's a great way to get help with a problem—just

send a question and you'll likely be surprised by how many i j

answers you get. ^

u

202

Telecommunications

The Twenty-First Century and Beyond

Perhaps the most powerful option you have with an auto

answer modem—one that can pick up the phone and establish

a connection automatically when called by another modem—

is to set up your own bulletin board. You can buy bulletin

board software or download public domain programs to help

manage your own information service. You are the host here,

providing your time and equipment to set up a local commu

nications network. Callers will download software and expect

to find interesting things to download. Of course, you must

insure that you offer only noncopyrighted, public domain soft

ware on your board. If in doubt, leave it out. (Programs pub

lished in most magazines and books, including this book as

well as COMPUTE! magazine, are not in the public domain.)

Technology is now significantly expanding our communi

cations; we live in an age where we can have our own com

puters and hook them into a global intelligence net, offering

the greatest possibilities yet for personal expression and free

choice. Although there are limitations, telecommunications of

fer us a hint of what life will be like as the global village be

comes a reality in the twenty-first century, and beyond.

203

Cutting

Telecommunications
Costs
Kathy Yakal

Learning to keep your telecommunications costs as

low as possible is one of the secrets of online success.

Here are a few tips to help you conserve your money

while still enjoying the pleasures of telecomputing.

There's probably no other personal computer application that

can be as costly overall as telecommunications. The initial

costs are low: a modem, a cable, perhaps, and terminal soft

ware. And if you limit yourself to calling local electronic bulle

tin board systems (BBSs), your expenses can end there.

An Exciting and Varied World

But it's a rare computer owner who can resist moving out to

explore the exciting and varied world of telecommunications.

Your first taste of online activity usually leads to the desire to

find out what's happening online across the country. So you

start calling out-of-state BBSs, and maybe subscribe to an

online service or two. Soon, you're facing startup subscription

fees, monthly service and hourly online charges, and steadily

climbing telephone bills.

However, there are ways to economize online.

Familiarize yourself thoroughly with whatever system

you're on before attempting to accomplish anything there.

Obviously, familiarizing yourself with the system is accom

plishing something, but don't even attempt extensive online

chatting before you understand the command system and

menu structures. Fortunately, most systems offer a lot of help

in this area, and encourage the user to spend some time get

ting acquainted. For example, the Delphi telecommunications

system requires each new user to go on an online tour at the

204

1 ! Telecommunications

! i

p. first sign-on. QuantumLink, a Commodore-specific service, of-

' > fers guided tours to new users at regularly scheduled times. In

fact, most of the major telecommunications networks attempt

j—j some sort of introductory orientation for new users, whether

! i it's through written instructions or online tours.

When you're using a system where this kind of automatic

i—, help isn't available, it's a good idea to download (have sent

i i from the host computer to your disk drive) Help menus
(usually accessed by typing H or a question-mark symbol at a

command prompt), and later print them out and study them

offline (disconnected from the host) until you know them well.

These menus often contain detailed explanations of each

command, and give you a good idea of the quickest, easiest

ways to get around the system. It may seem a lot of trouble,

but learning them will save enormous frustration, time, and

money. The system operators (sysops) at each network are

usually available if you really get stuck, and most are quite

happy to help. But remember, if you're trying to get help

while online, you're generally paying for the connect time.

Once you've learned a system fairly well, consider

using its Expert mode. Most systems, and even many BBSs,

offer a mode for experienced users that allows them to bypass

many of the menus and go straight to the desired area. You

need to be sure you know your way around well before you

start using this, or you could find yourself locked out of the

menu structure and unable to go anywhere.

If you do a lot of downloading, seriously consider get

ting a 1200-baud modem. While 300 baud is a good speed for

socializing, it can be frustratingly slow when you simply want

to download a program into your computer. At the same time,

1200 baud is often too fast for chatting, if several people are

\\ participating online. There's no simple formula to help you
determine whether or not the savings from fast downloads

will justify the expense of a 1200-baud modem. While it's true

; I that you're getting the information four times faster, most sys
tems have a higher hourly charge for 1200-baud use. In the

(long run, however, computer users who opt for 1200-baud

! [service generally don't choose to return to 300-baud.

Speed up your log-on time by using a more sophisti-

^ cated terminal program. Many terminal programs let you cre

ate macros, small user-definable routines that set up an

205

CHAPTER FIVE u

u

automatic log-on procedure. If there is one area where you al- ? j

ways go first, or one task you always perform (such as check- Lj
ing mail), you can add that to the macro and save some time

and keystrokes. Here again, the savings may or may not be > »

worth the extra expense of a new terminal program. But the LJ
extra convenience may play a part in your decision.

Try to confine the bulk of your downloading to times ? (

when the system is relatively quiet. Systems that operate on LJ
a 24-hour basis charge lower rates for off-peak hours (eve

nings and weekends), thus offering substantial savings. But

even off-peak hours are busier at some times than at others,

usually from about 8:00 until 11:00 in the evening. At those

times, a system sometimes suffers from short delays, pauses

between the time you type commands and the time they're ex

ecuted. You'll save some money if you steer clear of those

hours.

If telecommunications at off-peak hours, such as 2:00 in

the morning, is impossible, there are programs that will auto

matically log you on to a system at a specified hour, do the

tasks you've assigned them, and log you off when they've fin

ished. This doesn't necessarily require you to leave your com

puter on all night. If your computer can be set to boot up

automatically when the power comes on, you can leave your

disk in the drive and get an automatic timer that will turn the

computer on and off at predetermined hours.

Consider shopping for a new long distance telephone

service that may have lower rates than your present system.

