
·
-~-~-~·-T-H-t-BA-N-TA-M--A-M-I G-A-L-18-RA-R-V------------\
_ " . -=.:-~ I----=--=-:....:..:....:..:....:..:..:.:-'--"-'-'..:....::....:.c......::..:.=.~~ ___________ \

BANTAM
CO MPUTER

800(5

3rdEdition

Commodore-Amiga, Inc.

Covers All
AmigaDOS
through 2.04

The
AmigaDOS

Manual
THIRD EDITION

The
AmigaDOS

Manual
THIRD EDITION

Commodore-Amiga, Inc.

BANTAM BOOKS

TORONTO • NEW YORK • LONDON • SYDNEY • AUCKLAND

THE AmigaDOS MANUAL, 3RD EDITION
A Bantam Book / July 1991

All rights reserved.
Copyright © 1991 IYy Commodore Capital, Inc.

Cover design © 1991 IYy Bantam Books, Inc.
Interior design by Nancy Sugihara

Composed IYy Williams Printing Company

This book may not be reproduced in whole or in part, IYy mimeograph or any
other means, without permission. For information address: Bantam Books.

Throughout this book, tradenames and trademarks of some
companies and products have been used, and no such uses

are intended to convey endorsement of or other affiliations with the book.

ISBN 0-553-35403-5

Published simultaneously in the United States and Canada.

Bantam Books are published by Bantam Books, a division of Bantam Doubleday Dell Publishing Group,
Inc. Its trademark, consisting of the words "Bantam Books" and the portrayal of a rooster, is Registered
in U.S. Patent and Trademark Office and in other countries. Marca Registrada, Bantam Books, Inc., 666
Fifth Avenue, New York, New York 10103.

PRINTED IN THE UNITED STATES OF AMERICA

o 9 8 7 6 5 4 3 2 1

Preface

This book, The AmigaDOS Manual, has three parts:

The User's Manual
The Developer's Manual
The Technical Reference Manual

The User's Manual contains information of interest to every Amiga user.
There are many more commands that AmigaDOS understands than are accessi
ble from the Workbench. If a user activates AmigaDOS Command Line
Interface, these new commands become accessible.

The Developer's Manual describes how to use AmigaDOS from within a pro
gram rather than from a command line interface. It also fully documents the
Amiga Linker.

The Technical Reference Manual describes the data structures that AmigaDOS
uses internally. It includes descriptions of how DOS disk data are stored, and
the format of the" object-files" that AmigaDOS uses. A developer or expert user
would find the information in this technical section very useful.

Together these three parts comprise the essential guide to AmigaDOS.

v

Acknovv ledglllents

The third edition of the AmigaDOS Manual was written by Dan Baker, Randell
Jesup, John Orr, John Toebes, and Isabelle Vesey and edited by Jono
Hardjowirogo and Dan Baker. The original manual was written by Tim King.

A special thanks to Bruce Barrett, Patria Brown, Pamela Clare, Alan Coslett,
Andy Finkel, Paul Floyd, Jessica King, Liz Laban, Rob Peck, Carolyn Scheppner,
and Keith Stobie. Without their generous contributions and suggestions this
manual would not have been possible.

Vll

Contents
The AmigaDOS Manual, 3rd Edition

Preface v

Acknowledgments Vll

PART I THE USER'S MANUAL 1

Introduction 3

How to Open a Shell Window 3

Workbench and CLI, Their Relationship and Differences 4

Chapter 1 Introducing AmigaDOS 5

About AmigaDOS Processes 5

Console Handling 6

Using the Filing System 8

Naming Files 8 . Using Directories 9 . Setting the Current

Directory 10 . Setting the Current Device 12 . Attaching a

Filenote 13· Understanding Device Names 13 . Using Directory

Conventions and Logical Devices 16

Using AmigaDOS Commands 19

Running Commands in the Background 20 . Executing Command

Files 20 . Directing Command Input and Output 21 . Interrupting

AmigaDOS 21

ix

x THE AMIGADOS MANUAL

Restart Validation Process 21

Commonly Used Commands 22

Using the Shell 22

Some AmigaDOS Commands 23

For a New User 23 . How to Begin 24 . Copying a Disk 24 . Formatting
a Disk 25 . Making a Disk Bootable 25 . Making a CLI Disk 26 .
Relabeling a Disk 26· Looking at the Directory 27· Using the LIST
Command 27 . Using the PROTECT Command 28 . Getting
Information About the File System 29 . Changing Your Current
Directory 29 . Setting the Date and Time 30 . Redirecting the Output of
a Command 30· Typing a Text File to the Screen 31 . Changing the
Name of a File 31 . Deleting Files 31 . Copying Files 32 . Creating a
New Directory 33 . Is My File Somewhere on This Disk? 34 .
Automating the Boot Sequence 35 . Assigning Disk 35

Closing Comments 37

Chapter 2 AmigaDOS Commands 39

Command Arguments and Command Options 39

Command Conventions 40

Format 41

Template 42

AmigaOOS Command Specifications 43
ADDBUFFERS 43 . ADDMONITOR 44 . ALIAS 45 . ASK 46 .
ASSIGN 47 . AUTOPOINT 51 . AVAIL 51 . BINDDRIVERS 52 .
BINDMONITOR 52 . BLANKER 53 . BREAK 54 . CALCULATOR 55 .
CD 56 . CHANGETASKPRI 57 . CLOCK 57· CMD 58 .
COLORS 59· COpy 60· CPU 62· DATE 64 . DELETE 65 . DIR 66·
DISKCHANGE 68 . DISKCOPY 69 . DISKDOCTOR 70 .
DISPLAY 71 . ECHO 73 . ED 74· EDIT 78· ELSE 82 . ENDCLI 82·
ENDIF 83 . ENDSHELL 83 . ENDSKIP 84 . EV AL 84 .
EXCHANGE 86· EXECUTE 87

Summary of DOT Commands 90

FAILAT 91 . FAULT 93· FILENOTE 93· FIXFONTS 94·
FKEY 94 . FONT 95 . FORMAT 96 . GET 97 . GETENV 97 .

CONTENTS

GRAPHICDUMP 98· ICONEDIT 99· ICONTROL 99· ICONX 100·

IF 100 ·IHELP 102 . INFO 103 ·INITPRINTER 104· INPUT 104·

INSTALL 105 ·IPREFS 106· JOIN 106 . KEYS HOW 107· LAB 107·
LIST 107· LOADWB 110· LOCK 111 . MAKEDIR 112 .

MAKELINK 112· MEMACS 113· MORE 118· MOUNT 119·
NEWCLI 119· NEWSHELL 120· NOCAPSLOCK 121 .

xi

NOFASTMEM 122· OVERSCAN 122· PALETTE 123 . PATH 123 .
POINTER 125 . PRINTER 125 . PRINTERGFX 126 . PRINTFILES 126·
PROMPT 127· PROTECT 128· QUIT 129 . RELABEL 130·
REMRAD 131 . RENAME 131 . RESIDENT 132 . RUN 134·

SAY 135 . SCREENMODE 136· SEARCH 136· SERIAL 138 .
SET 138 . SETCLOCK 139· SETDATE 140· SETENV 141 .
SETFONT 141 . SETMAP 142· SETPATCH 143 . SKIP 143·
SORT 144· STACK 145 . STATUS 146 . TIME 146· TYPE 147·

UNALIAS 147· UNSET 148 . UNSETENV 148· VERSION 148·
WAIT 149· WBCONFIG 150· WBPATTERN 151 . WHICH 152·

WHY 153

AmigaDOS Command Quick Reference 153

Chapter 3 AmigaDOS Error Messages 157

Chapter 4 Glossary 163

PART II THE DEVELOPER'S MANUAL 167

Chapter 5 Programming on the Amiga 169

Introduction 169

Program Development for the Amiga 169

Getting Started 169· Calling Resident Libraries 170

Creating an Executable Program 170

xii THE AMIGAOOS MANUAL

Running a Program Under the eLI 171
Initial Environment in Assembler 171 . Initial Environment in C 172·
Failure of Routines 172 . Terminating a Program 172

Running a Program Under the Workbench 173

Basic Input and Output Programming 173

Using File Handlers 177· Buffered I/O 179

Standard Command Line Parsing 181

Chapter 6 Calling AmigaDOS 187

Syntax 187
Register Value 187· Case 187· Boolean Returns 188· Values 188

AmigaDOS Functions 188
AbortPkt 188 . Add Buffers 189 . AddDosEntry 190· AddPart 191 .
AddSegment 192 . AllocDosObject 193 . AssignAdd 193·
AssignLate 194· AssignLock 195 . AssignPath 196 .
AttemptLockDosList 196 . ChangeMode 197· CheckSignal 198 .
Cli 199 . Close 199 . CompareDates 200 . CreateDir 201 .
CreateNewProc 201 . CreateProc 202 . CurrentDir 203 .
DateStamp 204 . DateToStr 205 . Delay 206 . DeleteFile 207·
DeleteVar 207· DeviceProc 208· DoPkt 209 . DupLock 210 .
DupLockFromFH 211 . EndNotify 212 . ErrorReport 212 . ExAll 213 .
Examine 216 . ExamineFH 217· Execute 218 . Exit 219 . ExNext 220 .
Fault 221 . FGetC 222 . FGets 223 . FilePart 224 . FindArg 225 .
FindCliProc 225 . FindDosEntry 226 . FindSegment 227 .
FindVar 228' Flush 228· Format 229' FPutC 230' FPuts 231 .
FRead 231 . FreeArgs 232 . FreeDeviceProc 233 . FreeDosEntry 233 .
FreeDosObject 234 . FWrite 235 . GetArgStr 235 .
GetConsoleTask 236 . GetCurrentDirName 236 . GetDeviceProc 237·
GetFileSysTask 238 . GetProgramDir 239 . GetProgramName 239·
GetPrompt 240 . GetVar 241 . Info 242· Inhibit 243 . Input 243 .
InternalLoadSeg 244 . InternalUnLoadSeg 245 . IoErr 246 .
IsFileSystem 247· IsInteractive 247 . LoadSeg 248 . Lock 249 .
LockDosList 249 . LockRecord 250 . LockRecords 251 .
MakeDosEntry 252 . MakeLink 253 . MatchEnd 254 . MatchFirst 254 .
MatchNext 256· MatchPattern 257· MatchPatternNoCase 257·

CONTENTS xiii
------ - ----- ---------

MaxCli 258 . NameFromFH 259 . NamFromLock 259 .

NewLoadSeg 260 . NextDosEntry 261 . Open 262 .

OpenFromLock 263 . Output 263 . ParentDir 264 . ParentOfFH 265 .

ParsePattern 265 . ParsePatternNoCase 266 . Path Part 267 .

PrintFault 268 . PutStr 268 . Read 269 . ReadArgs 270 .

ReadItem 272 . ReadLink 273 . Relabel 274 . RemAssignList 275 .

RemDosEntry 275 . RemSegment 276 . Rename 277· ReplyPkt 277·

RunCommand 278 . SameDevice 279 . SameLock 280 . Seek 280 .

SelectInput 281 . SelectOutput 282 . SendPkt 282 . SetArgStr 283 .

SetComment 284 . SetConsoleTask 284 . SetCurrentDirName 285 .

SetFileDate 286 . SetFileSize 286 . SetFileSysTask 287 . SetIoErr 288 .

SetMode 288 . SetProgramDir 289 . SetProgramName 290 .

SetPrompt 290· Set Protection 291 . SetVar 292 . SetVBuf 293 .

SplitName 294 . StartNotify 295 . StrToDate 296 . StrToLong 297·

SystemTagList 298 . UnGetC 299 . UnLoadSeg 300 . UnLock 301 .

UnLockDosList 302 . UnLockRecord 302· UnLockRecords 303 .

VFPrintf 304 . VFWritef 304 . VPrintf 305 . WaitForChar 306 .

WaitPkt 307 . Write 308 . WriteChars 308

AmigaOOS Function Quick Reference 310

Chapter 7 The Linker 315

Introduction 315

Using the Linker 316

Command Line Syntax 317· WITH Files 318 . Errors and Other

Exceptions 320 . MAP and XREF Output 320

Overlaying 321

OVERLAY Directive 321 . References to Symbols 324·

Cautionary Points 325

Error Codes and Messages 325

XIV THE AMIGADOS MANUAL
--- - ----- ---

Chapter 8 AmigaDOS Device Input and Output 327

AmigaDOS Devices 328

Communicating with AmigaDOS Devices 331

------- --- ---~ - -------

PART III THE TECHNICAL REFERENCE MANUAL 333
--------- ---~- - ---

Chapter 9 The Filing System 335

AmigaDOS File Structure 335

Root Block 336

FFS Root Block 338

User Directory Blocks 341

Hashing Algorithm 342 . FFS User Directory Blocks 344

File Header Block 345

OFS and FFS File Header Block 346 . Hard and Soft Links 346

File List Block 347

OFS and FFS File List Block 347

Data Block 348

OFS Data Block 349 . FFS Data Block 349

Chapter 10 Amiga Binary File Structure 351

Introduction 351

Terminology 351

Object File Structure 353

-- ----------

hunk_unit (999/3E7) 354 . hunk_name (1000/3E8) 355 . hunk_code
(1001/3E9) 355 . hunk_data (1002/3EA) 356 . hunk_bss
(1003/3EB) 357· hunkJeloc32 (1004/3EC) 357 . hunkJeloc32short
(1020/3FC) 358 . hunk_reloc16 (1005/3ED) 359 . hunk_reloc8
0006/3EE) 359' hunk_dreloc32 (1015/3F7) 359 . hunk dreloc16

CONTENTS

(1016/3F8) 359 . hunk_dreloc8 (1017/3F9) 359 . hunk ext

(1007/3EF) 360 . hunk_symbol (1008/3FO) 362 . hunk_debug

(1009/3F1) 363· hunk_end (l01O/3F2) 364

Load Files 364

hunk_header (10ll/3F3) 365 . hunk_overlay (l013/3F5) 367·
hunk_break (l014/3F6) 367

Examples 368

Amiga Library File Structure 371

Example Library File 372 . The New Library File Structure 373 .

hunk_lib (l019/3FB) 373 . hunk_index (l020/3FC) 373 . Example of

hunk_lib 375 . Example of hunk_index 375

Chapter 11 AmigaDOS Data Structures 381

Introduction 381

Process Data Structures 382

Redirecting System Requesters 386

DOS Library 387

Info Substructure 389

Memory Allocation 392

Segment Lists 393

File Handles 393

Locks 394

AmigaDOS Packets 395

Packet Types 397

Basic Input/Output 399 . Directory/File Manipulation/

Information 403 . Volume Manipulation/Information 416 . Handler

Maintenance and Control 417 . Handler Internal 420 . Obsolete

Packets 421 . Console Only Packets 421 . Summary of Defined Packet

Numbers 421

Using Packets Directly 424

xv

xvi THE AMIGADOS MANCAL
-------------------------- -------------------

Chapter 12 Additional Information for the
Advanced Developer 429

Hunk Overlay Table--Overview 430

Designing an Overlay Tree 430 . Describing the Tree 431

Creating a New Device to Run Under AmigaDOS 434

Making New Disk Devices 435

Using AmigaDOS Without Workbench/Intuition 435

Index 437

Part I

THE USER'S
MANUAL

Introduction

This manual describes the AmigaDOS and its commands. The Command Line
Interpreter (CLI) reads AmigaDOS commands typed into a CLI window and
translates them into actions performed by the computer. In this sense, the CLI is
similar to more "traditional" computer interfaces: you type in commands and
the interface displays text in return.

How to Open a Shell Window

To activate the CLI, also known as the Shell, boot the Amiga, and use the mouse
to select the Workbench disk icon. Or, if you are using an Amiga with pre
installed hard disk software, use the mouse to select the system 2.0 icon. When
the Workbench window opens, select the Shell icon (a box containing "1>"). A
Shell window will open.

To use the Shell, select the Shell window and type the desired AmigaDOS
commands. The Shell window may be sized and moved just like most others.
To close the Shell window, type "ENDSHELL", or click on the close gadget in
the upper-left-hand corner of the window.

3

4 THE USER'S MANUAL

Workbench and eLI, Their Relationship and
Differences
Type "DIR" to display a list of files (and directories) in the current disk directo
ry. This is a list of files that makes up your Workbench. You may notice that
there are more files in this directory than there are icons on the Workbench.
Workbench only displays file "X" if that file has an associated "X.info" file.
Workbench uses the ".info" file to manipulate the icon.

For example, the diskcopy program has two files. The file "Diskcopy" con
tains the program and "Diskcopy.info" contains the Workbench information
about it. In the case of painting data files like "mount. pic" the file
"mount.pic.info" contains icon information and the name of the program
(default) that should process it (GraphiCraft). In this case, when the user
"opens" the data file (mount.pic) Workbench runs the program and passes the
data file name (mount.pic) to it.

AmigaDOS subdirectories correspond to Workbench drawers. Random
access block devices such as disks (DFO:) correspond to the disk icons you have
seen.

Not all programs or commands can be run under both the Workbench and
the Shell environment. Many of the AmigaDOS commands described in
Chapter 2 of this manual can be run only from the Shell.

Throughout this book, the terms "CLI" and "Shell" are used to refer to the
special window where you can type in AmigaDOS commands.

Chapter 1

Introd ueing AmigaDOS

This chapter provides a general overview of the AmigaDOS operating system,
including descriptions of terminal handling, the directory structure, and com
mand use. At the end of the chapter, you'll find a simple example session with
AmigaDOS.

About AmigaDOS Processes
AmigaDOS is a multitasking disk operating system designed for the Amiga.

You normally run AmigaDOS for a single user. The multitasking facility lets
many jobs take place simultaneously. You can also use the multitasking facility
to suspend one job while you run another.

Each AmigaDOS process represents a particular process of the operating sys
tem-for example, the filing system. Only one process is running at a time,
while other processes are either waiting for something to happen or have been
interrupted and are waiting to be resumed. Each process has a priority associat
ed with it, and the process with the highest priority that is free to run does so.
Processes of lower priority run only when those of higher priority are waiting
for some reason-for example, waiting for information to arrive from the disk.

The standard AmigaDOS system uses a number of processes that you did not
start, for example, the process that handles the serial line. These processes are
known as system processes. Other system processes handle the console and the
filing system on a disk drive. If the hardware configuration contains more than
one disk drive, there is a process for each drive.

AmigaDOS provides a process that you can use, called a Command Line
Interface or Shell. There may be several Shell processes running simultaneous-

5

6 THE USER'S MANUAL

ly, numbered from 1 onward. The Shell processes read commands and then
executes them. To make additional Shell processes, you use the NEWSHELL or
RUN commands. To remove a Shell process use the ENDSHELL command.
(You can find a full description of these commands in Chapter 2.)

Console Handling
You can direct information that you enter at the terminal to a Command Line
Interface (Shell) that tells AmigaDOS to load a program, or you can direct the
information to a program running under that Shell. In either case, a console (or
terminal) handler processes input and output. This handler also performs local
line editing and certain other functions. You can type ahead as many as 512
characters-the maximum line length.

To correct mistakes, you press the BACKSPACE key. This erases the last
character you typed. To rub out an entire line, hold down the CTRL key while
you press X. This control combination is referred to from this point on in the
manual as CTRL-X. You may also use the left and right cursor keys to move
within the command line to insert or remove characters if you make a mistake.

You can also search for the most recent occurrence of a specific command by
typing the command line, or the beginning of it, then pressing Shift-up cursor
(or Ctrl-R). For instance, if you type DIR and press Shift-up cursor, you will be
returned to the last command to perform a DIR of any directory. Pressing Shift
down cursor moves you to the bottom of the history buffer, leaving the cursor
on a blank line.

In addition to command line editing, the Shell also provides command histo
ry, which allows you to recall previously-entered command lines, edit them,
and re-enter them. This is useful when you want to repeat a command or enter
several very similar commands.

The Shell uses a 2K command-line buffer to retain command lines. The exact
number of lines varies depending on lengths of the lines actually stored. When
the buffer fills up, the oldest lines are lost. You access lines in the buffer through
the up and down cursor keys:

up cursor

down cursor

Moves backward in the history buffer
(earlier lines).
Moves forward in the history buffer
(later lines).

If you type anything, AmigaDOS waits until you have finished typing before
displaying any other output. Because AmigaDOS waits for you to finish, you
can type ahead without your input and output becoming intermixed.

INTRODUCING AMIGADOS 7

AmigaDOS recognizes that you have finished a line when you press the
RETURN key. You can also tell AmigaDOS that you have finished with a line
by cancelling it. To cancel a line, you can either press CTRL-X or press
BACKSPACE until all the characters on the line have been erased. Once
AmigaDOS is satisfied that you have finished, it starts to display the output
that it was holding back. If you wish to stop the output so that you can read it,
simply type any character (pressing the space bar is the easiest), and the output
stops. To restart output, press BACKSPACE, CTRL-X, or RETURN. Pressing
RETURN causes AmigaDOS to try to execute the command line typed after the
current program exits.

AmigaDOS recognizes CTRL-\ as an end-of-file indicator. In certain circum
stances, you use this combination to terminate an input file. (For a circumstance
when you would use CTRL-\, see "Understanding Device Names," below.)

If you find that strange characters appear on the screen when you type any
thing on the keyboard, you have probably pressed CTRL-O by mistake.
AmigaDOS recognizes this control combination as an instruction to the console
device (CON:) to display the alternative character set. To undo this condition,
you press CTRL-N. Any further characters should then appear as normal. You
could press ESC-C to reset the console. This clears the screen and displays nor
mal text.

The table below summarizes the editing capabilities of the Amiga's Shell
interface.

left cursor
right cursor
Shift-left cursor
Shift-right cursor
Backspace
Del
Ctrl-H
Ctrl-M
Ctrl-J
Ctrl-W
Ctrl-X
Ctrl-K

Ctrl-Y
Ctrl-U

Space bar (or any
printable character)

Shell Editing Commands
Moves cursor one character to the left.
Moves cursor one character to the right.
Moves cursor to the beginning of the line.
Moves cursor to the end of the line.
Deletes the character to the left of the cursor.
Deletes the character highlighted by the cursor.
Deletes the last character (same as Backspace).
Processes the command line (same as Return).
Adds a line feed.
Deletes the word to the left of the cursor.
Deletes the current line.
Deletes everything from the cursor forward
to the end of the line.
Replaces the characters deleted with Ctrl-K.
Deletes everything from the cursor backward
to the start of the line.
Suspends output (stops scrolling).

8

Backspace
Ctrl-C

Ctrl-O

Ctrl-S
Ctrl-Q
Ctrl- \

THE USER'S MANUAL

Resumes output (continues scrolling).
Sends a BREAK command to the current
process (halts the process).
Sends a BREAK command to the current
script (halts the script).
Suspends output.
Resumes output if it was suspended with Ctrl-S.
Closes the Shell window.

Finally, AmigaOOS recognizes all commands and arguments typed in either
upper or lower case. AmigaOOS displays a filename with the characters in the
case used when it was created, but finds the file no matter what combination of
cases you use to specify the filename.

Using the Filing System
This section describes the AmigaOOS filing system. In particular, it explains
how to name, organize, and recall your files.

A file is the smallest named object used by AmigaOOS. The simplest identifi
cation of a file is by its filename, discussed below in "Naming Files." However,
it may be necessary to identify a file more fully. Such an identification may
include the device or volume name, and/or directory name(s) as well as the
filename. These will be discussed in following sections.

Naming Files
AmigaOOS holds information on disks in a number of files, named so that you
can identify and recall them. The filing system allows filenames to have up to
30 characters, where the characters may be any printing character except slash
(j) and colon (:). This means that you can include space(), equals (=), plus (+),
and double quote ("), all special characters recognized by the CLI, within a file
name. However, if you use these special characters, you must enclose the entire
filename within double quotes. To introduce a double quote character within a
filename, you must type an asterisk (*) immediately before that character. In
addition, to introduce an asterisk, you must type another asterisk. This means
that a file named

A*B = e"

should be typed as follows:

INTRODUCING AMIGAOOS 9

A**B = C*""

for the CLI to accept it.
Note: This use of the asterisk is in contrast to many other operating systems

where it is used as a universal wild card. An asterisk by itself in AmigaOOS
represents the keyboard and the current window. For example,

COpy filename to *

copies the filename to the screen. On the Amiga, the universal wild card is #7.
When spaces are used within a file, directory, or device name, quotes are

required when accessing the name. For example, copy "dfO:My file" to ram.
A void spaces before or after filenames because they may cause confusion.

U sing Directories
The filing system also allows the use of directories as a way to group files
together into logical units. For example, you may use two different directories
to separate program source from program documentation, or to keep files
belonging to one person distinct from those belonging to another.

Each file on a disk must belong to a directory. An empty disk contains one
directory, called the root directory. If you create a file on an empty disk, then
that file belongs to this root directory. However, directories may themselves
contain further directories. Each directory may therefore contain files, or yet
more directories, or a mixture of both. Any filename is unique only within the
'directory it belongs to, so that the file "fred" in the directory "bill" is a com
pletely different file from the one called "fred" in the directory "mary".

This filing structure means that two people sharing a disk do not have to
worry about accidentally overwriting files created by someone else, as long as
they always create files in their own directories.

I WARNING: When you create a file with a filename that already eXiS~S'
AmigaOOS deletes the previous contents of that file. No message to that
effect appears on the screen.

You can also use this directory structure to organize information on the
disk, keeping different sorts of files in different directories.

-------- -----------

An example might help to clarify this. Consider a disk that contains two
directories, called "bill" and "mary." The directory "bill" contains two files,
called "text" and "letter". The directory "mary" contains a file called "data" and

10 THE USER'S MANU AL

two directories called "letter" and "invoice". These sub-directories each contain
a file called "junI8". Figure I-A represents this structure as follows:

ROOT

I
-I

BILL MARY

I I
I I

TEXT LETTER DATA LETTER INVOICE

I I
JUN18 JUN18

Figure I-A.
Using directory structure.

Note: The directory "bill" has a file called "letter", while the directory
"mary" contains a directory called "letter". However, there is no confusion here
because both files are in different directories. There is no limit to the depth that
you can "nest" directories.

To specify a file fully, you must include the directory that owns it, the direc
tory owning that directory, and so on. To specify a file, you give the names of
all the directories on the path to the desired file. To separate each directory
name from the next directory or filename, you type a following slash (j). Thus,
the full specification of the data files on the disk shown in Figure I-A above is as
follows:

bill/text
billiletter
mary/data
mary/letter/jun18
mary/invoice/jun18

Setting the Current Directory
A full file description can get extremely cumbersome to type, so the filing sys
tem maintains the idea of a current directory. The filing system searches for
files in this current directory. To specify the current directory, you use the CD
(~urrent Qirectory) command. If you have set "mary" as your current directo
ry, then the following names would be sufficient to specify the files in that
directory:

data

letter/jun18

invoice/jun18

INTRODUCING AMIGADOS 11

You can set any directory as the current directory. To specify any files within
that directory, simply type the name of the file. To specify files within subdirec
tories, you need to type the names of the directories on the path from the cur
rent directory specified.

All the files on the disk are still available even though you've set up a current
directory. To instruct AmigaDOS to search through the directories from the root
(top level) directory of a volume (disk or partition), you type a colon (:) at the
beginning of the file description. Thus, when your file description has the cur
rent directory set to "mary", you can also obtain the file "data" by typing the
description ":mary / data". Using the current directory method simply saves
typing, because all you have to do is specify the filename "data".

To obtain the other files on the disk, first type ":bill/ text" and ":bill/letter",
respectively. Another way might be to CD or type / before a filename. Slash
does not mean "root" as in some systems, but refers to the directory above the
current directory. AmigaDOS allows multiple slashes. Each slash refers to the
level above. So a Unix™ . ./ is a / in AmigaDOS. Similarly, an MS-DOSTM .. \ is a
/ in AmigaDOS. Thus, if the current directory is ":mary /letter", you may speci
fy the file ":mary linvoice/junIB" as "/invoice/junIB". To refer to the files in
": bill", you could type:

CD : bill

or

CD / /bill

Then you could specify any file in "bill" with a single filename. Of course, you
could always use the 11 feature to refer directly to a specific file. For example,

TYPE //bill/letter

displays the file without your first setting "bill" as the current directory. To go
straight to the root level, always type a colon (:) followed by a directory name.
If you use slashes, you must know the exact number of levels back desired.

12 THE USER'S MANUAL

Setting the Current Device
Finally, you may have many disk drives available. Each disk device has a name,
in the form DFn (for example, DFl), where the "n" refers to the number of the
device. (Currently, AmigaDOS accepts the device names DFO to DF3.) Each
individual disk is also associated with a unique name, known as a volume
name (see below for more details).

In addition, the logical device SYS: is assigned to the disk you started the sys
tem up from. You can use this name in place of a disk device name (like DFO:).

The current directory is also associated with a current drive, the drive where
you may find the directory. As you know, prefacing a file description with a
colon serves to identify the root directory of the current drive. However, to give
the root directory of a specific drive, you precede the colon with the drive
name. Thus, you have yet another way of specifying the file "data" in directory
"mary", that is "DFl:mary/data". This assumes that you have inserted the disk
into drive DFl. So, to reference a file on the drive DFO called "project-report" in
directory "peter", you would type "DFO:peter / project-report", no matter which
directory you had set as the current one.

Note: When you refer to a disk drive or any other device, on its own or with a
directory name, you should always type the colon, for example, DF1:.

Figure 1-8 illustrates the structure of a file description. Figure l-C gives some
examples of valid file descriptions.

I Left of the:

Volume name

Right of the:

Directory name
or

Filename I
'. Device name

or

Figure I-B.
The structure of a file description.

Figure l-C.

SYS:commands
DFO:bili
DF1 :mary/letter
DF2:mary/letter/jun18
DOC:report/section 1/figures
FONTS:siliy-font
C:cis

Examples of file descriptions.

Right of a/

Subdirectory name
or

Filename

INTRODUCING AMIGAOOS 13

To gain access to a file on a particular disk, you can type its unique name,
which is known as the disk's volume name, instead of the device name. For
instance, if the file is on the disk "MCC", you can specify the same file by typ
ing the name "MCCpeter/project-report". You can use the volume name to
refer to a disk regardless of the drive it is in. You assign a volume name to a
disk when you format it (for further details, see "FORMAT" in Chapter 2). You
can also change the volume name using the RELABEL command.

A device name, unlike a volume name, is not really part of the name. For
example, AmigaDOS can read a file you created on DFO: from another drive,
such as DF1:, if you place the disk in that drive, assuming of course that the
drives are interchangeable. That is, if you create a file called "bill" on a disk in
drive DFO:, the file is known as "DFO:bill". If you then move the disk to drive
DF1:, AmigaDOS can still read the file, which is then known as "DF1:bill".

Attaching a Filenote

Although a filename can give some information about its contents, it is often
necessary to look in the file itself to find out more. AmigaDOS provides a sim
ple solution to this problem. You can use the command called FILENOTE to
attach an associated comment. You can make up a comment of up to 80 charac
ters (you must enclose comments containing spaces in double quotes).
Anything can be put in a file comment: the day of the file's creation, whether or
not a bug has been fixed, the version number of a program, and anything else
that may help to identify it.

You must associate a comment with a particular file-not all files have them.
To attach comments, you use the FILENOTE command. If you create a new file,
it will not have a comment. Even if the new file is a copy of a file that has a
comment, the comment is not copied to the new file. However, any comment
attached to a file which is overwritten is retained. To write a program to copy a
file and its comment, you'll have to do some extra work to copy the comment.
For details, see Chapter 6.

When you rename a file, the comment associated with it doesn't change. The
RENAME command only changes the name of a file. The file's contents and
comment remain the same regardless of the name change. For more details, see
"LIST" and "FlLENOTE" in Chapter 2.

Understanding Device Names

Devices have names so that you can refer to them by name. Disk names such as
DFO: are examples of device names. Note that you may refer to device names,
like filenames, using either upper or lower case. For disks, you follow the
device name by a filename because AmigaDOS supports files on these devices.

14 THE USER'S MANUAL

Furthermore, the filename can include directories because AmigaOOS also sup
ports directories.

You can also create files in memory with the device called RAM:. RAM:
implements a filing system in memory that supports any of the normal filing
system commands.

Note: If you are running AmigaOOS 1.3 or an earlier version, RAM: requires
the library L:/ram-handler to be on the disk. (Under 2.0 the RAM-handler is in
the ROMs.)

Once the RAM: device exists, you can, for instance, create a directory to copy
all the commands into memory. To do this, type the following commands:

MAKEDIR ram:c
COpy sys:c TO ram:c
ASSIGN C: RAM:C

You could then look at the output with OIR RAM:. It would include the
directory "c" (orR lists this as c(dir).) This would make loading commands very
quick but would leave little room in memory for anything else. Any files in the
RAM: device are lost when you reset the machine.

AmigaOOS also provides a number of other devices that you can use instead
of a reference to a disk file. The following paragraphs describe these devices
including NIL:, SER:, PAR:, PRT:, CON:, and RAW:. In particular, the device
NIL: is a dummy device. AmigaOOS simply throws away output written to
NIL:. While reading from NIL:, AmigaOOS gives an immediate "end-of-file"
indication. For example, you would type the following:

EDIT abc TO nil:

to use the editor to browse through a file, while AmigaOOS throws away the
edited output.

You use the device called SER: to refer to any device connected to the serial
line (often a printer). Thus, you would type the following command sequence:

COpy xyz TO ser:

to instruct AmigaOOS to send the contents of the file "xyz" down the serial line.
Note that the serial device only copies in multiples of 400 bytes at a time.
Copying with SER: can therefore appear granular.

The device PAR: refers to the parallel port in the same way.
AmigaOOS also provides the device PRT: (for PRinTer). PRT: is the printer

you chose in the Preferences program. In this program, you can define your

INTRODUCING AMIGADOS 15

printer to be connected through either the serial or parallel port. Thus, the com
mand sequence:

COpy xyz TO PRT:

prints the file "xyz," no matter how the printer is connected.
All output sent to PRT: is translated through the printer driver selected in

Preferences. The printer driver will translate standard ANSI escape codes into
the specific code required by the printer. PRT: translates every linefeed charac
ter in a file to carriage return plus linefeed. Some printers, however, require
files without translation. To send a file with the linefeeds as just linefeeds, you
use PRT:RAW instead of PRT:.

AmigaDOS supports multiple windows. To make a new window, you can
specify the device CON:. The format for CON: is as follows:

CON:x/y/width/height/[title]

where "x" and "y" are coordinates, "width" and "height" are integers describ
ing the width and height of the new window, and "title", which is optional, is a
string. The title appears on the window's title bar. You must include all the
slashes (/), including the last one. Your title can include up to 30 characters
(including spaces). If the title has spaces, you must enclose the whole descrip
tion in double quotes (") as shown in the following example:

"CON:20110/3001l00/my window"

Under 2.0 and later versions of AmigaDOS, CON: windows have additional
special features. Refer to Chapter 8 for a complete description.

There is another window device called RAW:, but it is of Ii ttle use to the gen
eral user. (See Chapter 8 for further details.) You can use RAW: to create a raw
window device similar to CON:. However, unlike CON:, RAW: does no charac
ter translation and does not allow you to change the contents of a line. That is to
say, RAW: accepts input and returns output in exactly the same form that it was
originally typed. This means characters are sent to a program immediately
without letting you erase anything with the BACKSPACE key. You usually use
RAW: from a program where you might want to do input and output without
character translation.

WARNING: RAW: is intended for the advanced user. Do not use RAW:
experimentally.

16 THE USER'S MANUAL

There is one special name, which is ,. (asterisk). You use this to refer to the
current window, both for input or for output. You can use the COPY command
to copy from one file to another. Using ,., you can copy from the current win
dow to another window, for example,

COpy * TO CON:20/20/350/150/

from the current window to the current window, for example,
COpy * TO *

or from a file to the current window, for example,

COpy bill/letter TO *

AmigaDOS finishes copying when it comes to the end of the file. To tell
AmigaDOS to stop copying from ,., you must give the CTRL-\ combination.
Note that" is NOT the universal wild card.

Using Directory Conventions and Logical Devices
In addition to the aforementioned physical devices, AmigaOOS supports a vari
ety of useful logical devices. AmigaOOS uses these devices to find the files that
your programs require from time to time. (So that your programs can refer to a
standard device name regardless of where the file actually is.) All of these "logi
cal devices" may be reassigned by you to reference any directory.

The logical devices described in this section are as follows (Figure I-D):

Name

SYS:
C:
L:
S:
LlBS:
DEVS:
FONTS:

Figure I-D.
Logical devices.

Logical device name: SYS:

Description

System disk root directory
Commands directory
Library directory
Script directory
Directory for Open Library calls
Directory for Open Device calls
Loadable fonts for Open Fonts
Temporary workspace

Typical directory name: Workbench:

Directory

SYS:
SYS:C
SYS:L
SYS:S
SYS:LlBS
SYS:DEVS
SYS:FONTS
RAM:T

INTRODUCING AMIGADOS 17

"SYS" represents the SYStem disk root directory. When you first start up the
Amiga system, AmigaDOS assigns SYS: to the root directory name of the disk
in DFO:. If, for instance, the disk in drive DFO: has the volume name
Workbench, then AmigaDOS assigns SYS: to Workbench:. After this assign
ment, any programs that refer to SYS: use that disk's root directory.

Logical device name: C
Typical directory name: Workbench:c
'C' represents the ~ommands directory. When you type a command to the CLI
(DIR <co, for example), AmigaDOS first searches for that command in your
current directory. If the system cannot find the command in the current directo
ry, it then looks for "CDIR". So that, if you have assigned "C" to another direc
tory (for example, "Boot_disk:c"), AmigaDOS reads and executes from
"Boot_diskc/DIR" .