This won't make any difference if you only call the major tele

communications services and live in an area with local-access

numbers for services like Tymnet and Telenet, which act as

connectors to the telecommunications services. But if you're

calling a lot of BBSs long distance, you might be able to reap LJ
some fairly significant savings if you switch to a more eco

nomical long-distance service.

If you're downloading messages at 1200 baud, dump all |_j
of them to disk and search through them later. Searching

through messages and deciding which ones you want to keep

can be quite time-consuming. If you're at 1200 baud, it might Ll
actually save online charges to dump a whole group of mes

sages without stopping to read them and deciding which to

save and which to discard. After you've logged off, you can go

through the file and keep only the ones you want.

206

Telecommunications

Set an alarm clock next to your computer. This may

sound rather silly, but it's easy to lose track of time when

you're online, especially in your first few weeks of telecom

puting. Even if you don't feel you need to set absolute limits

for yourself, it will alert you as to when a set period of time

has gone by. Some terminal software includes an alarm clock

function.

There are no hard-and-fast rules when it comes to saving

money online. The more experience you get in telecomputing,

the more efficient you'll become. You'll also find that all of the

telecommunications networks are trying to offer ways to in

crease their subscriber base and their percentage of online

usage. As a part of this effort, rates are getting less expensive,

systems are becoming easier and faster to use, and there are

more services being offered within each network. Increasingly,

the happy result is more telecomputing for the money.

207

AmigaTerm
Philip I. Nelson

With "AmigaTerm," a comprehensive telecommuni

cations program for the 512K Amiga, you can

communicate with other computers, call commercial

information services, and even upload and download

files. Written in Amiga BASIC, the program gives you

full control over all RS-232 parameters and includes

power features such as autodiaJing, macros, and

configuration files. A modem is required.

Telecommunicating is an increasingly popular use for personal

computers. With a modem and a personal computer, you can

access thousands of public domain programs, dial up the latest

stock market quotes, and exchange messages, electronic mail,

and even a favorite recipe with other people many miles away.

The information bonanza is going strong. But computer com

munications require a telecommunications program, often

known as a terminal program. "AmigaTerm" is a terminal pro

gram that provides all the features you need to start telecom

municating with the Amiga. It has many of the same capabilities

offered by commercial programs, but it's written entirely in

Amiga BASIC, in a modular style that makes it easy to expand

to add even more features.

Type in the program and save a copy to disk. Before

you run the program, you must also copy the file named

graphics.bmap from the Basicdemos drawer (subdirectory) of

your "Extras" disk onto the disk where you saved Amiga-

Term. This file must be present on every disk that contains

AmigaTerm (it's needed for the program's special graphics ef

fects). Don't copy graphics.bmap into a drawer on the disk,

even if AmigaTerm itself is within a drawer.

Running AmigaTerm

AmigaTerm is entirely menu-driven for maximum conven

ience. You can select every program option from onscreen

menus with the mouse pointer. When you run the program, it

208

Telecommunications

spends a few moments initializing; then it displays a welcome

p message. When the welcome appears, AmigaTerm is ready to

use. Make sure that your modem is connected to the computer

and turned on before you proceed any further.

\~1, If you wish to call a commercial information service, sim

ply dial the service and log on. AmigaTerm defaults to the
communications settings used by most commercial services

0 (see below). To access any of the menu options, hold down

^ the right mouse button and move the pointer to the menu of
your choice. A drop-down menu appears, displaying that

menu's options. To select an option from the menu, move the

pointer down and release the button when the option is

highlighted.

When using AmigaTerm, you'll notice that program mes

sages and prompts are displayed in dark, boldface characters,

while ordinary text—incoming as well as outgoing infor

mation—is displayed with normal characters. This is done to

highlight program information and prevent confusion when

you are communicating with another computer system.

AmigaTerm offers many different options. Let's examine

each of its menus in turn, beginning with the Settings menu.

Settings Menu

Before you can communicate with another computer, you

must make sure that both machines are speaking the same

"language." For telecommunications, that language is the RS-

232 standard. AmigaTerm's Settings menu gives you control

over all the important RS-232 settings. We'll explain them

briefly here. If you're not familiar with these terms, see "RS-

232 Standards" later in this article.

When you activate the menu with the right mouse button,

| [the Settings menu displays the current settings for the baud
rate, parity, word length, stop bits, and duplex mode. To

^ change a setting, move the pointer down to that setting and

| i release the button when the desired option is highlighted.

AmigaTerm displays the new setting on the screen in boldface

l K type as a reminder of the change. An explanation of each RS-

1 (232 parameter follows.

Baud rate. AmigaTerm can communicate at either 300 or

1200 baud. This option (like most others in the Settings menu)

, I toggles between the two available settings. If the baud rate is

300, selecting the option changes it to 1200, and vice versa.

H 209

CHAPTER FIVE

AmigaTerm defaults to 300 baud, the lower of the two speeds.

Parity. AmigaTerm defaults to even parity. This option al
lows you to select even, odd, or no parity.

Word length. AmigaTerm uses a default word length of

seven bits. You can also change the word length to eight bits.

Stop bits. The default setting for this option is a stop bit

of 1. It should almost never need to be changed. For special
applications, the stop bit can be changed to 2.

Duplex. Full duplex, the default setting, is most com

monly used for calling bulletin boards and information ser

vices. You may also select half-duplex mode for situations in

which the remote computer does net echo the characters you
are transmitting.

Special Menu

The Special menu controls two convenience features: automatic

phone dialing and configuration files. Of course, the

autodialing feature works only if your modem is capable of

autodialing. An explanation of the options in the Special menu

follows.