Logical device name: L:
Typical directory name: Workbench:l
ilL" represents the Library directory. This directory keeps the overlays for large
commands and nonresident parts of the operating system. For instance, the disk
based run-time libraries (Aux-Handler, Port-Handler, and so forth) are kept
here. AmigaDOS requires this directory to operate.

Logical device name: S:
Typical directory name: Workbench:s
liS" represents the Script directory. This directory contains command scripts
that the EXECUTE command searches for and uses. EXECUTE first looks for
the script (or batch) file in your current directory. If EXECUTE cannot find it
there, it looks in the directory that you have assigned S: to.

Logical device name: LIBS:
Typical directory name: Workbench:LIBS
The system looks here for the library if it is not already loaded in memory.

Logical device name: DEVS:
Typical directory name: Workbench:DEVS
Open Device calls look here for the device if it is not already loaded in memory.

Logical device name: FONTS:
Typical directory name: Workbench:FONTS
Open Fonts look here for your load able fonts if they are not already loaded in
memory.

18 THE USER'S MANUAL

Note: In addition to the above assignable directories, many programs open
files in the "T" directory. You use this directory to store temporary files.
Programs such as editors place their temporary work files, or backup copies of
the last file edited, in this directory. If you run out of space on a disk, this is one
of the first places you should look for files that are no longer needed.

When the system is first booted, AmigaDOS initially assigns C: to the :C
directory. This means that if you boot with a disk that you had formatted by
issuing the command:

FORMAT DRIVE DFO: NAME "My.Boot.Disk"

SYS: is assigned to "My.BootDisk". The "logical device" C: is assigned to the C
directory on the same disk (that is, My.Boot.Disk:c). Likewise, the following
assignments are made:

c:
L:
S:
LIBS:
DEVS:
FONTS:

My.Boot.Disk:c
My.Boot.Disk:l
My.Boot.Disk:s
My.Boot.Disk:libs
My.Boot.Disk:devs
My.Boot.Disk:fonts

If a directory is not present, the corresponding logical device is assigned to
the root directory.

If you have a non-bootable hard disk (here called DHO:) and you want to use
the system files on it, you must issue the following commands to the system:

ASSIGN SYS: DHO:
ASSIGN C: DHO:C
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN

L:
S:
LIBS:
DEVS:
FONTS:

DHO:L
DHO:S
DHO:LIBS
DHO:DEVS
DHO:FONTS

If your hard disk is bootable, you don't need to make these assigns since the
system handles it for you.

Please keep in mind that assignments are global to all Shell processes.
Changing an assignment within one window changes it for all windows.

If you want to use your own special font library, type:

ASSIGN FONTS: "Special font disk:rnyfonts"

INTRODUCING AMIGADOS 19

If you want your commands to load faster (and you have memory lito burn"),
type:

rnakedir rarn:c

copy sys:c rarn:c all

assign c: rarn:c

This copies all of the normal AmigaDOS commands to the RAM disk and
reassigns the commands directory so that the system finds them there. Another
way to speed up AmigaDOS commands is by making them resident. See the
description of the RESIDENT command in Chapter 2.

Using AmigaDOS Commands
An AmigaDOS command consists of the command name and its arguments, if
any. To execute an AmigaDOS command, you type the command name and its
arguments after the Shell prompt.

When you type a command name, the command runs as part of the
Command Line Interface (Shell). You can type other command names ahead,
but AmigaDOS does not execute them until the current command has finished.
When a command has finished, the current Shell prompt appears. In this case,
the command is running interactively.

The Shell prompt is initially n> where n is the number of the Shell process.
However, it can be changed to something else with the PROMPT command.
(For further details on the PROMPT command, see Chapter 2.)

WARNING: If you run a command interactively and it fails, AmigaDOS
continues to execute the next command you typed anyway. Therefore, it
can be dangerous to type many commands ahead. For example, if you
type

COpy a TO b
DELETE a

and the COPY command fails (perhaps because the disk is full), then
DELETE executes and you lose your file.

20 THE USER'S MANUAL

Running Commands in the Background

You can instruct AmigaDOS to run a command, or commands, in the back
ground. To do this, you use the RUN command. This creates a new Shell as a
separate process of the same priority. In this case, AmigaDOS executes subse
quent command lines at the same time as those that have been RUN. For
example, you can examine the contents of your directory at the same time as
sending a copy of your text file to the printer. To do this, type

RUN TYPE text file to PRT:

LIST

RUN creates a new Shell and carries out your printing while you list your direc
tory files on your original Shell window.

You can ask AmigaDOS to carry out several commands using RUN. RUN
takes each command and carries it out in the given order. The line containing
commands after RUN is called a command line. To terminate the command
line, press RETURN. To extend your command line over several lines, type
a plus sign (+) before pressing RETURN on every line except the last. For
example,

RUN JOIN text filel text file2 AS text file +

SORT text file TO sorted __ text +

TYPE sorted __ text to PRT:

If you want to start a command using RUN and then close the Shell window
from which it was launched, you will have to redirect input and output. To do
this use: RUN<NIL:>NIL: command.

Executing Command Files

You can also use the EXECUTE command to execute command lines in a file
instead of typing them in directly. The Shell reads the sequence of commands
from the file until it finds an error or the end of the file. If it finds an error,
AmigaDOS does not execute subsequent commands on the RUN line or in the
file used by EXECUTE, unless you have used the FAILAT command. See
Chapter 2 for details on the FAILAT command. The Shell only gives prompts
after executing commands that have run interactively.

INTRODUCING AMIGADOS 21

Directing Command Input and Output

AmigaOOS provides a way for you to redirect standard input and output. You
use the> and < symbols as commands. When you type a command, AmigaOOS
usually displays the output from that command on the screen. To tell
AmigaOOS to send the output to a file, you can use the> command. To tell
AmigaOOS to accept the input to a program from a specified file rather than
from the keyboard, you use the < command. The < and > commands act like
traffic cops who direct the flow of information. For example, to direct the out
put from the DATE command and write it to the file named "text_file", you
would type the following command line:

DATE > text file

If you want to redirect output to a file that already exists use ». For exam
ple, to direct the output of the TYPE command to a file that already exists use

TYPE »more_text original_text

The text stored in the file original _text will be appended to any text that is
already stored in the file my_text. Under 2.0 and later versions of AmigaOOS,
if you redirect output to a file using » and the file does not exist, then the file
will be created for you.

Interrupting AmigaDOS

AmigaOOS allows you to indicate four levels of attention interrupt with CTRL
C, CTRL-O, CTRL-E, and CTRL-F. To stop the current command from whatever
it was doing, press CTRL-C. In some cases, such as EDIT, pressing CTRL-C
instructs the command to stop what it was doing and then to return to reading
more EDIT commands. To tell the CLI to stop a command sequence initiated by
the EXECUTE command as soon as the current command being executed fin
ishes, press CTRL-O. CTRL-E and CTRL-F are only used by certain commands
in special cases. See Chapter 2 for details.

Note: It is the programmer's responsibility to detect and respond to these
interruption flags. AmigaOOS will not kill a program by itself.

Restart Validation Process
When you first insert a disk for updating, AmigaOOS creates a process at low
priority. This validates the entire structure on the disk. Until the restart process

22 THE USER'S MANUAL
------------------------- --------------------------

has completed this job, you cannot create files on the disk. It is possible, how
ever, to read files.

Older versions of AmigaDOS (1.3 and earlier) do some additional processing
when a new disk is inserted. When the restart process completes, AmigaDOS
checks to see if you have set the system date and time. To set the date and time,
you use the DATE command, the SETCLOCK command, or the TIME com
mand (see Chapter 2). If you do not specify the system date, AmigaDOS sets the
system date to the date and time of the most recently created file on the inserted
disk. This ensures that newer versions of files have more recent dates, even
though the actual time and date will be incorrect.

Under V1.3 and earlier versions of AmigaDOS, if you ask for the date and the
time before the validation is complete, AmigaDOS displays the date and time as
unset. You can then either wait for the validation to complete or use DATE to
enter the correct date and time.

Commonly Used Commands

This manual describes the various AmigaDOS commands. The Command Line
Interpreter (Shell) reads AmigaDOS commands typed into a Shell window and
translates them into actions performed by the computer. In this sense the Shell
is similar to more "traditional" computer interfaces: you type in commands and
the interface displays text in return.

Using the Shell

To use the Shell interface, select the Shell window and type the desired Shell
commands (described within this manual). The Shell window(s) may be
sized and moved just like many others. To close the Shell window, type "END
SHELL".

Not all programs or commands can be run under both the Workbench and
the Shell environment. Many of the AmigaDOS commands described in
Chapter 2 can be run only from the Shell.

Throughout this book, the terms "CLI" and "Shell" are used to refer to the
special window where you can type in AmigaDOS commands. Although the
terms are used to mean the same thing, there is a slight difference. Just keep in
mind that the CLI and the Shell both refer to the place where you can type in
AmigaDOS commands.

INTRODUCING AMIGADOS 23

Some AmigaDOS Commands
Although all of the commands that are available through the Shell are
explained in detail in Chapter 2 of this book, we have found that most users
will use very few of the advanced options. Therefore we have provided a sum
mary here showing various commands in their most common form.

The commands summarized below (along with the actual AmigaDOS com
mand name) ask AmigaDOS to do such operations as:

· Copy a disk (DISKCOPY)
· Format a new disk (FORMAT)
· Make a formatted disk bootable (INSTALL)
· Create a CLI disk
· Relabel a disk (RELABEL)
· Look at the directory of a disk (DIR)
· Get information about files (LIST)
· Prevent a file from accidental deletion (PROTECT)
· Get Information about a file system (INFO)
· Change a current directory (CD)
· Set the date and time (DATE)
· Redirect the output of a command (»

· Type a text file to the screen (TYPE)
· Rename a file (RENAME)
· Delete a file (DELETE)
· Create a new directory (MAKEDIR)
· Copy files on a dual-drive system (COpy)
· Copy files on a single-drive system (COPY)
· Find files on a disk (DIR OPT A)
· Do something automatically at boot time (using Startup-Sequence)
· Tell AmigaDOS where to look for certain things (ASSIGN)
· Open a new Shell window (NEWSHELL)
· Close an existing Shell window (ENDSHELL)

For a New User

For a new user, we suggest that you read and try each of these items in
sequence. Each command that is shown below leaves a test disk in a known
state so that the command that immediately follows will work exactly as
shown. Later, when you are more familiar with the system, the subsection titles
shown below will serve to refresh your memory.

24 THE USER'S MANUAL

How to Begin

Before you begin this section, be sure you have two blank, double-sided disks,
and your Workbench disk. Before you begin, write-protect your master disk,
and write-enable the blank disks. Most of the commands given below assume
that you have a single-drive system; however, for convenience of those with
dual-drive systems, the dual-drive version of the command is occasionally
given.

Commands that instruct AmigaOOS to execute are shown in the following
sections, indented from the left margin. After typing each command, press the
RETURN key to return control to AmigaOOS. Although the commands are all
shown in capital letters, this is simply to distinguish them from the rest of the
text. AmigaOOS will accept the commands in lower case as well as upper case.

In the sections that follow, the notations "dfO:" and "drive 0" refer to the disk
drive that is built into the Amiga. The notation "dfl:" refers to the first external
3Y.!-inch disk drive. (Some systems use "df2:" to refer to the external drive.)

You will occasionally see a semicolon on a command line that you are told to
type. What follows the semicolon is treated as a comment by AmigaOOS. Since
AmigaOOS ignores the rest of the line, you don't need to type the comment
along with the command. It is for your information only.

For most commands, you can get a very limited form of help by typing the
command name, followed by a question mark (?) and pressing RETURN. It
shows you the "template" of a command, containing the sequence of parame
ters it expects and the keywords it recognizes.

Copying a Disk

You can use this sequence to back up your system master disk or any other
disk.

For a one-disk system:

DISKCOPY FROM dfO: TO dfO:

For a two-disk system:

DISKCOPY FROM dfO: TO dfl:

Follow the instructions as they appear. For a single-drive system, you'll be
instructed to insert the master (FROM) disk. Then, as the copying progresses,
AmigaOOS asks you to insert the copy (TO) disk, swapping master and copy in
and out until all of the disk has been duplicated. For a two disk system, you'll

INTRODUCING AMIGADOS 25

be instructed to put the master disk into drive dfO: (the built-in drive) and the
copy disk onto which to copy into dfl: (the first external drive).

Remove your master disk and put your master disk in a safe place. Leave the
copy write-enabled so that you can store information on it. Insert the copy you
have just made into the built-in drive and reboot your system from the copy.
(See "Making a Disk Bootable," below.)

After the reboot, reenter the CLI mode again.

Formatting a Disk

To try this command, your Workbench or CLI disk copy should be in drive 0,
and you should have a blank disk available.

Sometimes rather than simply copy a disk, you'll want to prepare a data disk
for your system. Then later you can copy selected files to this data disk. Format
your second blank disk by using the FORMAT command:

FORMAT DRIVE dfO: NAME "AnyName"

Follow the instructions. You can format disks in either drive 0 (dfO:, built in to
your Amiga) or an external drive.

After the format is completed, wait for the disk activity light to go off and
remove the freshly formatted disk. Reinsert your Workbench. The formatted
disk can now be used to hold data files. It is not bootable, however.

Making a Disk Bootable

To try this command, your Workbench disk copy should be in drive 0, and you
should have your freshly formatted disk available.

A bootable disk is one that you can use to start up your Amiga following the
Kickstart process. You can change a formatted disk into a bootable disk by typ
ing the command:

INSTALL ?

Note: To use this command on a single-drive system, you MUST use the ques
tion mark! Otherwise AmigaDOS will try to do the install on the disk currently
in drive O.

AmigaDOS responds:

DRIVE/A, NO BOOT/S, CHECK/S

Remove your Workbench disk copy and insert the formatted disk. Then type:

26 THE USER'S MANUAL

dfD:

and press RETURN. AmigaDOS writes boot sectors to the disk in dfO:. Now, if
you wait until the disk activity light goes out, you can then perform a full reset
(CTRL-Amiga-Amiga). When the system reboots, you will go directly into the
CLI rather than into the Workbench.

Your formatted disk now contains a CLI and nothing else. This means that
although you see the interpreter, it can't perform any of the commands shown
in this section. A CLI needs several files before its commands can be performed.
All of the command files are located in the C directory of your master disk.

Making a eLI Disk

There is another way to make a bootable disk that gives you a more useful disk
in that it leaves the CLI command directories intact. Here is a step-by-step pro
cess to change a writable copy of a Workbench diskette into a CLI disk:

1. Copy your Workbench disk.

2. Open the Shell as described above.

3. Select the Shell window and type the command:

RENAME FROM s/startup-sequence TO s/NO-startup-sequence

Now if you wait for the disk activity light to go off and perform a full reset,
your Workbench disk copy will have become a CLI disk. To restore the
Workbench, perform the rename again, but with the name sequence reversed.
You see, if AmigaOOS can't find a file with the exact name "Startup-sequence"
in the "s" directory, it will enter command mode and wait for you to type a
command.

Relabeling a Disk

Before you try this command, your Workbench or CLI disk copy should be in
drive O.

If, after either copying or formatting a disk, you are not satisfied with the vol
ume name you have given it, you can change the name of the volume by using
the RELABEL command:

relabel dfD: DifferentName

INTRODUCING AMIGADOS 27

This command changes the volume of the disk in drive dfO: to "Different
Name."

Looking at the Directory

Before you try this command, your Workbench or CLI disk copy should be in
drive O.

You look at the contents of a disk with the command:

DIR or DIR dfO:

This lists the contents of your current directory. You can list the contents of a
different directory by specifying the pathname for that directory. For example,
the command:

DIR dfO:c or DIR c

lists the contents of the c(directory) on drive dfO. Directories are equivalent to
the drawers you see when the Workbench screen is visible.

You can look at the directory of a different disk unit, if you have one, by spec
ifying its name. For example:

DIR dfl:

lists the contents of a disk inserted in drive df1:.
You can even look at the directory of a disk that isn't currently in the drive by

specifying its volume name. For example, the contents of that freshly formatted
disk whose name we changed can be displayed by the command:

DIR DifferentName:

AmigaDOS will ask you to insert disk DifferentName into the drive so that DIR
can read it and report the contents of the directory. Don't do it yet, however,
because there are no files present for DIR to read. We'll add some files later.

Using the LIST Command

To try this command, your Workbench or CLI disk copy should be in drive O.
The DIR command tells you the names of files that are in your directory. The

LIST command provides additional information about those files. Type the
command:

28 THE USER'S MANUAL

LIST

AmigaOOS provides information about all files in the current directory,
including how large each file is, the protection flags for each file, whether it is a
file or a directory, and the date and time of its creation.

If you specify the name of a directory with LIST, it lists information about the
files within that directory:

LIST c

In the second column after the file name you will see the protection flags for
the file. The acronym "rwed" refers to protection flags, for read, write, execute,
and delete. When each flag is set, using the PROTECT command, a file is sup
posed to be readable, writable, executable, or deleteable.

U sing the Protect Command

To try this command, your Workbench or CLI disk copy should be in drive O.

This command protects (or unprotects) a file from being deleted accidentally.
Try the command:

DATE> myfile

PROTECT myfi e

LIST myfile

You will see that all of the protect-flags have been set to "--------". Now if you
try:

DELETE myfile

AmigaDOS responds

"Not Deleted - file is protected from deletion"

To reenable deletion of the file, type:

PROTECT myfile d

INTRODUCING AMIGADOS 29

For more information about file protection flags, see the discussion of the
PROTECT command in Chapter 2.

Getting Information About the File System

Your Workbench or CLI disk copy should still be in drive O. Type the command

INFO

It tells you how much space is used and how much is free on your disks,
whether they are read-only or read-write, and the name of the volume. You can
make more space on the disk by deleting files. You can change the name of the
volume by using the RELABEL command.

If you want to get information about a disk that isn't in your single-drive at
the moment, issue the command as

INFO ?

AmigaDOS responds

DEVICE:

AmigaDOS has loaded the INFO command from your CLI disk and shows
you the template for the command. The response "DEVICE:" says that you can
enter any device name to get information about it. But you don't have to type
anything other than a RETURN key to have it perform the command. Remove
your CLI disk and insert the disk on which you want INFO to operate. Wait for
the disk activity light to go on and off. Then press RETURN. AmigaDOS gives
you INFO about this other disk. This works for DIR as well as INFO.

Changing Your Current Directory

Until now, we have only stayed at the "root" or topmost hierarchical level of
the disk directory. You will find more information about the directory tree
structure in "Using Directories" earlier. To see the level at which you are cur
rently positioned in your directory tree, you use the command:

CD

To change to a different current directory, you tell the system which directory
is to become the current one. For example, when you did a DIR command on

30 THE USER'S MANUAL

dfO: the CLI disk you saw an entry "c(dir)". If you want to make this directory
the current one, you issue the command:

CD dfO:c

Now when you issue the command DIR, it shows the contents of this level of
the filing system. The command CD (alone) shows you the name of your cur
rent directory. You go up to the root directory (the top level) by specifying:

CD :

on the current volume (if you refer to your disks by volume name) or

CD dfO:

on the built-in drive.