Phone number. When you select this option, AmigaTerm

displays the current telephone number inside a custom dialog

window. To enter a new number or change an existing one,

simply type in the number when the dialog window appears.

To exit without changing the number, press RETURN without

typing anything.

Dial. To dial the current number, select the Dial option.

AmigaTerm transmits a Hayes-format autodial command, fol

lowed by the current telephone number.

Save settings. This important option allows you to save

all of the current RS-232 settings, plus the current phone num

ber and macros (see below), in a disk file for future use. Once

a configuration file has been saved, you can reconfigure Amiga-

Term at any time simply by loading the file. This is particularly

useful if you regularly call more than one information service.

To save the current settings, select the Save Settings option

from the Special menu. AmigaTerm opens a dialog window

and prompts you to enter a filename for the settings file (if

you press RETURN without typing anything, AmigaTerm

aborts the operation). Any legal Amiga filename may be used

for the settings file. However, the name setup has a special

210

Telecommunications

n
meaning in this program. When you run AmigaTerm, it auto-

fl matically searches the root directory of the current disk for a
file named setup. If it finds the file, the program loads the

settings when it boots. This feature is very convenient if you

f^ call a particular bulletin board or information service regularly.

~* As soon as AmigaTerm boots up, you're ready to dial the ser
vice. All you need to do is select the Dial option.

P[Load settings. This option loads a settings file into mem

ory. Enter a filename in the dialog window when prompted
(press RETURN to abort without loading a file). AmigaTerm

always displays all of the current RS-232 settings in boldface

when you exit this option.

Transfer Menu

The Transfer menu allows you to upload (send) and download

(capture) a file. What you transfer is up to you—the file may

contain a program, word processing document, personal mes

sage, or whatever.

Send file. To send a file, choose the Send option from the

Transfer menu. AmigaTerm opens a dialog window and asks

you to enter the name of the file you wish to transmit. To

abort this function, press RETURN without entering a file

name. If a disk error occurs, AmigaTerm signals an error and

aborts the operation. Otherwise, it loads the file from disk and

sends it out. Do not try to break out of the program while

AmigaTerm is busy sending a file.The program lets you know

when the transfer is complete.

Receive file. The Receive option of the Transfer menu

permits you to capture a file sent from a remote computer. Se

lect the option from the menu; then enter a filename in the di-

_ alog window. AmigaTerm opens a disk file of that name, then

I \ diverts all input to that file until you signal that the transfer is
complete. To end the capture, select Receive a second time:

AmigaTerm closes the disk file. No restrictions are placed on

I the type of information that you receive. AmigaTerm stores
whatever it receives between the time you initiate the capture

and the time you terminate it. AmigaTerm does not support

I \ error-checking protocols such as XMODEM or Kermit.
When capturing files, keep in mind that the Amiga's

RAM: device, a native RAMdisk, is always available. To save a

f i file to the RAMdisk rather than a floppy disk, simply include
the prefix RAM: at the beginning of the filename, just as you

P 211

CHAPTER FIVE Li

G
would include the prefix DFO: to specify drive 0 or DF1: to

specify drive 1. Since the RAMdisk operates much faster than M

a floppy disk drive, this method eliminates the delays which

otherwise occur when a long file is being written to disk. Once

you have completed the capture, the file remains safely in j!

RAM even after you've exited BASIC and returned to the

Workbench. In version 1.2 of the Amiga's operating system

(available only in Beta test form at this writing) the RAMdisk 1)

appears on the Workbench and its files can be manipulated

with icons, like floppy disk files. In earlier versions of the op

erating system, you must open a CLI window and perform a

COPY operation from AmigaDOS to transfer a file from the

RAMdisk to a floppy disk. For instance, the AmigaDOS com

mand COPY RAM:TEST TO DF0:TEST copies the file TEST

from the RAMdisk to the disk in drive 0.

Macro Menu

The Macro menu, AmigaTerm's most advanced feature, makes

often-used commands available in a convenient, onscreen

menu. For instance, most bulletin boards require that you log

on in some fashion by typing a password or user I.D. number.

By storing such commands in a macro definition, you can

transmit the desired sequence of characters by selecting the

macro from an onscreen menu with the mouse—without having

to type a single character. This saves time as well as minimiz

ing typing errors. Since AmigaTerm saves macro definitions as

part of a configuration file (see "Save Settings"), you can have

as many as ten macros for each configuration file.

When you activate the Macro menu, ten macro selections

appear beneath an option labeled Edit Macro. The Edit option

is used to enter a new macro string or change an existing one.

To see how it works, select Edit Macro; then enter 1 when it

prompts you for a macro number. When the next prompt ap

pears, enter a short string: It can be anything, since this is just

for practice. When the dialog window disappears, AmigaTerm

has recorded the macro. To transmit the macro, set the Duplex

option of the Settings menu to half duplex (to insure that

AmigaTerm echoes the transmitted characters on the screen);

then select Macro 1 from the Macro menu. The macro string

that you entered is simultaneously displayed on the screen

and sent to the modem.

212

Telecommunications

n

pi Automated Log-On

1 Macro definitions are automatically saved when you choose
the Save Settings option. When you load a settings file, Amiga-

r"i Term loads that file's macros as well. This feature allows you

to automate your telecommunications even further. To illus

trate—say that you frequently call a fictional information ser-

r^v vice called ChompuSerf, and you ordinarily begin each session

' r by entering the AmigaSIG area to read messages. After you've
set the correct RS-232 parameters in the Settings menu and en

tered ChompuSerfs phone number with the Phone option, you

can create several macros to take you all the way through the

log-on procedure. Macro 1 is defined as CIS, the string that

tells your local packet-switching network which service to call.

Macro 2 is defined with your user I.D. number for Chompu

Serf, and Macro 3 is defined with your password. Macro 4 is

defined as GO AMIGASIG, the command that moves you

from the top-level menu of ChompuSerf to the AmigaSIG sec

tion of the service.

Once everything is set as needed, save the settings, phone

number, and macros in a single configuration file with the

Save Settings option. When you reload the file in a later ses

sion, AmigaTerm is properly configured to communicate with

ChompuSerf. You dial ChompuSerf with the Dial option.

When the service comes online, you can reach your destina

tion effortlessly by selecting the predefined macros from a

screen menu. Macros not only save you the time and bother of

typing repetitive commands, but decrease the risk of typing

errors.

RS-232 Standards

f~! Despite the enormous popularity of telecomputing, many com
puter owners—including some otherwise expert program

mers—are intimidated by the unfamiliar jargon and seemingly

PI technical nature of the process. In fact, there's nothing particu
larly mystical about communicating with another computer
over the telephone lines. If you and the computer owner at

! ; the other end of the link are using terminal programs, it's
usually just a matter of making sure that you both use the

same baud rate and other RS-232 parameters. For those who
H are unfamiliar with this area, here is a fuller explanation of the

RS-232 parameters which you can control in AmigaTerm.

213

CHAPTER FIVE L)

Q
Baud rate. This setting determines how fast you can com

municate. Although the term baud is more frequently used, it's (J
more accurate to refer to this parameter as bps, which stands

for bits per second. For years, nearly all personal telecomput

ing was done at 300 bps due to the low cost of 300-bps

modems. In recent times, the price of 1200-bps modems has

dropped so dramatically that many bulletin boards and infor

mation services support either 1200 or 300 baud. The Amiga

can support much higher baud rates, but Amiga BASIC is not

fast enough to communicate reliably at speeds higher than

1200 bps.

Parity. The parity setting provides the computers at both

ends of the link with a means of error-checking for each char

acter which is transmitted. Fortunately, it's rarely necessary to

worry about how this error-checking works. For commercial

information services which communicate with a word length

of seven bits, the parity is usually even. A setting of no parity

is often used in communicating with a word length of eight

bits. Odd parity is used infrequently.

Word length. The word-length setting indicates how

many bits (binary digits, either a 1 or 0 value) are needed to

make up one data word, which ordinarily represents one char

acter of text. The bits are sent one by one, and the computer

adds bits together to determine the code for the current char

acter. For plain ASCII text, you can use either seven bits or

eight bits, since seven bits is sufficient to express all the nu

merals, punctuation, and letters of the alphabet as standard

ASCII codes. To send other types of information (for instance,

a word processing document containing control codes), a word

length of eight bits may be necessary. In many cases, the word

length is not critical. However, it is very important that both

computers use the same word-length setting. If you have es

tablished a link with the other computer, but the information

appears garbled, try changing the parity and/or word length.
Stop bit. You will almost never have to change this set

ting, which provides the computer with a means for telling

when it has reached the end of a character. A stop bit of 1 is

nearly universal except for very slow baud rates.

Duplex. The duplex setting, called echo in some terminal
programs, sounds mysterious but simply has to do with what
your computer shows on the screen. Many information ser

vices automatically echo every character that you send to

214

Telecommunications

them. If you type in GO AMIGASIG to enter the AmigaSIG

area of the ChompuSerf information service, ChompuSerf

sends back the characters G-O- -A-M-I-G-A-S-I-G one by one

as you type them in. Among other things, the echoing lets you

confirm immediately that the computer at the other end is re

ceiving your transmission correctly.

When you set AmigaTerm to full duplex, it does not dis-

play characters which you send out—only those which it re

ceives. This is the setting you should use for information

services or any remote computer that echoes back what you

send. When you select the half-duplex setting, AmigaTerm

displays every outgoing character immediately. Half duplex is

appropriate if you are communicating directly with a friend or

in any other situation where the computer at the other end is

not echoing your transmissions.

Generally, if you can't see what you type, you need to

switch from full duplex to half duplex. Conversely, if

AmigaTerm displays two copies of every character (GGOO

AAMMIIGGAASSIIGG instead of GO AMIGASIG), you prob

ably need to switch from half duplex to full duplex. Some

modems also have a duplex switch for switching between half

and full duplex. Under ordinary circumstances, the modem's

duplex switch should be set for full duplex (no echoing) to

avoid confusion.

AmigaTerm

The left-arrow symbols in this listing indicate when to press RETURN at the end of each

program line. Do not attempt to type the arrows themselves.