Setting the Date and Time

You can set the AmigaDOS clock by using the DATE command:

DATE 12:00:00 12-oct-85

Now the system clock counts up from this date and time. If your system has a
battery-backed, real-time clock, you can set it using the DATE command as
described followed by the command:

SETCLOCK SAVE

The SETCLOCK SAVE command copies AmigaDOS time to the real-time
clock.

Redirecting the Output of a Command

Before you try this command, your Workbench or CLI disk should be in
drive O.

Normally the output of all commands goes to the monitor screen. You can
change where the system puts the output by using the redirect command ">".
The forward arrow symbol means send the output toward this output file
name. Here's an example:

DATE > datefile

INTRODUCING AMIGADOS 31

Execute the command so that you can use the datefile described below. This
command creates (or overwrites) a file named "datefile" in your current direc
tory.

Typing a Text File to the Screen

You can see the contents of a text file by using the TYPE command:

TYPE datefile

This command will display whatever you have in the specified file. If you
wish to stop the output momentarily to read something on the screen, press the
space bar. To restart it press the BACKSPACE key. If you wish to end the TYPE
command, hold down the CTRL key, and press the C key.

Changing the Name of a File

Before you try this command, your Workbench or CLI disk copy should be in
drive O.

You can change the name of a file by using the RENAME command:

RENAME FROM datefile TO newname

or

RENAME datefile newname

Now use TYPE to verify that the new name refers to the same contents.

TYPE newname

Notice that the alternate form of the command doesn't require that you use
the FROM and TO. Most of the AmigaOOS commands have an alternate form,
abbreviated from that shown in this tutorial section. The longer form has been
used primarily to introduce you to what the command does. Be sure to examine
the summary pages to familiarize yourself with the alternate command forms
that are available.

Deleting Files

To try this command, your Workbench or CLI disk should be in drive O.

32 THE USER'S MANUAL
---------- ----

You may be working on several versions of a program or text file, and even
tually wish to delete versions of that file that you don't need anymore.
The DELETE command lets you erase files and releases the disk space to
AmigaDOS for reuse.

Note: If you DELETE files, it is not possible to retrieve them. Be certain that
you really do wish to delete them.

Here is a sample command sequence, that creates a file using the redirection
command, types it to verify that it is really there, then deletes it.

DIR > directorystuff

TYPE directorystuff

DELETE directorystuff

TYPE directorystuff

To the final command in the above sequence, AmigaDOS responds:

Can't Open directorystuff

indicating that the file can't be found, because you deleted it.

Copying Files

Before you enter this command, your Workbench or CLI disk should be in
drive o.

On a dual-drive system, copying files is easy:

COPY FROM dfO:sourcepath TO dfl:destinationpath

or

COpy dfO:sourcepath dfl:destinationpath

On a single-drive system, copying files is a little more complex. You must
copy certain system files from your system diskette into the system memory.
This is also called the RAM: device, or ramdisk. Copy the file(s) to the ramdisk,
change your directory to the ramdisk, then copy from the ramdisk onto the des
tination disk. Here is a sample sequence.

Be sure your Workbench or CLI disk is in the internal disk drive. Issue the
commands:

INTRODUCING AMIGAOOS 33

COpy dfO:c/cd RAM:
COPY dfO:c/copy RAM:
CD RAM:

Insert the source data disk into the drive. (For this example, copy the
EXECUTE command from the Workbench or CLI disk, which is already in the
drive.) Type:

COpy dfO:c/execute ram:execute
or

COpy dfD:c/execute ram:

Remove the source disk, and insert the destination disk into the drive. The
destination disk can be any Amiga disk that has been formatted. Type:

COPY ram:execute dfD:execute

The EXECUTE command has now been copied from the source disk to the
destination disk.

Remove the destination disk and insert your CLI or Workbench disk again.
Type:

CD dfD:

and you are back where you started. The only other command you may want to
perform is:

DELETE RAM:cd RAM:copy RAM:execute

which releases the ramdisk memory to the system for other uses.

Creating aNew Directory

You can create a new directory (newdrawer) within the current directory by
using the MAKEDIR command:

MAKEDIR newdrawer

Now if you issue the OIR command, you will see that there is an entry for:

newdrawer (dir)

34 THE USER'S MANUAL

You can also use the RENAME command to move a file from one directory
(drawer) to another on the same disk:

MAKEDIR newdrawer
RENAME FROM newname TO newdrawer/newname

moves the file from the current directory into the newdrawer you have created.
To check that it has really been moved, issue the command:

DIR

Then type:

DIR newdrawer

AmigaDOS looks in the newdrawer, and shows you that the file named "new
name" is there.

Is My File Somewhere on This Disk?

Before you enter this command, your Workbench or CLI disk copy should be in
drive O.

Sometimes you wish to see everything on the disk, instead of only one direc
tory at a time. You can use the DIR command with one of its options:

DIR OPT A

which lists all directories and subdirectories on the disk. Keep in mind the
<space><BACKSPACE> combination to pause and restart the listing.

To get a closer look at the disk's contents, you might redirect the output to a
file:

DIR > mydiskdir ALL

Notice that the redirect-the-output command character and filename MUST
come before the list of options for the DIR command.

Now, if you wish, you can TYPE the file mydiskdir and press the space bar to
pause the listing. Use the RETURN key to resume the listing. Or, you can use
ED to view the file, as follows:

ED mydiskdir

INTRODUCING AMIGADOS 35

Use the cursor keys to move up and down in the file.
Use the key combination ESC then T <RETURN> to move to the top of the file.
Such a combination can be referred to as "ESC-T", meaning ESC followed by T.
Use the key combination ESC-B <RETURN> to move to the bottom of the file.
Use the key combination ESC-M then a number <RETURN> to move to a spe-

cific line number within the file.
Use the key combination ESC-Q <RETURN> to QUIT without changing the file

or
Use ESC-X <RETURN> to write any changes to your file back into the original

filename.

Automating the Boot Sequence

There is a file in the "s" subdirectory on your Workbench or CLI disk called
startup-sequence. This is a script file. It contains a sequence of CLI commands
that AmigaDOS performs whenever you reboot the system. Also in your
Workbench disk startup-sequence are LOADWB (load the Workbench pro
gram) and ENDCLI which basically leaves the Workbench program in control.
You can make up your own startup-sequence file using ED or MEMACS to cre
ate a custom version of an execute command sequence. The EXECUTE com
mand summary and tutorial section in Chapter 2 has details about various com
mands that you can have in this file. Note that startup-sequence can also be
used to auto-run a program.

WARNING: Take care to modify only a copy of your disk-never modi
fy the master disk-if you decide to change the startup-sequence. If you
are using AmigaOOS 2.0 or a later version, you should add commands
only to the s: user-startup file rather than the s: startup-sequence file.

Note: The 2.0 startup-sequence looks for a file called s:user-startup and exe
cutes it if one is found. Whenever possible, place all your startup additions and
assignments in a file called s:user-startup rather than modify the s:startup
sequence.

Assigning Disk

Before you enter this command, your Workbench or CLI disk copy should be in
drive O.

Occasionally, you might wish to change to a different disk and then continue
your work. For example, you may have booted the system using a Workbench

36 THE USER'S MANUAL

disk, then wish to change to a CLI disk. If the CLI disk has a directory on it that
contains the executable commands you want to perform, (for example, a c
directory), you can change to that disk by using the ASSIGN command.

If you don't use ASSIGN, you will have to swap disks to get commands done.
Here is an example. The intent is to change disks and begin using "mydisk:" as
the main disk. Before you begin, you must first create a disk called "mydisk".
To do this, make a copy of Workbench (refer to the instructions for copying a
disk given at the beginning of this section). Then use the RELABEL command
described earlier to change the name of the new copy to "mydisk".

CD rnydisk:

AmigaDOS responds "insert mydisk into any drive". Insert it, then type:

DIR

AmigaDOS prompts "insert Workbench [or whatever the boot disk name
was] in any drive". It knows, from boot time, that the DIR command is in the
boot disk, c directory. AmigaDOS reads the DIR command, then asks "insert
mydisk in any drive". Any other AmigaDOS command also results in the need
for a disk swap. To avoid this, use the ASSIGN command as follows:

ASSIGN c: rnydisk:c

AmigaDOS asks "insert mydisk into any drive". From now on, all commands
to AmigaOOS will be sought from the command (c) directory of mydisk and
AmigaDOS won't ask for the original disk back for simple commands.

Once you've done this, you'll probably want to type:

CD rnydisk:

There are other things that AmigaDOS can assign. If you issue the command

ASSIGN LIST

you will see the other things as well. If you run a program that requires a serial
device (modem, printer) or a parallel device (printer), AmigaDOS looks in the
directory currently assigned to DEVS: to locate the device. If all of the system
directories are on this new main disk, you can avoid having AmigaDOS ask
you to reinsert the original disk by providing a script file on your disks that

INTRODUCING AMIGADOS 37

reassigns all devices to that disk. The contents of this script file for a disk named
"mydisk" are as follows:

ASSIGN SYS: rnydisk:
ASSIGN S: rnydisk:s
ASSIGN DEVS: rnydisk:devs
ASSIGN L: rnydisk:l
ASSIGN FONTS: rnydisk:fonts
ASSIGN LIBS: rnydisk:libs

To create this script file, use the command:

COPY FROM * TO reassign

Then type the above ASSIGN lines. After you've typed the last line, enter the
key combination CTRL-\ which ends the file. The "*" stands for the keyboard
and current CLI window, so this method of creating a file is one possible alter
native to using ED or EDIT.

Once you have created the script file, you can run it by typing:

EXECUTE REASSIGN

Now all the ASSIGN that the system uses are set up for "mydisk" instead of the
original boot disk.

Closing Comments
Chapter 2 contains a reference section that shows the templates for each of the
commands in AmigaDOS. You can look at the description for each command to
find more information. Once you are familiar with the commands, and the
forms in which you can use them, the quick reference listing at the end of the
chapter will be useful to remind you of the commands that are available.

Chapter 2

AmigaDOS Commands

This chapter gives complete specifications of all the AmigaOOS 2.0 commands.
All the AmigaOOS commands have been improved, and several new com
mands have been added. Many commands are now internal (built into the
Shell) for speed, convenience, and reduced memory usage. This chapter
includes:

· Command conventions, an explanation of the symbols and abbreviations
used in the command descriptions

· Specifications for each command, including the Workbench and Preferences
programs

· A table of error messages

A Quick Reference list of the AmigaOOS commands is included at the end of
this chapter.

Command Arguments and Command Options
When you invoke an AmigaOOS command, you usually do more than type the
command name at a Shell prompt. Many commands require arguments or sup
port options that send the Amiga additional information about what you want
to do. For example, if you type:

1> DIR Utilities

39

40 THE USER'S MANUAL

you are telling the Amiga to generate a list of files and subdirectories stored in
the Utilities directory. In this command line, Utilities is a command argument.
However, if you typed:

1> DIR Utilities FILES

only a list of the files in the Utilities directory would be shown; subdirectories
would not be listed. Here, FILES is a command option.

Command Conventions
In the "Command Specifications" section, each AmigaDOS command is
explained following a standard outline:

Examples: When examples are given, the command and any screen output
are indented from the main text. A generic 1> prompt indicates
what should be typed at the Shell prompt. All command names
and arguments are capitalized for clarity. Case does not matter
when entering commands. To execute the command line, you
must press Return.

Format: All the arguments and options accepted by a command.

Path: The directory where the command is normally stored. For most com
mands this will be the C: directory. The exceptions are the Internal
commands which are copied into memory and the Workbench pro
grams.

Purpose: A short explanation of the command's function.

Specification: A description of the command and all of its arguments.

Template: A built-in reminder of the command's format. The template is
embedded in the program's code. If you type a command fol
lowed by a question mark (DIR ?), the template will appear on the
screen.

Remember, commands and arguments should be separated by spaces. (It does
not have to be just one space; multiple spaces are acceptable.) No other punctu
ation should be used unless it is called for in the syntax of the specific com
mand.

AMIGADOS COMMANDS 41

Format

Each AmigaDOS command is described by a Format listing and a command
Template. In Format listings, arguments are enclosed in different kinds of
brackets to indicate the type of argument. The brackets are not to be typed as
part of the command.

< > Angle brackets enclose arguments that must be provided. For instance,
<filename> means that you must enter the appropriate filename in that
position. Unless square brackets surround the argument (see below), the
argument is required. The command will not work unless it is specified.

[] Square brackets enclose arguments and keywords that are optional. They
will be accepted by the command but are not required.

{ } Braces enclose items that can be given once or repeated any number of
times. For example, {<args>} means that several items may be given for
this argument.

A vertical bar is used to separate options of which you can choose only
one. For example, [OPT R I SIRS] means that you can choose the R option,
the S option, or both (RS) options.

The format for the COpy command is:

COpy [FROM] {<namelpattern>} [TO]
[QUIET] [BUFIBUFFER = <n>J [CLONE]

<namelpattern> [ALL]
[DATE] [NOPRO] [COM]

The [FROM] keyword is optional. If it is not specified, the command reads the
filename or pattern to copy by its position on the command line.

The {<name I pattern>} argument must be provided. You must substitute
either a filename or pattern. The braces indicate that more than one argument
can be given.

The [TO] keyword is optional. If it is not specified, the command reads the
filename or device to copy to by its position on the command line.

The <name I pattern> argument must be provided. You can only specify one
destination.

The [ALL], [QUIET], [CLONE], [DATE], [NOPRO], and [COM] arguments
are optional.

The [BUF I BUFFER = <n>] argument is optional. If given, you can use either
BUF or BUFFER and a numerical argument. For instance, both BUF=5 and
BUFFER=5 are acceptable.

42 THE USER'S MANUAL

Template
The command Template is a more condensed command description than the
Format listing and is built into the system. If you type a question mark (?) after
a command, the Template will appear to remind you of the proper syntax.

In Template listings, command arguments and options are separated by com
mas and followed by a special code which indicates the type of argument. The
code is not to be typed as part of the command, it just tells you what kind of
argument the command takes. Here's a list of the codes:

/ A Always required. The argument must always be given.
/K Keyword required. The argument's keyword must be included along

with the argument. (Normally the keyword is optional.)
/5 Switch keyword. The argument works as a switch. You must type the

keyword in the command line to turn the switch on.
/N Number. The argument is numeric.
/M Multiple arguments are accepted. This is the Template equivalent of

braces. There is no limit on the number of possible arguments. Any
number is accepted. (The /M replaces the multiple-comma method of
indicating how many elements the command could operate on used in
earlier versions of AmigaDOS.)

/F Final argument. The string must be the final argument on the com
mand line. The remainder of the command line is taken as the desired
string. Quotation marks are not needed around the string, even if it
contains spaces.
An equals sign indicates that two different forms of the keyword are
equivalent. Either will be accepted. The equals sign is not typed as
part of the command.

For example, if you type in the command COPY?, the Template for the COpy
command will be displayed:

FROM/A/M,TO/A,ALL/S,QUIET/S,BUF=BUFFER/K/N,CLONE/S,
DATES/S,NOPRO/S,COM/S

FROM/ A/M indicates that the first argument must be given and multiple argu
ments are acceptable. TO/ A indicates that the second argument must always be
given. ALL/S, QUIET /5, CLONE/S, DATES/S, NOPRO/S, COM/S are switch
arguments. If the keyword is present in the line, the switch will be turned on.
BUF=BUFFER/K/N indicates that the argument is numeric UN). The argu
ment is optional but if given, must include both the keywordUK) and the argu
ment. Both BUF and BUFFER are acceptable keywords.

AMIGADOS COMMANDS

AmigaDOS Command Specifications

Format:
Template:
Purpose:
Path:

ADDBUFFERS

ADDBUFFERS <drive> [<n>]
DRIVEl A,BUFFERS/N
To command the file system to add cache buffers
C:ADDBUFFERS

43

Specification: ADD BUFFERS adds <n> buffers to the list of buffers available
for <drive>. Allocating additional buffers makes disk access significantly
faster. However, each additional buffer reduces free memory by approxi
mately 500 bytes. The default buffer allocation is 5 for floppy drives and
usually 30 for hard disks.

The number of buffers you should add depends on the amount of extra mem
ory available. There is no fixed upper limit, but adding too many buffers can
actually reduce overall system performance by taking radom access memory
(RAM) away from other system functions.

A buffer is a temporary storage area in memory.

If a negative number is specified, that many buffers are subtracted from the
current allocation. The minimum number of buffers is one; however, using only
one is not recommended.

Thirty buffers are generally recommended for a floppy drive in a 5I2K sys
tem. The optimal number for a hard disk depends on the type and size of your
drive. If you have the Commodore 2091 you should use the default value rec
ommended by the HDToolbox. (This value can be displayed by selecting the
Advanced Options gadget on the Partitioning screen.) As a general rule, you
can use 30 to 50 buffers for every megabyte of RAM in your system.

If only the <drive> argument is specified, ADDBUFFERS displays the num
ber of buffers currently allocated for that drive.
Examples: Add 25 buffers to drive DFI:.

1> ADDBUFF~RS DF1: 25
DF1: has 30 buffers

Display the number of buffers currently allocated to drive DFO:.

44 THE USER'S MANUAL

1> ADDBUFFERS DFO:
DFO: has 20 buffers

Format:
Template:

ADDMONITOR

ADDMONITOR NUM=%d NAME=%s
NUM/N/ A,NAME/ A,HBSTRT /K,HBSTOP /K,
HSSTRT /K,HSSTOP /K,VBSTRT /K,VBSTOP /K,
VSSTRT /K,VSSTOP /K,MINROW /K,MINCOL/K,
TOTROWS/K,TOTCOLS/K,BEAMCONO/K

Purpose: To inform the Amiga that a non-RGB-style monitor has been
added to your system

Path: SYS:System/ AddMonitor
Specification: ADDMONITOR must be run if you have attached an A2024 or

Multiscan monitor or a monitor that is different from your country's video
standard (PAL for NTSC countries, and vice versa).

AddMonitor takes two arguments: NUM and NAME. The acceptable values
are listed below:

NUM= NAME=
For an NTSC monitor 1 NTSC
For a PAL monitor 2 PAL
For a Multiscan 3 Multiscan
For an A2024 4 A2024

The additional options control special hardware features of the Amiga.
Certain graphics hardware may require these options in order to function cor
rectly. If so, options should be explained in the documentation accompanying
the hardware.