9 AmigaTerm 1.0 for 312K Amiga*

4

CLEAR ,65536*4

ON ERROR 60T0 04

BOSUB Setup4

4

Main:4

MenuChoi ce-MENU(1)4

ON MENU(0) QOSUB Menul, M»nu2, Menu3, Menu4, M»nuS4

IF LOC(l) THEN x»»INPUT*Up 1) sPRINT xt; s IF CaptureF

lag-1 THEN PRINT #2,x*j4

x*«INKEY*sIF x«>NU THEN4

IF x»«CHR«(27) THEN x««CHR*<3>4

PRINT #1,x*;iIF Duplex THEN PRINT x*;4
END IF4

GOTO Main4

4

215

CHAPTER FIVE LJ

u

U

0penUps4

CLOSE 14 ! }
Modem*«"coml: "+STR*(Baud (Baud) > +CHR*(44) +Parity» (Pa

rity)+CHR»(44)4

Modem*«Modem*+STR«(Length(Length))+CHR*(44)+STR*(St f ,

Bit(StBit>)4 LJ

ON ERROR GOTO TrapMe4

OPEN Modem* AS 1 LEN-14

ON ERROR GOTO 04

RETURN4

4

Menuls4

MENU RESET4

WINDOW 1, , (0,0)-(616,186), 314

CL0SE4

GOSUB Roman4

IF SaveHeight&-8 THEN4

CALL SetFont (WINDOW (G),topazB8c) 4

GOTO Pi 114

END IF4

IF SaveHeight8c-9 THEN4

CALL SetFont(WINDOW(8),topaz9&)4

END IF4

LIBRARY CL0SE4

CLEAR ,250004

END4

4

Menu2:4

ON MenuChoice GOTO Twol, Two2, Two3, Two44

RETURN4

4

Twol:4

WINDOW 2,"Save Current Settings",(50,90)-(400,110),

204

GOSUB Bold4

PRINT "Filenames ";4

GOSUB Roman4 1 <

LINE INPUT Filenames L-J
IF LEN(Filename«)»0 THEN Wip4

Error»tatuB«04

ON ERROR GOTO TrapMe4

OPEN Filename* FOR OUTPUT AS 24

ON ERROR GOTO 04

IF Errormtatus-1 THEN Wip4 j j

IF Phone*-"11 THEN Phone*«"none"4 Lj
PRINT #2,Baud,Parity,Length,StBit,Duplex,Phone*4