After using AddMonitor, you must use the ScreenMode editor to select the
new display mode. To have the system recognize your monitor on booting, drag
the appropriate icon from the MonitorStore drawer to the Monitors drawer.
Examples: If you've attached a Multiscan monitor, type:

1> ADDMONITOR NUM=3 NAME=Multiscan

If you've attached an A2024 monitor, type:

AMIGADOS COMMANDS 45

l>·ADDMONITOR NUM=4 NAME=A2024

You must then use the ScreenMode Preferences editor to select the appropriate
display mode for your monitor.

Format:
Template:
Purpose:
Path:

ALIAS

ALIAS [<name> 1 [<string> 1
NAME,STRING/F
To set or display command aliases
Internal

Specification: ALIAS permits you to create aliases, or alternative names, for
AmigaOOS commands. Using an alias is like replacing a sentence with a
single word. With ALIAS, you can abbreviate frequently used commands
or replace a standard command name with a different name.

When AmigaOOS encounters <name>, it replaces it with the defined
<string>, integrates the result with the rest of the command line, and attempts
to interpret and execute the resulting line as an AmigaDOS command. So
<name> is the alias and <string> is the command to be substituted for the alias.

ALIAS <name> displays the <string> that will be substituted for the alias.
ALIAS alone lists all current aliases.

Aliases are local to the Shell in which they are defined. If you create another
Shell with the NEWSHELL command, it shares the same aliases as its parent
Shell. However, if you create another Shell with the Execute Command menu
item, it will not recognize aliases created in your original Shell. To create a glob
al alias that will be recognized by all shells, insert the alias in the S:Shell-startup
file.

An alias must be at the beginning of the command line, and you can specify
arguments on the command line after the alias. However, you cannot use an
alias for a series of command arguments. For instance, you cannot create a
script using the LFORMAT option of the LIST command by creating an alias to
represent the LFORMA T argument.

You can substitute a filename or other instruction within an alias by placing
square brackets ([]) in the <string>. Any argument typed after the alias will be
inserted at the brackets. To remove an ALIAS, use the UNALIAS command.
Examples:

1> ALIAS dl DIR DF1:

46 THE USER'S MANUAL
-- - -- -----------

Typing dl results in a directory of the contents of the disk in OF1:, just as if you
had typed DIR OF1:.

1> ALIAS hex TYPE [] HEX NUMBER

creates an alias called hex that displays the contents of a specified file in hex
adecimal format. The brackets indicate where the filename will be inserted. If
you then typed:

1> hex Myfile

the contents of MyFile would be displayed in hexadecimal format with line
numbers.

Format:
Template:

ASK <prompt>
PROMPT/A

ASK

Purpose:
Path:

To obtain user input when executing a script file
Internal

Specification: ASK is used in scripts to write the <prompt> to the current
window, then wait for keyboard input. Valid responses are Y (yes), N (no),
and Return (no). If Y is pressed, ASK sets the condition flag to 5 (WARN). If
N is pressed, the condition flag is set to o. To check the response, an IF
statement can be used.

If the <prompt> contains spaces, it must be enclosed in quotation marks.
Example: Assume a script contained the following commands:

ASK Continue?
IF WARN

ECHO Yes
ELSE

ECHO No
ENDIF

When the ASK command is reached, Continue? will appear on the screen. If
Y is pressed, Yes will be displayed on the screen. If N is pressed, No will be dis
played.
See also: IF, ELSE, ENDIF, WARN

Format:

Template:

Purpose:

Path:

AMIGADOS COMMANDS 47

ASSIGN

ASSIGN [<name>:{dirl] [LIST] [EXISTS] [DISMOUNT]
[DEFER] [PATH] [ADD] [REMOVE] [VOLS] [DIRS] [DEVICES]

NAME,TARGET /M,LIST /S,EXISTS/S,DISMOUNT IS,
DEFER/S, PATH/S,ADD /S,REMOVE/S,VOLS/S,DIRS/S,
DEVICES/S

To control assignment of logical device names to file system
directories
C:ASSIGN

Specification: ASSIGN allows directories to be referenced via short, conve
nient logical device names rather than their usual names or complete paths.
ASSIGN gives an alternative directory name, much as ALIAS permits alter
native command names. The ASSIGN command can create, remove assign
ments, or list some or all current assignments.

If the <name> and {dirl arguments are given, ASSIGN will assign the given
name to the specified directory. Each time the assigned logical device name is
referred to, AmigaDOS will access the specified directory. If the <name> given
is already assigned to a directory, the new directory will replace the previous
directory. (Always be sure to include a colon after the <name> argument.)

If only the <name> argument is given, any existing ASSIGN of a directory to
that logical device is cancelled.

You can assign several logical device names to the same directory by using
multiple ASSIGN commands. You can assign one logical device name to several
directories by specifying each directory after the <name> argument or by using
the ADD option. When the ADD option is specified, any existing directory
assigned to <name> is not cancelled. Instead, the newly specified directory is
added to the assign list, and the system searches for both directories when
<name> is encountered. If the original directory is not available, ASSIGN will
be satisfied with the newly added directory.

To delete a name from the assign list, use the REMOVE option.
If no arguments are given with ASSIGN, or if the LIST keyword is used, a list

of all current assignments will be displayed. If the VOLS, DIRS, or DEVICES
switch is specified, ASSIGN limits the display to volumes, directories, or
devices, respectively.

When the EXIST keyword is given along with a logical device name,
AmigaDOS will search the ASSIGN list for that name and display the volume
and directory assigned to that device. If the device name is not found, the con
dition flag is set to 5 (WARN). This option is commonly used in scripts.

48 THE USER'S MANUAL

Normally, when the {did argument is given, AmigaDOS immediately looks
for that directory. If the ASSIGN commands are part of S:startup-sequence, the
directories need to be present on a mounted disk during the boot procedure. If
an assigned directory cannot be found, a requester appears asking for the vol
ume containing that directory. However, two new options, DEFER and PATH,
wait until the directory is actually needed before searching for it.

The DEFER option creates a "late-binding" ASSIGN. This assign only takes
effect when the assigned object is first referenced, rather than when the assign
ment is made. This eliminates the need to insert disks during the boot proce
dure that contain the directories that are assigned during the startup-sequence.
When the DEFER option is used, the disk containing the assigned directory is
not needed until the object is actually called on.

For example, if you assign FONTS: to DFO:Fonts with the DEFER option, the
system will associate FONTS: with whatever disk is in DFO: at the time FONTS:
is called. If you have a Workbench disk in DFO: at the time the FONTS: direc
tory is needed, the system will associate FONTS: with that particular
Workbench disk. If you later remove that Workbench disk and insert another
disk containing a Fonts directory, the system will specifically request the origi
nal Workbench disk the next time FONTS: is needed.

The PATH option creates a "nonbinding" ASSIGN. A nonbinding ASSIGN
acts like a DEFERred ASSIGN except that it is reevaluated each time the
assigned name is referenced. This arrangement prevents the system. from
expecting a particular volume in order to use a particular directory (such as the
situation described in the example above). For instance, if you assign FONTS: to
DFO:Fonts with the PATH option, any disk in DFO: will be searched when
FONTS: is referenced. As long as the disk contains a Fonts directory, it will sat
isfy the ASSIGN. You cannot assign multiple directories with the PATH option.

The PATH option is especially useful to users with floppy disk systems as it
eliminates the need to reinsert the original Workbench disk used to boot the
system. As long as the drive you have assigned with the PATH option contains
a disk with the assigned directory name, the system will use that disk.

WARNING: The DISMOUNT option (called REMOVE in V1.3) discon
nects a volume or device from the list of mounted devices. It does not free
up resources; it merely removes the name from the list. There is no way to
cancel a DISMOUNT without rebooting. DISMOUNT is primarily for use
during software development. Careless use of this option may cause a
software failure.

AMIGAOOS COMMANDS

Examples:

1> ASSIGN FONTS: MyFonts:Fontdir

assigns the system FONTS: directory to Fontdir on MyFonts:.

1> ASSIGN LIST

Volumes:

Ram Disk [Mounted]
Workbench2.0 [Mounted]
MyFonts [Mounted]

Directories:

CLIPS
ENV
T

ENVARC
SYS
C

S

L

FONTS
DEVS
LIBS

Devices:

Ram Disk:C1ipboards
Ram Disk:Env
Ram Disk:T
Workbench2.0:Prefs/Env-Archive
Workbench2.0:
Workbench2.0:C
Workbench2.0:S
Workbench2.0:L
MyFonts:Fontdir
Workbench2.0:Devs
Workbench2.0:Libs

PIPE AUX SPEAK RAM CON
RAW PAR SER PRT DFO DF1

shows a list of all current assignments.

1> ASSIGN FONTS: EXISTS
FONTS MyFonts:FontDir

49

is an inquiry into the assignment of FONTS:. AmigaDOS responds by showing
that FONTS: is assigned to the FontDir directory of the MyFonts volume.

50 THE USER'S MANUAL

1> ASSIGN LIBS: SYS:Libs BigAssem:Libs PDAssem:Libs

is a multiple-directory assignment that creates a search path containing three
Libs directories. These directories are searched in sequence each time LIBS: is
invoked.

1> ASSIGN DEVS: DISMOUNT

removes the DEVS: assignment from the system.

1> ASSIGN WorkDisk: DFO: DEFER

1> ASSIGN WorkDisk: EXISTS

WorkDisk <DFO:>

set up a late-binding assignment of the logical device WorkDisk:. The disk does
not have to be inserted in DFO: until the first time you refer to the name
WorkDisk:. Notice that ASSIGN shows DFO: enclosed in angle brackets to indi
cate that it is DEFERred. After the first reference to WorkDisk:, the volume
name of the disk that was in DFO: at the time will replace <DFO:>.

1> ASSIGN C: DFO:C PATH

1> ASSIGN C: EXISTS

C [DFO:C]

references the C directory of whatever disk is in DFO: at the time a command is
searched for. Notice that ASSIGN shows DFO:C in square brackets to indicate
that it is a nonbinding ASSIGN.

1> ASSIGN LIBS: ZCad:Libs ADD

adds ZCad:Libs to the list of directories assigned as LIBS:.

1> ASSIGN LIBS: ZCad:Libs REMOVE

removes ZCad:Libs from the list of directories assigned as LIBS:.

AMIGADOS COMMANDS 51

AUTOPOINT

Format: AUTOPOINT [CX_PRIORITY=<n>]
Template: CX_PRIORITY /K/N
Purpose: To automatically select any window the pointer is over
Path: Extras2.0:Tools/Commodities/ AutoPoint
Specification: When AUTOPOINT is run, any window that the pointer is over

is automatically selected. You do not need to click the selection button to
activate it.

The CX_PRIORITY=<n> argument sets the priority of AutoPoint in relation
to all the other Commodity Exchange programs. (This is the same as entering a
CX_PRIORITY=<n> Tool Type in the icon's Information window.) All the
Commodity Exchange programs are set to a default priority of O. If you specify
an <n> value higher than 0, AutoPoint takes priority over any other
Commodity Exchange program.

To exit AutoPoint when it has been started from a Shell, type Ctrl-E or use
the BREAK command.
Example:

1> AUTOPOINT

starts the AutoPoint program.

Format:
Template:
Purpose:
Path:

AVAIL

AVAIL [CHIP I FAST I TOTAL] [FLUSH]
CHIP /S,FAST /S,TOTAL/S,FLUSH/S
To report the amount of Chip and Fast memory available
C:AVAIL

Specification: A V AIL gives a summary of the system RAM, both Chip and
Fast. For each memory type, A V AIL reports the total amount, how much is
available, how much is currently in use, and the largest contiguous memory
block not yet allocated.

By using the CHIP, FAST and/ or TOTAL options, you can have A VAIL dis
play only the number of free bytes of Chip, Fast, or total RAM available, instead
of the complete summary. This value can be used for comparisons in scripts.
The FLUSH option causes all unused libraries and device modules to be
expunged from memory.

52

Examples:
1> AVAIL

Type Available
chip 233592
fast 341384
tot 574976

1> AVAIL CHIP
233592

THE USER'S MANUAL

In-Use
282272
182896
465168

Maximum
515864
524280

1040144

Largest
76792

197360
274152

MyDisplay would appear in the Choose Display Mode gadget of the
ScreenMode editor instead of Hires.

The Amiga uses two different types of RAM. Chip RAM is used for
graphics and sound data. Fast RAM is general-purpose RAM used by all
types of programs.

Format:
Template:
Purpose:
Path:

BINDDRIVERS

BIND DRIVERS
(none)
To bind device drivers to hardware
C:BINDDRIVERS

Specification: BINDDRIVERS is used to load and run device drivers for add
on hardware that is configured by the expansion library. These device
drivers must be in the SYS:Expansion directory for BINDDRIVERS to find
them.

BINDDRIVERS is normally placed in the Startup-sequence file. If drivers for
expansion hardware are in the Expansion directory, you must have a BIND
DRIVERS command in your Startup-sequence or the hardware will not be con
figured when the system is booted.

BINDMONITOR

Format: BINDMONITOR
Template: MONITORID/ A, MONITORNAME/ A
Purpose: To assign names to the different display modes

AMIGADOS COMMANDS 53

Path: SYS:System/BindMonitor
Specification: BIND MONITOR assigns names to the different display modes

supported by the graphics library. The acceptable arguments match the
Tool Types of the Mode_Names icon.

Acceptable BINDMONITOR Arguments
OxOOOOO Lores Ox00004 Lores-Interlaced
Ox08000 Hires Ox08004 Hires-Interlaced
Ox08020 SuperHires
Ox11000 NTSC:Lores
Ox19000 NTSC:Hires
Ox19020 NTSC:SuperHires
Ox21000 PAL:Lores
Ox29000 PAL:Hires
Ox29020 PAL:SuperHires
Ox31004 VGA-ExtraLores
Ox39004 VGA-Lores
Ox39024 Productivity
Ox41000 A2024 10Hz

Ox08024 SuperHires-Interlaced
Ox11004 NTSC:Lores-Interlaced
Ox19004 NTSC:Hires-Interlaced
Ox19024 NTSC:SuperHires-Interlaced
Ox21004 PAL:Lores-Interlaced
Ox29004 PAL:Hires-Interlaced
Ox29024 PAL:SuperHires-Interlaced
Ox31005 VGA-ExtraLores-Interlaced
Ox39005 VGA-Lores-Interlaced
Ox39025 Productivity Interlaced
Ox49000 A2024 15Hz

For instance, ROM recognizes Ox08000 as a 640 x 200 line display. However,
BindMonitor links Ox08000 with the name Hires. The names associated with the
display modes appear in the Choose Display Mode gadget of the ScreenMode
editor.
Example:

1> BINDMONITOR Ox08000MyDisplay

MyDisplay would appear in the Choose Display Mode gadget of the
ScreenMode editor instead of Hires.

Format:

Template:

Purpose:

BLANKER

BLANKER [SECONDS=<n>] [CX_POPKEY=<key (s»]
[CX_POPUP=<yes I no>] [CX_PRIORITY=<n>]
SECONDS/K/N,CX_POPKEY /K,CX]OPUP /K,CX_PRIORI
TY/K/N
To cause the monitor screen to go blank if no input has been
received within a specified period of time

54 THE USER'S MANUAL

Path: Extras2.0:Tools / Commodities / Blanker
Specification: BLANKER is a Commodity Exchange program that causes the

screen to go blank if no mouse or keyboard input has been received in the
specified number of seconds. The SECONDS=<n> argument allows you to
specify the number of seconds that must pass. The acceptable range is from
1 to 9999. Default is 60 seconds.

CX_POPKEY=<key(s»allows you to specify the hot key for the program. If
more than one key is specified, be sure to enclose the entire argument in
double-quotes (i.e., "CX_POPKEY=Shift FI").

CX_POPUP=no will prevent the Blanker window from opening. (By default
the program window opens when the command is invoked.)

CX_PRIORITY=<n> sets the priority of Blanker in relation to all other
Commodity Exchange programs. All the Commodity Exchange pro
grams are set to a default priority of O.

To kill Blanker when it is run through the Shell, press Ctrl-E.
Examples:

1> BLANKER SECONDS=45

The Blanker window will open, and 45 will be displayed inside its text gadget.
If no mouse or keyboard input is received during a 45-second interval, the
screen will go blank.

1> BLANKER CX_POPUP=no

The Blanker program will start. If no input is received within 60 seconds (the
default), the screen will go blank. The Blanker window will not open.

Format:
Template:
Purpose:
Path:

BREAK

BREAK <process> [ALL I C I 0 I ElF]
PROCESS/ A/N,ALLlS,C/S,D/S,E/S,F/S
To set attention flags in the specified process
C:BREAK

Specification: BREAK sets the specified attention flags in the <process> indi
cated. C sets the Ctrl-C flag, 0 sets the Ctrl-D flag, and so on. ALL sets all

AMIGADOS COMMANDS 55

the flags from Ctrl-C to Ctrl-F. By default, AmigaDOS only sets the Ctrl-C
flag.

The action of BREAK is identical to selecting the relevant process by clicking
in its window and pressing the appropriate Ctrl-key combination(s).

Ctrl-C is used as the default for sending a BREAK signal to halt a process. A
process that has been aborted this way will display ***BREAK in the shell win
dow. Ctrl-D is used to halt execution of a script file. Ctrl-E is used to exit
Commodity Exchange programs. Ctrl-F is not currently used.

Use the STATUS command to display the current process numbers.

Examples:

1> BREAK 7

sets the Ctrl-C attention flag of process 7. This is identical to selecting process 7
and pressing Ctrl-C.

1> BREAK 5 D

sets the Ctrl-D attention flag of process 5.

See also: STATUS

CALCULATOR

Format: CALCULATOR
Template: (none)
Purpose: To provide an on-screen calculator
Path: SYS:Utilities/Calculator
Specification: CALCULATOR starts the Calculator program. You can cut

and-paste the output of the Calculator into any console window, like the
Shell or ED.

To exit the program, select the window's close gadget.
Example:

1> CALCULATOR

56

Format:
Template:
Purpose:
Path:

THE USER'S MANUAL

co [<dir I pattern>]
DIR

CD

To set, change, or display the current directory
Internal

Specification: CO with no arguments displays the name of the current direc
tory. When a valid directory name is given, CD makes the named directory
the current directory.

CD does not search through the disk for the specified directory. It expects it
to be in the current directory. If it is not, you must give a complete path to the
directory. If CD cannot find the specified directory in the current directory or in
the given path, a Can't find <directory> error message is displayed.

If you want to move up a level in the filing hierarchy to the parent directory
of the current directory, type CD followed by a space and a single slash (j).
Moving to another directory in the parent can be done at the same time by
including its name after the slash. If the current directory is a root directory, CD
/ will have no effect. Multiple slashes are allowed; each slash refers to an addi
tional higher level. When using multiple slashes, leave no spaces between them.

To move directly to the root directory of the current device, use CD followed
by a space and a colon.

CD also supports pattern matching. If more than one directory matches the
given pattern, an error message is displayed.
Examples:

1> CD DF1:Work

sets the current directory to the Work directory on the disk in drive OF1:.