FOR j-l TO 104

PRINT #2,Mac*(j)4) j
NEXT4 ^
Wip:4

216 D

Telecommunications

i— CLOSE 24

!) WINDOW CLOSE 24

GOSUB Roman4

RETURN4

Two2:4

WINDOW 2,"Load New Settings",(50,90)-(400,120),204

GOSUB Bold*

fj PRINT "Filename: ";4
GOSUB Roman4

LINE INPUT Filename**

IF LEN(Filename*)-0 THEN Xip4

Errorstatus«04

ON ERROR GOTO TrapMe4

OPEN Filename* FOR INPUT AS 24

ON ERROR GOTO 04

IF Errorstatus-1 THEN Xip4

INPUT #2, Baud, Pari ty, Length, StBi t, Dup1 ex4

LINE INPUT #2,Phone**

FOR j«l TO 104

LINE INPUT #2, Mac*(j)4

NEXT4

GOSUB 0penUp4

MENU 3, 1, 1, Baud*(Baud)4

MENU 3, 2, 1, Par*(Parity)4

MENU 3, 3, 1, Length*(Length)4

MENU 3, 4, 1, StBit*(StBit)4

MENU 3, 5, 1, Duplex*(Duplex)4

Xip:4

CLOSE 24

WINDOW CLOSE 24

GOSUB Bold*

PRINT Baud*(Baud)4

PRINT Par*(Parity)4

PRINT Length*(Length)4

PRINT StBit*(StBit)4

PRINT Duplex*(Duplex)4

H PRINT "Phone # ";Phone*4
GOSUB Roman4

RETURN4

f s Two3:4
WINDOW 2,"Phone Number",(50,90)-(450,120),204

GOSUB Bold*

—! PRINT "Current Number: "5Phone*4

i PRINT "Press RETURN to exit, or enter new number"4

PRINT ": ";4

GOSUB Roman*

H LINE INPUT Temp*4
IF LEN(Temp*)«0 THEN Zip*

217

CHAPTER FIVE u

y
Phone*sTemp**

Zips* 1 {

CLOSE 2* ^
WINDOW CLOSE 2*

60SUB Roman* ■)-

RETURN* \J
*

Two4:*

Dial*«nATDT"+Phone** ; i

PRINT #1, Dial** LJ
IF Duplex THEN PRINT Dial**

RETURN*

*

Menu3:*

ON MenuChoice GOTO Threel,Three2,Three3,Three4,Thre

eS*

RETURN*

*

Threel:*

Baud-1-Baud:MENU 3, 1, 1, Baud*(Baud)*

BOSUB OpenUp*

GOSUB Bold*

PRINT Baud*(Baud)*

GOSUB Roman*

RETURN*

*

Three2:*

Parity-Parity+1:IF Parity-3 THEN Parity»0*

MENU 3., 2, 1, Par*(Parity)*

GOSUB OpenUp*

GOSUB Bold*

PRINT Par*(Parity)*

GOSUB Roman*

RETURN*

*

Three3:*

Length-1-Length:MENU 3, 3, 1, Length*(Length)*

GOSUB OpenUp*

GOSUB Bold*

PRINT Length*(Length)*

GOSUB Roman*

RETURN * t i

* u
Three4:*

StBit»l-StBit*

MENU 3, 4, 1, StBit*(StBit)* I j
GOSUB OpenUp* l~
GOSUB Bold*

PRINT StBit*(StBit)* , ,

GOSUB Roman* M

RETURN*

218

LJ

Telecommunications

4

Three5s4

Duplex«=l-Duplex4

MENU 3, 5, ip Duplex*(Duplex)4

GOSUB 0penUp4

60SUB Bold4

PRINT Duplex*(Duplex)4

GOSUB Roman4

RETURN4

4

Menu4:4

QN MenuChoice GOTO Fourl, Four2, Four3, Four44

4

Four1:4

IF CaptureFlag=l THEN 4

GOSUB Bold4

PRINT "Ending file capture."4

MENU 4,1,1,"Capture file"4

MENU 4,2,14

CLOSE 24

CaptureFlag=04

GOSUB Roman4

RETURN4

END IF 4

4

CaptureFlag=14

WINDOW 2,"Capture file",(50,90)-(520,120),204

WIDTH(WINDOW(2)/8)4

GOSUB Bold4

PRINT "To end capture, choose same menu option."4

PRINT "Filename for your computeri ";4

GOSUB Roman4

LINE INPUT Filename**

GOSUB Bold4

IF LEN(Filename*)«0 THEN CaptureFlag»08 GOTO YouQui
t4

ON ERROR GOTO TrapMe4

OPEN Filename* FOR OUTPUT AS 2 LEN-14

ON ERROR GOTO 04

IF Errorstatus-1 THEN4

Errorstatus=04

GOTO CloseFourl4

END IF4

CloseFourl:4

MENU 4,1,1,"End capture"4

MENU 4,2,04

WINDOW CLOSE 24

GOSUB Bold4

PRINT "Beginning file capture."4

GOSUB Roman4

219

CHAPTER FIVE u

LJ

U

WIDTH(WINDOW(2)/8)4

RETURNS

YouQuit:*

WINDOW CLOSE 24

QOSUB Bold*

PRINT "Cancelled at your request"4

60SUB Roman*

RETURN4 j 1
4 *-*
Four2:4

CaptureFlag=0*

WINDOW 2,"Send file",(50,90)-(400,120),204

WIDTH(WINDOW(2)/8)4

QOSUB Bold*

PRINT "Filename of Amiga files ";4

60SUB Roman*

LINE INPUT Filename**

GOSUB Bold*

IF LEN(Filename*)«0 THEN YouQuit*

ON ERROR GOTO TrapMe*

OPEN Filename* FOR INPUT AS 24

ON ERROR GOTO 04

IF Errorstatus"l THEN4

Errorstatus=04

WINDOW CLOSE 24

GOSUB Roman*

WIDTH (WINDOW (2) /8) 4

RETURN*

END IF4

MENU 4,0,04

Fi1eLength«LOF(2)4

BufferSi ze«Fi1©Length*1.54

IF BufferSize>32766 THEN BufferSize-327664

PRINT "Sending "(Filename*;" 8 "{FileLength;"bytes.

"4

Hunks-INT(FileLength/BufferSize)4

LeftOver«FileLength-Hunks*BufferSize* ;

j-14 ^
K*=""4

WHILE j<Hunks AND x*«""4 .

x*«INKEY*4 LJ
PRINT #1, INPUT*(BufferSize,2);4

WEND4 ((

IF x*="" THEN PRINT #1, INPUT*(Leftover,2)4 LJ
PRINTsPRINT "Finished sending ";Filename*;"."4