1> CD SYS:Com/Basic

makes the subdirectory Basic in the Com directory the current directory.

1> CD / /

moves up two levels in the directory structure and makes SYS: the current
directory.

1> CD SYS:Li#?

uses the #? pattern to match with the Libs directory.

AMIGADOS COMMANDS
- ------- ---

CHANGETASKPRI

Format:
Template:
Purpose:
Path:

CHANGET ASKPRI <priority> [<process>]
PRI=PRIORITY / A/N,PROCESS/K/N
To change the priority of a currently running process
C:CHANGET ASKPRI

57

Specification: Since the Amiga is multitasking, it uses priority numbers to
determine the order in which current tasks should be serviced. Normally,
most tasks have a priority of 0, and the time and instruction cycles of the
central processing unit (CPU) are divided equally among them. CHANGE
T ASKPRI changes the priority of the specified shell process. (If no process
is specified, the current shell process is assumed.) Any tasks started from
<process> inherit its priority.

The range of acceptable values for <priority> is the integers from -128 to
127, with higher values yielding a higher priority (a greater proportion of CPU
time is allocated). However, do not enter values above +10, or you may disrupt
important system tasks. Too Iowa priority (less than 0) can result in a process
taking unreasonably long to execute.
Example:

1> CHANGETASKPRI 4 Process 2

The priority of Process 2 is changed to 4. Any tasks started from this shell will
also have a priority of 4. They will have priority over any other user tasks creat
ed without using CHANGETASKPRI (those tasks will have a priority of 0).
See also: STATUS

Format:

Template:

CLOCK

CLOCK [DIGITAL] [[LEFT] <n>] [[TOP <n>] [[WIDTH] <n>]
[[HEIGHT <n>] [24HOUR] [SECONDS] [DATE]
DIGIT AL/S,LEFT /N,TOP /N,WIDTH/N,HEIGHT /N,
24HOUR/S, SECONDS/S,DATE/S

Purpose: To provide an on-screen clock
Path: SYS:Utilities/Clock
Specification: The DIGITAL option opens a digital clock. The LEFT, TOP,

WIDTH, and HEIGHT options allow you to specify the size and position of

58 THE USER'S MANUAL

the clock. The keywords are optional; however, the clock understands
numeric arguments by their position, as outlined below:

First number: The clock will open <n> pixels from the left edge of the screen.

Second number: The clock will open <n> pixels from the top of the screen.

Third number: The clock will be <n> pixels wide.

Fourth number: The clock will be <n> pixels high.

For instance, if you only wanted to specify the width and height of the Clock,
you would have to use the WIDTH and HEIGHT keywords. If you only typed
two numbers, the clock would interpret them as the LEFT and TOP positions.

Note: WIDTH and HEIGHT are not available if you use the DIGITAL option.
You cannot change the size of the digital clock, although you can specify its
position.

The 24HOUR option opens the clock in 24-hour mode. If not specified, the
clock opens in 12-hour mode. If the SECONDS option is specified, the seconds
are displayed. If the DATE option is specified, the date is displayed.
Examples: To open a clock that is 75 pixels from the left edge of the screen, 75
pixels from the top edge of the screen, 300 pixels wide and 100 pixels high, type:

1> CLOCK 75 75 300 100

To use the SECONDS, DATE, and 24HOUR options, type:

1> CLOCK SECONDS DATE 24HOUR

To open a digital clock that is 320 pixels from the left edge of the screen and in
the screen's title bar (0 pixels from the top), type:

1> CLOCK DIGITAL 3200

Format:
Template:
Purpose:
Path:

--- - --- ------------

CMD

CMD <devicename> <filename> [OPT s I min]
DEVICENAME/ A,FILENAME/ A,OPT /K
To redirect printer output to a file
Extras2.0:Tools/CMD

AMIGAOOS COMMANDS 59

Specification: The <devicename> can be serial, parallel, or printer, and
should be the same device as specified in the Printer editor. <Filename> is
the name of the file to which the redirected output should be sent.

The CMD options are as follows:

s Skip any short initial write (usually a reset if redirecting a screen dump).

m Intercept multiple files until a BREAK command or Ctrl-C is typed.

n Notify user of progress (messages are displayed on the screen).

Example:

1> CMD parallel rarn:crnd_file

Any output sent to the parallel port will be rerouted to a file in RAM: called
cmd_file.

COLORS

Format: COLORS [<bitplanes> <screentype> 1
Template: BITPLANES,SCREENTYPE
Purpose: To change the colors of the frontmost screen
Path: Extras2.0:Tools/Colors
Specification: COLORS lets you change the colors of the frontmost screen. By

specifying values for the <bit planes> and <screentype> options you can
open a custom test screen. The acceptable values for <bitplanes> and
<screentype> are listed below:

<bitplanes Specifies the depth of the test screen:
1 2 colors.
2 4 colors.
3 8 colors.
4 16 colors.
5 32 colors.

<screentype> Specifies the resolution of the test screen:
o 320 x 200 pixels.
1 320 x 400 pixels.
2 640 x 200 pixels.
3 640 x 400 pixels.

60 THE USER'S MANUAL

The value for <bitplanes> is restricted to 4 or less if the value for <screen type>
is equal to either 2 or 3.
Example:

1> COLORS 3 2

A new custom screen is opened, and it displays a window for the color pro
gram. The screen has eight colors and a 640 x 200 pixel (Hires) resolution.

Format:

Template:

Purpose:
Path:

COpy

COpy [FROM] {<name I pattern>} [TO] <name I pattern> [ALL]
[QUIET] [BUF I BUFFER=<n>] [CLONE] [DATES] [NOPRO]
[COM][NOREQ]
FROM/M,TO/ A,ALL/S,QUIET /S,BUF=BUFFER/K/N,
CLONE/S, DATES/S, NOPRO/S,COM/S,NOREQ/S
To copy files or directories
C:COPY

Specification: COpy copies the file or directory specified with the FROM
argument to the file or directory specified by the TO argument. You can
copy several items at once by giving more than one FROM argument; each
argument should be separated by spaces. You can use pattern matching to
copy or exclude items whose names share a common set of characters or
symbols.

If a TO filename already exists, COPY overwrites the TO file with the FROM
file. If you name a destination directory that does not exist, COPY creates a
directory with that name. You can also use a pair of double quotes (UU) to refer
to the current directory when specifying a destination. (Do NOT put any spaces
between the double quotes.)

If the FROM argument is a directory, only the directory's files will be copied;
its subdirectories will not be copied. Use the ALL option to copy the complete
directory, including its files, subdirectories, and the subdirectories' files. If you
want to copy a directory and you want the copy to have the same name as the
original, you must include the directory name in the TO argument.

COPY prints to the screen the name of each file as it is copied. This can be
overridden by the QUIET option.

The BUF= option is used to set the number of 5l2-byte buffers used during
the copy. (Default is 200 buffers, approximately lOOK of RAM.) It is often useful

AMIGADOS COMMANDS 61

to limit the number of buffers when copying to RAM:. BUF=O uses a buffer the
same size as the file to be copied.

Normally, copy gives the TO file the date and time the copy was made. Any
comments attached to the original FROM file are ignored. The protection bits of
the FROM file are copied to the TO file. Several options allow you to override
these defaults:

DATES: The creation date of the FROM file is copied to the TO file.

COM: Any comment attached to the FROM file is copied to the TO file.

CLONE: The date, comments, and protection bits of the FROM file are
copied to the TO file.

NOPRO: The protection bits of the FROM file are not copied to the TO file.
The TO file will be given standard protection bits of r, w, e, and d.

Normally, COPY displays a requester if the COPY cannot continue for some
reason. When the NOREQ option is given, all requesters are suppressed. This is
useful in scripts and can prevent a COPY failure from stopping the script while
it waits for a response. For instance, if a script calls for a certain file to be copied
and the system cannot find that file, normally the script would display a
requester and would wait until a response was given. With the NOREQ option,
the COpy command would be aborted and the script would continue.
Examples:

1> COPY File1 TO :Work/File2

copies File1 in the current directory to File2 in the Work directory.

1> COpy -(#?info) TO DF1:Backup

copies all the files not ending in .info in the current directory to the Backup
directory on the disk in DF1:. This is a convenient use of pattern matching to
save storage space when icons are not necessary.

1> COpy Work:Test TO NN

copies the files in the Test directory on Work to the current directory; subdirec
tories in Test will not be copied.

1> COpy Work:Test TO DFO:Test ALL

62 THE USER'S MANUAL

copies all the files and any subdirectories of the Test directory on Work to the
Test directory on DFO:. If a Test directory does not already exist on DFO:,
AmigaDOS will create one.

1> COPY DFO: TO DF1: ALL QUIET

copies all files and directories on the disk in DFO: to DF1:, without displaying
on the screen any file/ directory names as they are copied. (This procedure is
quite slow in comparison to DiskCopy.)

Format:

Template:

Purpose:

Path:

CPU

CPU [CACHE] [BURST] [NOBURST] [DATACACHE]
[DATABURST] [NODATACACHE] [NODATABURST] [INST
CACHE] [INSTBURST] [NOINSTCACHE] [NOINSTBURST]
[FASTROM] [NOFASTROM] [NOMMUTESTj [CHECK
680101680201680301688811688821688511 MMU 1 FPU]
CACHE/S,BURST /S,NOCACHE/S,NOBURST /S,DATA
CACHE/S,DATABURST /S,NODATACACHE/S, NODATA
BURST /S,INSTCACHE/S,INSTBURST /S,NOINSTCACHE/S,
NOINSTBURST /S,FASTROM/S,NOFASTROM/S,NOM
MUTEST /S,CHECK/K
To set or clear the CPU caches, check for a particular processor,
load the read only memory (ROM) image into fast, 32-bit mem
ory, or set an illegal memory access handler which will output
information over the serial port at 9600 baud if a task accesses
page zero (lower 256 bytes) or memory above 16M
ecpu

Specification: The CPU allows you to adjust various options of the micropro
cessor installed in your Amiga. The CPU also shows the processor and
options that are currently enabled.

Note: Many options only work with certain members of the 680XO processor
family. The 68020 has a special type of memory known as instruction cache.
When instruction cache is used, instructions are executed more quickly. The
68030 has two types of cache memory: instruction and data. If you have Static
Column Dynamic RAM (SCRAM) installed, you can also use a special access
mode for both instruction and data cache, known as burst mode. This proce
dure may further improve access speed in some cases. The CPU options, out-

AMIGADOS COMMANDS 63
----- ---------

lined below, specify the types of memory to be used. If mutually exclusive
options are specified, the safest option is used.

CACHE: Turns on both data and instruction cache (only for 68030).

NOCACHE: Turns off data and instruction cache.

BURST: Turns on burst mode for both data and instructions (only for 68030
with SCRAM).

NOBURST: Turns off burst mode for data and instructions.

DATACACHE: Turns on data cache (only for 68030).

NODATACACHE: Turns off data cache.

DATABURST: Turns on burst mode for data (only for 68030 with SCRAM).

NODATABURST: Turns off burst mode for data.

INSTCACHE: Turns on instruction cache.

INSTBURST: Turns on burst mode for instructions (if SCRAM installed).

NOINSTCACHE: Turns off instruction cache.

NOINSTBURST: Turns off burst mode for instructions.

FASTROM: Copies data from ROM into 32-bit RAM, making access to this
data significantly faster. The CPU then write-protects the RAM
area so that the data cannot be changed.

NOFASTROM: Turns off FASTROM.

NOMMUTEST: Allows the MMU to be changed without checking to see if it
is currently in use.

The CHECK option, when given with a keyword (68010, 68020, 68030, 68881,
68882, or 68851) checks for the presence of the keyword.

Examples:

1> CPU

System: 68030 68881 (INST: NoCache Burst) (DATA: Cache

NoBurst)

1> CPU Burst Cache Check MMU

System: 68030 68881 (INST: Cache Burst) (DATA: Cache

Burst)

1> CPU NoBurst DataCache NolnstCache

64 THE USER'S MANUAL

System: 68030 68881 (INST: NoCache NoBurst) (DATA: Cache

NoBurst)

1> CPU Burst Cache FastROM

System: 68030 68881 FastROM (INST: Cache Burst) (DATA:

Cache Burst)

1> CPU NoFastRom NODataCache

System: 68030 68881 (INST: Cache Burst) (DATA: NoCache

Burst)

DATE

Format: DATE [<day>] [<date>] [<time>] [TO I VER <filename>]
DAY,DATE,TIME,TO=VER/K Template:

Purpose:
Path:

To display or set the system date and/ or time
C:DATE

Specification: DATE with no argument displays the currently set system time
and date, including the day of the week. Time is displayed using a 24-hour
clock.

DATE <date> sets just the date. The format for <date> is DD-MMM-YY (day
month-year). The hyphens between the arguments are required. A leading zero
in the date is not necessary. The first three letters of the month (in English) must
be used, as well as the last two digits of the year.

If the date is already set, you can reset it by specifying a day name (this sets
the date forward to that day of the week). You can also use tomorrow or yester
day as the <day> argument.

DATE <time> sets the time. The format for <time> is HH:MM:SS (hours:min
utes:seconds). Seconds are optional.

If your Amiga does not have a battery backed-up hardware clock and you do
not set the date, the system, on booting, sets the date to the date of the most
recently created file on the boot disk.

If you specify the TO or VER option, followed by a filename, the output of the
DATE command is sent to that file, overwriting any existing contents.

Note: Adjustments made with DATE only change the software clock. They
will not survive past power-down. To set the battery backed-up hardware clock
from the Shell, you must set the date and then use SETCLOCK SAVE.
Examples:

AMIGADOS COMMANDS 65

1> DATE

displays the current date and time.

1> DATE 6 sep-82

sets the date to September 6, 1982. The time is not reset. (The earliest date you
can set is January I, 1978.)

1> DATE tomorrow

resets the date to 1 day ahead.

1> DATE TO Fred

sends the current date to the file Fred.

1> DATE 23:00

sets the current time to 11 :00 p.m.

Format:
Template:
Purpose:
Path:

DELETE

DELETE {<name I pattern>} [ALL] [Q I QUIET] [FORCE]
FILE/M/ A,ALL/S,QUIET /S,FORCE/S
To delete files or directories
CDELETE

Specification: DELETE attempts to delete (erase) the specified file(s). If more
than one file was specified, AmigaDOS continues to the next file in the list.

You can use pattern matching to delete files. The pattern may specify directo
ry levels as well as filenames. All files that match the pattern are deleted. To
abort a multiple-file DELETE, press Ctrl-C.

AmigaDOS does not request confirmation of deletions. An error in a pattern
matching DELETE can have severe consequences, as deleted files are unrecov
erable. Be sure you understand pattern matching before you use this feature,
and keep backups of important files.

66 THE USER'S MANUAL

Warning: If you try to delete a directory that contains files, you will
receive a message stating that the directory could not be deleted as it is
not empty. To override this, use the ALL option. DELETE ALL deletes the
named directory, its subdirectories, and all files.

Filenames are displayed on the screen as they are deleted. To suppress the
screen output, use the QUIET option.

If the d (deletable) protection bit of a file has been cleared, that file cannot be
deleted unless the FORCE option is used.
Examples:

1> DELETE Old-file

deletes the Old-file file in the current directory.

1> DELETE Work/Prog1 Work/Prog2 Work

deletes the files Progl and Prog2 in the Work directory, and then deletes the
Work directory (if there are no other files left in it).

1> DELETE T#?/#?(112)

deletes all files that end in 1 or 2 in directories that start with T.

1> DELETE DF1:#? ALL FORCE

deletes all the files on DF1:, even those set as not deletable.

Format:

Template:
Purpose:
Path:

DIR

DIR [<dir I pattern> 1 [OPT A I I I AI I 0 I F] [ALL] [DIRS] [FILES]
[INTER]
DIR,OPT /K,ALL/S,DIRS/S,FILES/S,INTER/S
To display a sorted list of the files in a directory
CDIR

Specification: DIR displays the file and directory names contained in the
specified directory, or the current directory if no name is given. Directories
are listed first, followed by an alphabetical list of the files in two columns.
Pressing Ctrl-C aborts a directory listing.

AMIGADOS COMMANDS

The options are:

ALL

DIRS

FILES

INTER

Displays all subdirectories and their files.

Displays only directories.

Displays only files.

Enters an interactive listing mode.

67

Note: The ALL, DIRS, FILES, and INTER keywords supersede the OPT A, D,
F, and I options, respectively. The older keywords are retained for compatibility
with earlier versions of AmigaDOS. Do not use OPT with the full keywords
ALL, DIRS, FILES, or INTER.

The interactive listing mode stops after each name and displays a question
mark at which you can enter commands. The acceptable responses are shown
below:

Return: Displays the next name on the list.

E: Enters a directory; the files in that directory will be displayed.

B: Goes back one directory level.

DEL or DELETE: Deletes a file or empty directory. DEL does not refer to the
Del key; type the letters D, E, then L.

T: Types the contents of a file.

C or COMMAND: Allows you to enter additional AmigaDOS commands.

Q: Quits interactive editing.

?: Displays a list of the available interactive-mode commands.

The COMMAND option allows almost any AmigaOOS command to be execut
ed during the interactive directory list. When you want to issue a command,
type C (or COM) at the question mark prompt. DIR will ask you for the com
mand. Type the desired command, then press Return. The command will be
executed and DIR will continue. You can also combine the C and the command
on one line, by putting the command in quotes following the C.

For instance, C "type prefs.info hex" is equivalent to pressing Q to exit inter
active listing mode and return to a regular shell prompt, and then typing:

1> TYPE Prefs.info HEX

The Prefs.info file would be typed to the screen in hexadecimal format.

68 THE USER'S MANUAL

Warning: It is dangerous to format a disk from the DIR interactive mode,
as the format takes place immediately, without any confirmation
requesters appearing. Also, starting another interactive DIR from interac
tive mode results in garbled output.

Examples:

1> DIR Workbench2.0:

displays a list of the directories and files on the Workbench2.0 disk.

1> DIR MyDisk:#?memo

displays all the directories and files on MyDisk that end in .memo.

1> DIR Extras2.0: ALL

displays the complete contents of the Extras2.0 disk - all directories, subdirec
tories, and files.

1> DIR Workbench2.0: DIRS

displays only the directories on Workbench2.0.

1> DIR Workbench2.0: INTER

provides an interactive list of the contents of W orkbench2.0.

Format:
Template:
Purpose:

Path:

DISKCHANGE

DISKCHANGE <device>
DEVICE/A
To inform the Amiga that you have changed a disk in a disk
drive
C:DISKCHANGE

AMIGADOS COMMANDS 69

Specification: The DISKCHANGE command is only necessary when you are
using 5 1I4-inch floppy disk drives or removable media drives without
automatic diskchange hardware. Whenever you change the disk or car
tridge of such a drive, you must use DISKCHANGE to inform the system of
the switch.