CLOSE 24

WINDOW CLOSE 24 [
MENU 4,0,14 ^
GOSUB Roman*

220 LJ

Telecommunications

— WIDTH(WINDOW(2)/8)4

! RETURN4
4

MenuSs4

p IF MenuChoice=l THEN Five14

' 60T0 Five24
4

Fivel:4

I ; WINDOW 2,"Edit macro",(50,90)-(400,120),204

' WIDTH(WINDOW(2)/8)4
BOSUB Bold4

PRINT "Macro to edit (1-10) : ";4

QOSUB Roman4

LINE INPUT Num*4

QOSUB Bold4

IF LEN(Num*)=0 OR VAL(Num*Xl OR VAL(Num*) >10 THEN

YouQuit4

0verAgain:4

CLS4

QOSUB Bold4

PRINT "Macro ";Num«5":"4

PRINT Mac*(VAL(Num*));":";4

80SUB Roman4

LINE INPUT Thing*4

IF LEN(Thing*)>30 THEN 0verAgain4

Mac*(VAL(Num*))=Thing*4

WINDOW CLOSE 24

GOSUB Bold*

PRINT Mac*(VAL(Num*))4

60SUB Roman4

WIDTH(WINDOW(2)/8)4

RETURN4

4

Five2:4

PRINT #l,Mac*(MenuChoice-l)4

IF Duplex»l THEN PRINT Mac*(MenuChoice-l)4
RETURN4

n «
Bold:4

CALL SetSoftStyle8c (WINDOW (8), 2,255)4
—. RETURN4

! \ 4
Roman:4

CALL SetSoftStyleSc (WINDOW(8) ,0,255)4
7- RETURN4

i i 4
Setup:4

CL0SE4

H DEFINT a-z4
DEFLNG B,FileLength4

221

CHAPTER FIVE

PALETTE 0,1,1,14

PALETTE 1,0,0,04

PALETTE 3,0,.2,.84

PALETTE 2,.9,.9,04

4

ON ERROR BOTO LibTrap4

PRINT "Loading graphics library"4

LIBRARY "graphics.library"4

DECLARE FUNCTION OpenFont LIBRARY4

ON ERROR GOTO 04

4

' Initialize menus4

Baud(0)«3004

Baud*(0)-"Baud Rate"+STRING*(4,46)+"300"4

Baud(l)-12004

Baud*(1>-"Baud Rate"+STRING*(3,46)+"1200"4

4

Parity*<0)»"n"4

Par*(0)-"Pari ty"+STRING*(6,46)+"none"4

Parity*<l)»"e"4

Par*(1)-"Pari ty"+STRING*(6,46)+"even"4

Parity*(2)«"o"4

Par*(2)-"Parity"+STRING*(7,46)+"odd"4

4

Length(0)-8 4

Length* <0)-"Word Length"+STRING*(4,46)+"8"4

Length (D-74

Length*(1)-"Word Length"+STRING*(4,46)+"7"4

4

StBit(0)-14

StBit* (0) -"Stop Bits"+STRING* (6,46) •#■" 1 "4

StBit(l)-24

StBit*(1)-"Stop Bits"+STRINB*(6,46)+"2"4

4

Duplex*(0)-"Duplex"+STRING*(6,46)+"ful1"4

Duplex*(1)-"Duplex"+STRING*(6,46)+"half"4

4

Baud-14

Parity-14

Length-14

StBit-04

Duplex-04

4

FOR j-1 TO 104

Mac*(j)-CHR*(32)4

NEXT4

CL0SE4

ON ERROR GOTO FooledYou4

OPEN "setup" FOR INPUT AS 24

4

222

Telecommunications

FooledYou:4

IF ERR«0 THEN FooledMe4

IF ERR-53 THEN RESUME ForReal4

ON ERROR GOTO 04

4

FooledMe:4

PRINT "Loading setup file11*

INPUT #2,Baud,Parity,Length,StBit,Duplex4

LINE INPUT #2,Phone**

FOR j=l TO 104

LINE INPUT #2,Mac*(j)4

NEXT4

4

ForReal:4

CL0SE4

ON ERROR GOTO TrapMe4

GOSUB 0penUp4

ON ERROR GOTO 04

4

Menus:4

MENU

MENU

4

MENU

MENU

MENU

MENU

MENU

MENU

MENU

MENU

MENU

MENU

MENU

MENU

MENU

MENU

1,

1.

2,

2,

2,

2,

2,

3,

3,

3,

3,

3,

3,

4,

4,

4,

0,
1.

0,
1,
2,

3,

4,

0.
1,

2,

3,

4,

s,

0,

1,

2,

1,

1,

1,

1,

1,
1,

1,

1,

1,

1,
1,
1,

1»

1*
1,

1,

"Project11*

"Quit"+SPACE*<3)«

"Special"+SPACE*(6)«

"Save Settings"*

"Load Settings"*

"Phone Number"+CHR*(32)«

"Dial"+SPACE*(9>«

"Setti ngs"+SPACE»(8)4

Baud*(Baud)4

Par*(Parity)*

Length*(Length)*

StBit*(StBit)*

Duplex*(Duplex)*

"Transfer"+SPACE*(4)«

"Capture File"*

"Send File"*

DIM Macro*(11)4

MENU 5, 0, lp "Macros"+SPACE*(4)4

MENU 5, 1, 1, "Edit macro"4

FOR j»2 TO 114

Macro* (j) ■■•Macro"+CHR* (32) +STR* (j-1) 4

MENU 5, j, 1, Macro*(j)4

NEXT4

4

9 Sorry, AmigaBASIC won't permit4

' a borderless 80-column window.4

WINDOW 1, "AmigaTerm 1.0", (0,0)-(631,186), 204

223

CHAPTER FIVE u

LJ

WIDTH 79* ,

GOSUB Bold* U
CLS*

PRINT "Welcome to AmigaTerm 1.0 "*

PRINT "Press the right mouse button to view options f j
"* U
GOSUB Roman*

RETURN*

* y
TrapMe:* u
GOSUB Bold*

Errorstatus*-1*

IF ERR«53 THEN PRINT "* File not found *":GOTO ErrO

ut*

IF ERR«61 THEN PRINT "* Disk is full *" :GOTO ErrO

ut*

IF ERR«64 THEN PRINT "* Bad filename *" :GOTO ErrO

ut*

IF ERR«70 THEN PRINT "Disk is write-protected *":G0

TO ErrOut*

PRINT "Error #" + STR»(ERR>*

ErrOut:*

GOSUB Roman*

RESUME NEXT*

LibTrap:*

IF ERRO53 THEN CLOSE: END*

PRINT "Root directory of this disk does not contain

the file"*

PRINT "that I need to handle graphics. Exit BASIC a

nd copy"*

PRINT "GRAPHICS.BMAP from the BASICDEMOS directory

of your"*

PRINT "EXTRAS disk to this disk. Then rerun the pro

gram."*

CLOSE*

u

Li

u

\ t

224

Index

n

n

"Amiga Math Graphics" program

listing 159-62

"Amiga Puzzle" program listing

99-102

"AmigaTerm" program listing 215-224

ASSIGN 188-89

autoanswer 203

\ key 182

batch files 180-89

baud rate 214

"Beehive" program listing 30-37

"Biker Dave" program listing 47-52

black box routine 194

box subprogram 150-51

bulletin board systems (BBSs) 204

BUTTON 163

buttons 163

Cartesian coordinate system 158

"Chain Reaction" program listing

126-31

CLI 171

command line interface (CLI) 171-73

custom menus 136

custom printer driver 191

definition module 194

DIALOG 163

dialog box 163

DIM 135

double-precision variable 138

downloading 202

duplex 214

ECHO 181

echo 214

ED 171-79, 182-83, 184

extended commands table 177-79

immediate commands table 176-77

EDIT 171

end of file 182

event subroutine 139

event traps 139

extended commands 174-76

gender-changer 190, 201

generic driver 191

"Getline Input Routine" program listing

151-53

getline subprogram 1 ^ 6-50

ghosted 136

global variables 164

"Guess the Number" program listing

196-97

"Hex War" program listing 108-24

"Hickory, Dickory, Dock" program

listing 79-83

immediate commands 174

implementation module 194

input routine 146

interrupts 139

Introduction to Amiga 190, 191

labeled subroutines 154

labels 188

"Laser Strike" program listing 54-58

line numbers 135

local variables 164

mantissa 138

modem 201

Modula-2 193-95

module 194

MOUSE 163

multitasking 99, 195

null string 147, 149

sign 137-38

origin 158

PALETTE 157

parameters 185, 186

parity 214

"Pioneer" program listing 63-77

polar coordinate system 158

printer driver 191

printers 190-92

PRINT USING 137

public domain software 203

"Pyramid Power" program listing

39-45

REM 135

requesters 164

requester windows 163-67

"Requester Window Subprogram"

program listing 167

SAY 183

scaling 155

script file 181

semicolon 175

sequence file 181

shared variables 164

225

u

LJ

startup-sequence 183-85 "Tightrope" program listing 19-27

stop bit 214 time 99 j
subprogram 146, 164 "Tug-o-War" program listing 5-7 *—>
"Switchbox" program listing 90-96 "UFO Invasion" program listing 9-16

sysops 205 uploading 202

telecommunications costs 204-7 WINDOW 163 | I

terminal program 208 Wirth, Nicklaus 193 w

text editors 171 word length 214

theta 158

u

226

U

U

u

u

0

_ To order your copy of COMPUTEi's First Book of Amiga Disk,

I i call our toll-free US order line: 1-800-346-6767 (in NY 212-
887-8525) or send your prepaid order to:

H First Book of Amiga Disk

} COMPUTE! Publications
P.O. Box 5038

H F.D.R. Station
New York, NY 10150

All orders must be prepaid (check, charge, or money order). NC

residents add 5% sales tax. NY residents add 8.25% sales tax.

Send copies of COMPUTErs First Book of Amiga Disk at

$15.95 per copy.

Subtotal $

Shipping and Handling: $2.00/disk $

Sales tax (if applicable) $

Total payment enclosed $

□ Payment enclosed

□ Charge a Visa □ MasterCard □ American Express

Acct. No. Exp. Date
(Required)

Name

Address

City : State Zip

Please allow 4-5 weeks for delivery.

R 227

o

0

G

Q

J

3

J

a

n

n

COMPUTE! Books

Ask your retailer for these COMPUTE! Books or order directly from

COMPUTE!.

Call toll free (in US) 1-800-346-6767 (in NY 212-887-8525) or write COM

PUTE! Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150.

Quantity Title Prte** Total

COMPUTERS Beginner's Guide to the Amiga

(025-4) $16.95

COMPUTE!'s AmigaDOS Reference Guide
(047-5) $16.95

Elementary Amiga BASIC (041-6) $14.95

COMPUTED Amiga Programmer's Guide (028-9) $16.95

COMPUTED Kids and the Amiga (048-3) $14.95

Inside Amiga Graphics (040-8) $17.95

Advanced Amiga BASIC (045-9) $17.95

COMPUTED Amiga Applications (053-X) $16.95

Learning C: Programming Graphics on the $18.95
Amiga and Atari ST

COMPUTED First Book of Amiga (090-4) $16.95

•Add $2.00 per book for shipping and handling.

Outside US add $5.00 air mail or $2.00 surface mail.

NC residents add 5% sales tax

NY residents add 8.25% sales tax

Shipping & handling: $2.00/book
Total payment

All orders must be prepaid (check, charge, or money order).

All payments must be in US funds.

□ Payment enclosed.

Charge □ Visa □ MasterCard □ American Express

Acct. No Exp. Date_

Name

Address.

City State Zip_

•Allow 4-5 weeks for delivery.

Prices and availability subject to change.

Current catalog available upon request.

o

0

G

Q

J

3

J

a

COMPUTE! Books
r~> Ask your retailer for these COMPUTEI Books or order directly from

I \ COMPUTEI.

Call toll free (in US) 800-346-6767 (in NY 212-887-8525) or write

COMPUTE! Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150

I I Quantity Title Price* Total
Machine Language for Beginners (11-6) $16.95

The Second Book of Machine Language (53-1) $16.95

C7 COMPUTEI's Guide to Adventure Games (67-1) $14.95

; Computing Together: A Parents & Teachers
Guide to Computing with Young Children (51 -5) $ 12.95

, , COMPUTED Personal Telecomputing (47-7) $12.95

! 1 BASIC Programs for Small Computers (38-8) $12.95

Programmer's Reference Guide to the
Color Computer (19-1) $ 12.95

Home Energy Applications (10-8) $14.95

The Home Computer Wars:

An Insider's Account of Commodore and Jack Tramiel

Hardback (75-2) $16.95

Paperback (78-7) $ 9.95

The Book of BASIC (61-2) $12.95

The Greatest Games: The 93 Best Computer
Games of all Time (95-7) $ 9.95

Investment Management with Your

Personal Computer (005) $14.95

40 Great Flight Simulator Adventures (022) $10.95

40 More Great Flight Simulator Adventures (043-2) $12.95

100 Programs for Business and Professional Use (017-3) $24.95
From BASIC to C (026) $16.95

The Turbo Pascal Handbook (037) $14.95

Electronic Computer Projects (052-1) $ 10.95

Flying on Instruments with Flight Simulator

perfect bound (091-2) $ 9.95

wire bound (103-X) $ 12.95

Jet Fighter School

perfect bound (092-0) $ 9.95

wire bound (104-8) $12.95

* Add $2.00 per book for shipping and handling.

Outside US add $5.00 air mail or $2.00 surface mail.

NC residents add 5% sales tax.

NY residents add 8.25% sales tax

Shipping & handling: $2.00/book

Total payment

All orders must be prepaid (check, charge, or money order).

All payments must be in US funds.

□ Payment enclosed.

Charge □ Visa □ MasterCard □ American Express

Acct. No Exp. Date
(Required)

Name

M Address

City State Zip.
n 'Allow 4-5 weeks for delivery.

Prices and availability subject to change.

— Current catalog available upon request.

o

0

G

Q

J

3

J

a

o

0

G

Q

J

3

J

a

	2009_02_24_10_45_50.pdf
	2009_02_24_10_47_34.pdf
	2009_02_24_10_54_37.pdf
	2009_02_24_10_55_39.pdf
	Binder1.pdf
	first-front.jpg
	first-back.jpg