DISKCHANGE can also be used if you edit a disk icon image and wish to see
the new icon on the Workbench screen immediately. This is the only way to dis
play an altered hard disk icon without rebooting.
Example: If a requester appears and asks you to insert a new disk into your
5114-inch drive, known as DF2:, you must insert the disk, then type:

1> DISKCHANGE DF2:

AmigaDOS then recognizes the new disk, and you can proceed.

Format:

Template:
Purpose:
Path:

DISKCOPY

DISKCOPY [FROM] <disk> TO <disk> [NOVERIFY] [MULTI]
[NAME <name>]
DISK/ A,TO/ A,DISK/ A,NOVERlFY /S,MULTI/S,NAME/S
To copy the contents of one disk to another

SYS:System/DiskCopy
Specification: The DISKCOPY command copies the entire contents of one vol

ume to another. The FROM keyword does not have to be specified.
However, the TO keyword must be given for DISKCOPY to work.

The <disk> argument can be either the volume name or drive name, such as
Workbench2.0 or DFO:. An altered floppy disk icon can be displayed by remov
ing the disk from the drive and reinserting it.

Normally during a diskcopy, the Amiga copies and verifies each cylinder of
data. The NOVERlFY option allows you to skip the verification process, making
the copy faster.

The MULTI option loads the data on the source disk into memory, allowing
you to make multiple copies without having to read the data from the source
disk each time.

By default, the destination disk will have the same name as the source disk. If
you specify the NAME option, you can give the destination disk a different
name from the source disk.

70 THE USER'S MANUAL

Examples:

1> DISKCOPY DFO: to DF2:

copies the contents of the disk in drive DFO: to the disk in drive DF2: overwrit
ing the contents of the disk in drive DF2:

1> DISKCOPY DFO: to DF2: NOVERIFY NAME NewDisk

copies the contents of the disk in drive DFO: to the disk in drive DF2: and gives
the disk in drive DF2: the name NewDisk. The disk is not verified as it is
copied.

Format:
Template:
Purpose:
Path:

DISKDOCTOR

DISKDOCTOR <drive>
DRIVE/A
To attempt to repair a corrupted disk
C:DISKDOCTOR

Specification: DISKDOCTOR attempts to repair a corrupted disk enough to
allow you to retrieve files from it and copy them onto a good disk. If
AmigaDOS has detected a corrupted disk, it displays a requester stating
that the disk could not be validated or that it has a read/write error. By
using DISKDOCTOR, you can try to restore the file structure of the disk.

You can use DISKDOCTOR on both the standard file system and the
FastFileSystem. However, to use DISKDOCTOR with the FastFileSystem, you
must make sure that the DosType keyword in the MountList is set to
Ox444F5301. Do not use DISKDOCTOR on a FastFileSystem partition if the
DosType keyword is not set correctly. Not all FastFileSystem partitions will
have an entry in the Mount List; for these auto-mounting partitions it is not nec
essary to adjust the Mount List before using DISKDOCTOR.

DISKOOCTOR versions 1.3.5 or earlier do not work with FFS floppies.

Warning: Before runn;ng DISKDOCTOR, U is a good idea to ropy all HIes
from the disk, as DISKDOCTOR will write to the corrupted disk. This can
prevent the use of other disk repair utilities. After running DISKDOC
TOR, you should copy the restored files to a new disk, then reformat the
corrupted disk.

AMTGADOS COMMANDS 71

DISKDOCTOR checks for enough memory before starting operations and
changes the boot block to type DOS.

It may be necessary to run DISKDOCTOR several times before a disk is
usable once again. If DISKooCTOR was not able to read the root block of the
disk, the disk will be renamed Lazarus.
Example: If you receive a message stating that Volume Workbench is not vali
dated or Error validating disk/Disk is unreadable, you can use DISKDOCTOR
to retrieve the disk's files. For instance, if the corrupted disk is in DF1:, type:

1> DISKDOCTOR DF1:

AmigaDOS will ask you to insert the disk to be corrected and press Return.
DISKDOCTOR then reads each cylinder of the disk. If it finds an error, it dis
plays Hard error Track <xx>, Surface <xx>. As each file and directory is
replaced, the filename is displayed on the screen. When DISKDOCTOR is fin
ished, it displays:

Now copy files required to a new disk and reformat this
disk.

If a hard error is found, there may be actual physical damage to the disk. If,
after reformatting, the disk still shows problems, it should be discarded.

DISPLAY

Format: DISPLAY {<filename> I FROM dilelist>}[OPT mlbpenvl
[t==<n> 1

Template: FILENAME/ A/M,FROM/K,OPT /K,T /N
Purpose: To display graphics saved in IFF ILBM format
Path: SYS:Utilities/Display
Specification: DISPLAY displays graphics saved using the IFF ILBM format.

You can type a series of files on the command line, and they will be shown
in the order given. You can also create a script containing a list of all the IFF
files you'd like to display and use the FROM <filelist> argument.

The options are listed below. Remember, the OPT keyword must be used.

m Clicking the selection button displays the next file in the filelist; clicking
the menu button displays the previous file.

72 THE USER'S MANUAL

Instead of exiting after the last picture, Display returns to the first file
and starts again.

b Pictures stay on their own unactivated screen behind the Workbench
screen. This is useful when printing pictures while doing something
else.

p Prints each file that is displayed. You can also press Ctrl-P while the file
is on the screen.

e This option tells Display to treat a 6-bitplane image as Extra Halfbrite.
This is for users who may be using an early HAM paint package that
does not save a CAMG chunk. Normally if there is no CAMG, Display
treats the image as a HAM picture.

n Borders will not be transparent when genlocked.

v Pictures will be displayed with full-video display clip. This means that
the picture fills the maximum possible position on the right edge of the
screen, going a little beyond the Overscan settings in Preferences.
However, when using this option, the screen cannot be dragged side
ways, and Display cannot center the picture.

A CAMG chunk is part of an IFF file that describes in which viewmode
the picture should be displayed.

The t=<n> argument specifies the number of seconds the IFF file will be dis
played. This allows for automatic advancing through files.
Examples:

1> DISPLAY file1 file2 file3

displays the files in the order given. To advance from one file to the next, press
Ctrl-C.

1> DISPLAY from Scriptlist

displays the files listed in the Scriptlist file. Pressing Ctrl-C advances to the next
file.

1> DISPLAY from Scriptlist OPT mp

AMIGADOS COMMANDS 73

displays the files listed in the Scriptlist file. Clicking the selection button
advances to the next file in the list. Clicking the menu button displays the previ
ous file. Each file is printed as it is displayed.

1> DISPLAY from Scriptlist OPT t=5

displays each file in the Scriptlist file for 5 seconds.

Format:

Template:

Purpose:

Path:

ECHO

ECHO [<string>] [NO LINE] [FIRST <n>] [LEN <n>]
[TO<device / file>]

/M,.NOLINE/S,FIRST /K/N,LEN /K/N,TO/K

To display a string

Internal

Specification: ECHO writes the specified string to the current output window
or device, usually the screen. By default this is the screen, but it could be
any device or file. When the string contains spaces, the whole string must
be enclosed in double quotes. (ECHO is commonly used in scripts.)

When the NOLINE option is specified, ECHO does not automatically move
the cursor to the next line after printing the string.

The FIRST and LEN options allow the echoing of a substring. FIRST <n> indi
cates the character position to begin the echo; LEN <n> indicates the number of
characters of the substring to echo, beginning with the first character. If the
FIRST option is omitted and only the LEN keyword is given, the substring
printed consists of the rightmost <n> characters of the main string. For instance,
if your string is 20 characters long and you specify LEN 4, the 17th, 18th, 19th,
and 20th characters of the string will be echoed.

Examples:

1> ECHO Hhello out there!H

hello out there!

1> ECHO Hhello out there!H NOLINE FIRST 0 LEN 5

hellol>

74

Format:

Template:

Purpose:
Path:

THE USER'S MANUAL

ED

ED [FROM] <filename> [SIZE <n>] [WITH<file>] [WINDOW
<window specification>] [TABS<n>] [WIDTH<n>]
[HEIGHT <n>] [COLS<n>] [ROWS<n> 1
FROM/ A,SIZE/N,WITH/K,WINDOW /K,TABS/N,WIDTH=
COLS/N, HEIGHT=ROWS/N
To edit text files (a screen editor)
C:ED

Specification: ED is a full-screen text editor suitable for preparing source code
or other text files. You can use ED to create a new file or alter an existing
one. Text is displayed on screen and can be scrolled vertically or horizontal
ly using the cursor keys. To add new text, you simply type it in. To delete
existing text, you use the delete keys. You can also position the cursor and
select text with the mouse.

The FROM argument specifies the file you want to edit. If the file exists, it is
loaded into ED and the first few lines are displayed on-screen ready for editing.
If the file does not exist, ED creates the file and presents a blank screen ready
for text to be entered.

You can adjust the size of the text buffer that ED uses with the SIZE argu
ment. The initial size of the text buffer is based on the size of the file you edit
with a minimum of 40,000 bytes.

The optional WITH argument is the name of an ED command file created to
set up particular function key assignments, or even to perform automated edit
ing operations on an existing file when you call it. The command file can con
tain any sequence of ED extended mode commands. Each command must be on
a separate line. A complete list of ED extended mode commands is given below.

The WINDOW, WIDTH, and HEIGHT arguments are for defining your ter
minal type if you are using a non-Amiga console, or if you simply want to
adjust the ED window size. WINDOW describes the console type, such as
RAW:0/0/640/256/<title>, AUX:, or even *. WIDTH and HEIGHT give the
number of characters to display horizontally and vertically.

The TABS arguments specifies the tab stop interval. This interval is the num
ber of spaces to the right of the current position that the cursor moves when the
tab key is pressed. The default value is 3.
Examples:

1> ED my text

starts up ED and loads the text file my text for editing.

AMIGADOS COMMANDS 75

1> ED my text SIZE 50000 TABS 8

starts up ED and loads the file my text for editing. The text buffer used by ED is
set to 50,000 bytes and the tabs are set to eight characters.

Moving the Cursor

The cursor can be positioned anywhere in your text by moving the pointer to
the desired spot and clicking the selection button. If you prefer to use the key
board, you can use the cursor keys, Tab, and several Ctrl-key combinations.

To move the cursor one position in any direction, press the appropriate cur
sor key. If the cursor is on the right edge of the screen, ED scrolls the text to the
left so you can see the rest of the line. ED scrolls text vertically one line at a time
and horizontally ten characters at a time. You cannot move the cursor off the
top or bottom of the file or off the left or right edge of a line. If you try, ED dis
plays a Top of File or Bottom of File message.

Some additional ways to move the cursor are listed below:

Shift-up cursor Top of the file

Shift-down cursor Bottom of the file

Shift-left cursor Left edge of the ED window (regardless of the margin
setting)

Shift-right cursor End of the current line

ED Immediate Mode Command Quick Reference

The list below gives all the ED immediate mode commands. You give these
commands by holding down the control (CtrD key and pressing one of the letter
keys.

CTRL-A
CTRL-B
CTRL-D
CTRL-E
CTRL-F
CTRL-G
CTRL-H
CTRL-I
CTRL-M

Insert line.
Delete line.
Scroll text down 12 lines.
Move to top or bottom of screen.
Flip case.
Repeat the last extended mode command (see list below).
Delete character left of cursor.
Move cursor right to next tab position.
Return.

76

CTRL-O
CTRL-R
CTRL-T
CTRL-U
CTRL-V
CTRL-Y
CTRL-[
CTRL-]

THE USER'S MANUAL

Delete word or spaces.
Cursor to end of previous word.
Cursor to start of next word.
Scroll text up 12 lines.
Verify screen.
Delete from cursor to end of line.
Escape (enter extended command mode).
Cursor to end or start of line.

ED Extended Mode Command Quick Reference

This is a full list of the ED extended mode commands. To give an extended
mode command, you first press the escape (ESC) key. A special command line
appears at the bottom of the screen indicating that ED is ready to accept your
command. Next type in a command from the list below and press return. ED
will perform the command.

For instance, to save a file you have created, press the escape key, then type
SA and return. ED will save the file using the filename you specified when you
started ED. To exit ED without saving anything, press the escape key, then type
Q and return.

In the list below /s/ indicates a string, /s/t/ indicates two exchange strings,
and n indicates a number.

A/s/
B
BE
BF /s/
BS
CE
CL
CR
CS
o
DB
DC
DFR
DL
OW
E /s/t/
EL
EM
EP

Insert a line with the text s after the current line.
Move to the bottom of the text.
Mark a block end at cursor.
Backward find, searches for the string s in the reverse direction.
Mark a block start at cursor.
Move cursor to the end of the line.
Move cursor one position left.
Move cursor one position right.
Move the cursor to the start of the line.
Delete the current line.
Delete block. You must first use BS and BE to mark the block.
Delete character at cursor.
Display function key R.
Deletes the character to the left of the cursor.
Deletes to the end of the current word.
Exchange all occurrences of the string s with the string t.
Deletes to the end of the current line.
Enable New Menus.
Move to end of page.

EQ /s/t/
EX
F /s/
FC
I/s/
IB

IF /s/
J
LC
Mn
N
NW
OP
P
PO
PU
Q
RF
RK
RP
S
SA /s/
SB
SFn/s/
SH
SI nm/s/t/
SLn
SM
SRn
STn
T
TB
U
UC

WB /s/

WN
WP
X
XQ

AMIGADOS COMMANDS

Exchange the string s with the string t but query first.
Extend right margin.
Find string s.
Switches case of letters.
Insert a line with the string s before the current line.

77

Insert a copy of marked block. You must first use BS and BE to
mark the block.
Insert the file s at the current position.
Join current line with the next line.
Distinguish between upper case and lower case in searches.
Move to line number n.
Move to the start of the next line.
Creates a new file replacing the existing one.
Opens a file.
Move to the start of the previous line.
Next page.
Previous page.
Qui ED without saving.
Loads and executes a command file of extended mode commands.
Reset function keys and control keys to defaults.
Repeat command until error.
Split line at cursor.
Save text to the file s.
Show current marked block on screen.
Set function key r to string s.
Show information.
Set menu item n to type m with text sand t.
Set left margin to nth column.
Prints the given string on the status line.
Set right margin to nth column.
Set tab distance to n.
Move to the top of text.
Move to next tab position.
Undo changes on the current line.
Do not distinguish between upper case and lower case in
searches.
Write marked block to file lsi. You must first use BS and BE to
mark the block.
Move to start of next word.
Move to space after previous word.
Exit ED saving text to the file specified when ED was started.
Exits ED unless changes have been made to the file.

78 THE USER'S MANUAL

EDIT

Format:

Template:

Purpose:

Path:

EDIT [FROM] <filename> [[TO] <filename>] [WITH
<filename>] [VER <filename>] [[OPT P <lines> I W
<chars>] I [PREVIOUS <lines> I WIDTH <chars>]]
FROM/ A,TO,WITH/K,VER/K,OPT /K,WIDTH/N,PREVI
OUS/N
To edit text files by processing the source file sequentially (a
line editor)
C:EDIT

Specification: EDIT is a line-oriented text editor that can be used to process
files sequentially under the control of editing commands. Edit moves
through the input, or source file, line by line making any changes and pass
ing the result to the output, or destination file.

The argument FROM represents the source file that you want to edit. This
must be a file that already exists.

The TO argument is the name of the destination file. This is the file to which
EDIT sends the output including any editing changes. If you omit the TO argu
ment, EDIT uses a temporary file and, when editing is complete, copies the tem
porary file to the original file, overwriting it.

The WITH argument allows you to specify a command file from which to get
EDIT commands. Ordinarily, EDIT functions interactively, reading commands
that you type from the keyboard. You may put EDIT commands in a file instead
and have them executed automatically using the WITH argument to specify the
command file.

The VER argument gives the name of the file to which EDIT will send error
messages and line verifications. If you omit the VER argument EDIT will print
its messages on the screen.

EDIT has the capability to move backward in the source file a limited number
of lines. This is possible because EDIT doesn't write the lines to the destination
file immediately, but instead holds them in an output buffer. The PREVIOUS
argument specifies the number of lines that EDIT can move backward in the
source file.

The WIDTH argument sets the maximum line length that EDIT can handle.
Together the PREVIOUS and WIDTH arguments determine the size of the
buffer that EDIT will use (buffer size = PREVIOUS * WIDTH). Unless you speci
fy otherwise, PREVIOUS is set to 40 and WIDTH to 120.
Examples:

1> EDIT FROM program1 TO program1new WITH myeditcommands

AMIGADOS COMMANDS 79

starts EDIT with program 1 as the source file and programlnew as the destina
tion file. The EDIT commands in the file myeditcommands would be executed
automatically as if they had been typed at the keyboard.

1> EDIT FROM program1 PREVIOUS 50 WIDTH 240 VER verfi1e

starts EDIT with program 1 as the source file. Any changes made with EDIT will
be written back to this same file since the TO argument is omitted. The EDIT
buffer is set up so that you can move back 50 previous lines. The line width is
limited to 240 characters. All verification and error messages from EDIT will be
sent to the file verfile.

EDIT Command Quick Reference

Here's a complete list of EDIT commands. The list uses the following abbrevia
tions:

n

sw
qs

A string with delimiters (such as / any string/).
Line number in source file; a period (.) refers to the current line
in the source file, an asterisk (*) refers to the last line.
Switch (+ is on and is off).
A string or a qualified string with delimiters. There are five
qualifiers: B (beginning), E (ending), L (last), P (precisely), and
U (upper case). For instance the qualified string "B/any
string/" matches "any string" if it occurs at the beginning of a
line. The qualified string U /x/ will match either upper or low-
ercase "x".

POSITIONING COMMANDS

M n Move to line n.
M + Move to highest line in buffer.
M Move to lowest line in buffer.
N Next line.
P Previous line.

SEARCH COMMANDS

Fqs
BFqs

Find string qs.
Find string qs moving backward through source file.

80 THE USER'S MANUAL

DFgs Find string gs and delete any intervening lines.

CHARACTER POSITIONING COMMANDS

<
>

$
%

j
PAgs
PBgs
PR

Move character pointer left.
Move character pointer right.
Delete character at pointer.
Lower case character at pointer.
Upper case character at pointer.
Turn character at pointer to space.
Position character pointer after gs.
Position character pointer before gs.
Reset character pointer to start of line.

CURRENT LINE COMMANDS

A gs t
AP gs t
B gs t
BP gs t
CLt
Dn

DFgs
DFAgs
DFBgs
DTAgs
DTBgs
E gs t
EP gs

In

It
Rn

R n t

SAgs
SB gs

Put string t after gs.
Put string t after gs, position character pointer after t.
Put string t before gs.
Put string t before gs, position character pointer after gs.
Concatenate current line, string t, and next line.
Delete line number n; if a second number is given, delete from
nl to n2 inclusive; if no number is given, delete the current line.
Delete from current line to line containing gs.
Delete from after gs to end of line.
Delete from before gs to end of line.
Delete from start of line to after gs.
Delete from start of line to before gs.
Exchange string gs with string t.
Exchange string gs with string t and position character pointer
after t.
Insert material typed at keyboard before line n (type Z to termi
nate keyboard input).
Insert material from file t before the current line.
Replace line n with material typed at keyboard (type Z to termi
nate keyboard input); if a second line number is given, replace
lines from nl to n2 with new material.
Replace line n with material from file t; if a second line number
is given, replace lines from nl to n2 with file.
Split line after gs.
Split line before gs.

AMIGADOS COMMANDS

GLOBAL COMMANDS

GAqst
GBqst
GE qs t
CGn
DGn
EGn
SHG

For each qs found as file is processed, place t after qs.
For each qs found as file is processed, place t before qs.
For each qs found as file is processed, replace qs with t.
Cancel global n (cancel all if n omitted).
Disable global n (disable all if n omitted).
Enable global n (enable all if n omitted).
Display info on globals used.

TEXT VERIFICA nON COMMANDS

? Verify current line.
Verify with character indicators.

T Type to end of file.
T n Type n lines.
TL n Type n lines with line numbers.
TN Type until buffer changes.
TP Move to top of buffer then type lines to end of buffer.
V sw Set verification on or off.

FILE COMMANDS

FROMt
FROM
TOt
TO
CFt

Take source from file t.
Revert to original source file.
Place output lines in file t.
Revert to original destination file.
Close file t.

OTHER COMMANDS

=n
Ct
Hn
REWIND
Q
SHD
STOP
TRsw
W
Zt

Repeat previous A, B, or E command.
Set line number to n.
Take commands from file t.
Set halt at line n. If n is * then halt and unset H.
Rewind source file.
Exit from command level; windup if at level 1.
Show data.
Quit without saving changes.
Set or unset trailing space removal.
Windup (exit saving changes).
Set input terminator to string t.

81

82

Format:
Template:
Purpose:
Path:

ELSE
(none)

THE USER'S MANUAL

ELSE

To specify an alternative for an IF statement in a script file
Internal

Specification: ELSE is used in an IF block of a script to specify an alternative
action in case the IF condition is not true. If the IF condition is not true, exe
cution of the script will jump from the IF line to the line after ELSE; all
intervening commands will be skipped. If the IF condition is true, the com
mands immediately following the IF statement are executed up to the ELSE.
Then, execution skips to the ENDIF statement that concludes the IF block.

Example: Assume a script, called Display, contained the following block:

IF exists <name>
TYPE <name> OPT n

ELSE
ECHO "<name> is not in this directory"

ENDIF

To execute this script, you could type:

1> EXECUTE Display work/prg2

If the work/prg2 file can be found in the current directory, the TYPE <name>
OPT n command will be executed. The work/prg2 file will be displayed on the
screen with line numbers.

If the work/prg2 file cannot be found in the current directory, the script will
skip ahead to the ECHO "<name> is not in this directory" command. The mes
sage work/prg2 is not in this directory will be displayed in the Shell window.
See also: IF, ENDIF, EXECUTE

Format:
Template:
Purpose:
Path:

ENDCLI
(none)

ENDCLI

To end a Shell process
Internal

AMIGADOS COMMANDS

Specification: ENDCLI ends a Shell process.
See also: ENDSHELL

ENDIF

Format: ENDIF
Template: (none)
Purpose: To terminate an IF block in a script file
Path: Internal

83

Specification: ENDIF is used in scripts at the end of an IF block. If the IF con
dition is not true, or if the true condition commands were executed and an
ELSE has been encountered, the execution of the script will skip to the next
ENDIF command. Every IF statement must be terminated by an ENDIF.

The ENDIF applies to the most recent IF or ELSE command.
See also: ELSE, IF

Format:
Template:
Purpose:
Path:
Specification:

ENDSHELL
(none)

ENDSHELL

To end a Shell process
Internal
ENDSHELL ends a Shell process

ENDCLI also closes a Shell window.

ENDSHELL should only be used when the Workbench is loaded or another
Shell is running. If you have quit the Workbench and you close your only Shell,
you will be unable to communicate with the Amiga. Your only recourse is to
reboot.

The Shell window may not close if any processes that were launched from the
Shell are still running. Even though the window stays open, the Shell will not
accept new input. You must terminate those processes before the window will
close. For instance, if you opened an editor from the Shell, the Shell window
will not close until you exit the editor.

In some cases you can launch a process from the Shell and then close the
Shell if the process is started with RUN>:<command>.

84

Format:
Template:

ENDSKIP
(none)

THE USER'S MANUAL

ENDSKIP

Purpose: To terminate a SKIP block in a script file
Path: Internal
Specification: ENDSKIP is used in scripts to terminate the execution of a SKIP

block. (A SKIP block allows you to jump over intervening commands if a
certain condition is met.) When an ENDSKIP is encountered, execution of
the script resumes at the line following the ENDSKIP. The condition flag is
set to 5 (WARN).

See also: SKIP

Format:

Template:

Purpose:
Path:

EVAL

EV AL <valuel> [<operation>] [<value2>] [TO <file>] [LFOR
MAT=<string>]

V ALUEI / A,OP,V ALUE2/M,TO /K,LFORMAT /K
To evaluate simple expressions
CEVAL

Specification: EV AL is used to evaluate and print the answer of an integer
expression. The fractional portion of input values and final results, if any, is
truncated (cut off).

<Valuel> and <value2> may be in decimal, hexadecimal, or octal numbers.
Decimal numbers are the default. Hexadecimal numbers are indicated by either
a leading Ox or #X. Octal numbers are indicated by either a leading 0 or a lead
ing #. Alphabetical characters are indicated by a leading single quote (').

The output format defaults to decimal; however, you can use the LFORMA T
keyword to select another format. The LFORMAT keyword specifies the for
matting string used to print the answer. You may use %X (hexadecimal), %0
(octal), %N (decimal), or %C (character). The %X and %0 options require a
number of digits specification (that is, %X8 gives eight digits of hex output).
When using the LFORMAT keyword, you can specify that a new line should be
printed by including a *N in your string.

The supported operations and their corresponding symbols are shown in the
table below:

AMIGADOS COMMANDS 85

Operation Symbol
Addition +
Subtraction
Multiplication *
Division /
Modulo mod
AND &
OR I
NOT
Left shift «
right shift »
negation
exclusive OR xor
bitwise equivalence eqv

EV AL can be used in scripts to act as a counter for loops. In that case, the TO
option, which sends the output of EVAL to a file, is very useful.

Parentheses may be used in the expressions.
Examples:

1> EVAL 4 * -5
-20
1> EVAL Ox4f / 010 LFORMAT="The answer lS %X4*N"
The answer is 0009
1>

This expression divides hexadecimal4f (79) by octal 10 (8), yielding 0009, the
integer portion of the decimal answer 9.875. (The 1> prompt would have
appeared immediately after the 0009 if *N had not been specified in the LFOR
MAT string.)

Assume you were using the following script, called Loop:

.Key loop/a
; demo a loop using eval and skip
Bra {
.Ket }
ECHO >ENV:Loop {loop}
LAB start
ECHO "Loop #" noline
TYPE ENV:Loop
EVAL <ENV:Loop >NIL: to=T:Qwe{$$} value2=1 op=- ?
TYPE >ENV:Loop T:Qwe{$$}

86

IF val Sloop GT 0
SKIP start bacK
ENDIF

ECHO "done"

THE USER'S MANUAL

If you were to type:

1> EXECUTE j,oop 5

j,oop #5

j,oop #4

Loop #3

j,oop #2

Loop #i
done

The first ECHO command sends the number given as the loop argument,
entered as an argument of the EXECUTE command, to the ENV:Loop file.

The second ECHO command coupled with the TYPE command, displays
Loop # followed by the number given as the loop argument. In this case, it dis
plays Loop #5.

The EVAL command takes the number in the ENV:Loop file as <valuel>.
<Value2> is 1, and the operation is subtraction. The output of the EVAL com
mand is sent to the T:Qwe($$) file. In this case, the value would be 4.

The next TYPE command sends the value in the T:Qwe($$) file to the
ENV:Loop file. In this case, it changes the value in ENV:Loop from 5 to 4.

The IF statement states that as long as the value for Loop is greater than 0, the
script should start over. This results in the next line being Loop #4.

The script will continue until Loop is equal to O.

EXCHANGE

Format: EXCHANGE [CX_POPKEY==<key>] [CX_POPUP==no]
[CX_PRIORITY==<n>]

Template: CX]OPKEY /K,CX_POPUP /K,CX]RIORITY /K/N
Purpose: To monitor and control the Commodity Exchange programs
Path: SYS:Utilities/Exchange
Specification: EXCHANGE is a Commodity Exchange program that monitors

and controls all the other Commodity Exchange programs. CX_POP
KEY==<key(s» allows you to specify the hot key for the program. If more

AMIGADOS COMMANDS 87

than one key is specified, be sure to enclose the entire argument in double
quotes (i.e., "CX]OPKEY=Shift Fl"). CX]OPUP=no keeps the Exchange
window from opening.

CX_PRIORITY=<n> sets the priority of Exchange in relation to all the other
Commodity Exchange programs. All the Commodity Exchange programs are
set to a default priority of O.

To kill Exchange, press Ctrl-E.
Example:

1> EXCHANGE "CX_POPKEY=Shift Fl"

The Exchange program will be started and its window will appear on the
screen. If you Hide the window, then want to bring it back again, the hot key
combination is Shift-F1.

Format:
Template:
Purpose:
Path:

EXECUTE

EXECUTE <script> [! <arguments>}]
FILE/A
To execute a script with optional argument substitution
C:EXECUTE

Specification: EXECUTE is used to run scripts of AmigaOOS commands. The
lines in the script are executed just as if they had been typed at a Shell
prompt. If the s protection bit of a file is set and the file is in the search path,
you only need type the filename - the EXECUTE command is not needed.

You can use parameter substitution in scripts by including special keywords
in the script. When these keywords are used, you can pass variables to the
script by including the variable in the EXECUTE command line. Before the
script is executed, AmigaOOS checks the parameter names in the script against
any arguments given on the command line. If any match, AmigaOOS substi
tutes the values you specified on the command line for the parameter name in
the script. You can also specify default values for AmigaOOS to use if no vari
ables are given. If you have not specified a variable, and there is no default
specified in the script, then the value of the parameter is empty (no substitution
is made).

The permissible keywords for parameter substitution are explained below.
Each keyword must be prefaced with a dot character O.

The .KEY (or .K) keyword specifies both keyword names and positions in a
script. It tells EXECUTE how many parameters to expect and how to interpret

88 THE USER'S MANUAL
--

them. In other words, .KEY serves as a template for the parameter values you
specify. Only one .KEY statement is allowed per script. If present, it should be
the first line in the file.

The arguments on the .KEY line can be given with the / A and /K directives,
which work the same as in an AmigaOOS template. Arguments followed by / A
are required; arguments followed by /K require the name of that argument as a
keyword. For example, if a script starts with .KEY filename/ A it indicates that a
filename must be given on the EXECUTE command line after the name of the
script. This filename will be substituted in subsequent lines of the script. For
instance, if the first line of a script is:

.KEY filename/A, TOname/K

You must specify a filename variable. The TOname variable is optional, but if
specified the TOname keyword must be used. For instance if the first line of a
script is:

1> EXECUTE Script Textfile TOname NewFile

Before execution, AmigaOOS scans the script for any items enclosed by BRA
and KET characters « and ». Such items may consist of a keyword or a key
word and a default value. Wherever EXECUTE finds a keyword enclosed in
angle brackets, it tries to substitute a parameter. However, if you want to use a
string in your script file that contains angle brackets, you will have to define
substitute "bracket" characters with the .BRA and .KET commands .. BRA <ch>
changes the opening bracket character to <ch>, while .KET changes the closing
bracket character to <ch>.
For example:

.KEY filename
ECHO -This line does NOT print <angle> brackets.
.BRA
.KET
ECHO -This line DOES print <angle> brackets.
ECHO -The specified filename is {filename}.-

would result in the following output:

1> EXECUTE script TestFile
This line does NOT print brackets.
This line DOES print <angle> brackets.

AMIGADOS COMMANDS 89

The specified filename is TestFile.

The first ECHO statement causes AmigaD05 to look for a variable to substitute
for the <angle> parameter. If no argument was given on the EXECUTE com
mand line, the null string is substituted. The .BRA and .KET commands then
tell the script to use braces to enclose parameters. So, when the second ECHO
statement is executed, the angle brackets will be printed. The third ECHO state
ment illustrates that the braces now function as the bracket characters.

When enclosing a keyword in bracket characters, you can also specify a default
string to be used if a variable is not supplied on the command line. There are
two ways to specify a default. The first way requires that you specify the
default every time you reference a parameter. You must separate the two
strings with a dollar sign ($).

For example, in the following statement:

ECHO "<wordl$defwordl> is the default for Wordl."

defwordl is the default value specified for wordl. It will be printed if no other
variable is given for wordl. However, if you want to specify this default several
times in your script, you would have to use <wordl$defwordl> each time.

The .DOLLAR <ch> command allows you to change the default character from
$ to <ch>. (You can also use DOL <ch>.) For instance:

.DOL #
ECHO H<wordl#defwordl> is the default for Wordl."

The second way to define a default uses the .DEF command. This allows you to
specify a default for each specific keyword. For example:

.DEF wordl "defwordl"

assigns defwordl as the default for the word I parameter throughout the script.
The following statement:

ECHO "<wordl> is the default for Wordl. H

results in the same output as the previous ECHO statement:

defwordl is the default for Wordl.

90 THE USER'S MANUAL

You can embed comments in a script by including them after a semicolon (;) or
by typing a dot (.), followed by a space, then the comment.

Summary of Dot Commands
.KEY

.DOT <ch>

.BRA <ch>

.KET <ch>

.DOLLAR <ch>

Argument template used to specify the format of
arguments; may be abbreviated to .K

Change dot character from. to <ch>
Change opening "bracket" character from < to <ch>
Change closing "bracket" character from> to <ch>
Change default character from $ to <ch>; may be

abbreviated to .DOL
.DEF <keyword value> Give default to parameter
. <space> Comment line
. \ Blank comment line

When you EXECUTE a command line, AmigaDOS looks at the first line of the
script. If it starts with a dot command, AmigaDOS scans the script looking for
parameter substitution and builds a temporary file in the T: directory. If the file
does not start with a dot command, AmigaDOS assumes that no parameter sub
stitution is necessary and starts executing the file immediately without copying
it to T:. If you do not need parameter substitution, do not use dot commands as
they require extras disk accesses and increase execution time.

AmigaDOS provides a number of commands that are useful in scripts, such
as IF, ELSE, SKIP, LAB, and QUIT. These commands, as well as the EXECUTE
command, can be nested in a script. That is, a script can contain EXECUTE com
mands.

To stop the execution of a script, press Ctrl-D. If you have nested script files,
you can stop the set of EXECUTE commands by pressing Ctrl-C. Ctrl-D only
stops the current script from executing.

The current Shell number can be referenced by the characters <$$>. This pro
cedure is useful in creating unique temporary files, logical assignments, and
PIPE names.
Examples: Assume the script List contains the following:

.K filename
RUN COPY <filename> TO PRT: +

ECHO HPrinting of <filename> done H

AMIGADOS COMMANDS 91

The following command:

1> EXECUTE List Test/Prg

acts as though you had typed the following commands at the keyboard:

1> RUN COPY Test/Prg TO PRT: +

1> ECHO uPrinting of Test/Prg done u

Another example, Display, uses more of the features described above:

.Key name/A
IF EXISTS <name>
TYPE <name> NUMBER ;if the file lS In the given
directory,
;type it with line numbers
ELSE
ECHO U<name> is not in this directoryu
ENDIF

The command:

1> RUN EXECUTE Display Work/Prg2

should display the Work/Prg2 file, with line numbers on the screen, if it exists
on the current directory. If the file is not there, the screen displays an error mes
sage. Because of the I A, if a filename is not given on the command line after
display, an error will occur.
See also: ECHO, FAILAT, IF, LAB, QUIT, RUN, SKIPT

Fonnat:
Template:
Purpose:

Path:

FAILAT [<n>]
RCLIM/N

FAILAT

To instruct a command sequence to fail if a program gives a
return code greater than or equal to the given value
Internal

Specification: Commands indicate that they have failed in some way by set
ting a return code. A nonzero return code indicates that the command has

92 THE USER'S MANUAL

encountered an error of some sort. The return code, normally 5, 10, or 20,
indicates how serious the error was. A return code greater than or equal to
a certain limit (the fail limit) terminates a sequence of noninteractive com
mands (commands you specify after RUN or in a script).

You may use the FAILAT command to alter the fail limit RCLIM (Return
Code Limit) from its initial value of 10. If you increase the limit, you indicate
that certain classes of error should not be regarded as fatal and that execution of
subsequent commands may proceed after an error. The argument must be a
positive number. The fail limit is reset to the initial value of 10 on exit from the
command sequence.

If the argument is omitted, the current fail limit is displayed.

Example: Assume a script contains the following lines:

COPY DFO:MyFile to RAM:

ECHO "MyFile being copied."

If MyFile cannot be found, the script is aborted and the following message
appears in the Shell window:

COpy: object not found

COpy failed returncode 20:

However, if you changed the return code limit to higher than 20, the script
would continue even if the COpy command fails. For instance, if you changed
the script to read:

FAILAT 21

COPY DFO:MyFile to RAM:

ECHO "MyFile being copied."

even if MyFile cannot be found, the script will continue. The following message
appears in the Shell window:

COpy: object not found

MyFile being copied.

See also: ECHO, EXECUTE

Format:
Template:

AMIGADOS COMMANDS

FAULT

FAULT <error number(s»
IN/M

Purpose: To print the messages(s) for the specified error code(s)
Path: Internal

93

Specification: FAULT prints the message(s) corresponding to the error num
ber(s) supplied. Up to ten error numbers can be specified at once. If several
error numbers are given with FAULT, they may be separated by commas or
spaces.

Example: If you received the error message Error when opening DFl:TestFile
205 and needed more information, you would type:

1> FAULT 205
FAULT 205: object not found

This tells you that the error occurred because TestFile could not be found on
DFl:.

Format:

Template:
Purpose:
Path:

FILENOTE

FILENOTE [FILE] <file I pattern> [[COMMENT] <comment>]
[ALL] [QUIET]
FILE I A,COMMENT,ALL/S,QUIET IS
To attach a comment to a file
C:FILENOTE

Specification: FILENOTE attaches an optional comment of up to 79 characters
to the specified file or to all files matching the given pattern.

If the <comment> includes spaces, it must be enclosed in double quotes. To
include double quotes in a filenote, each literal quote mark must be immediate
ly preceded by an asterisk (*), and the entire comment must be enclosed in
quotes, regardless of whether the comment contains any spaces.

If the <comment> argument is omitted, any existing filenote will be deleted
from the named file.

Creating a comment with FILENOTE is the same as entering a comment into
the Comment gadget of an icon's Information window. Changes made with
FILENOTE will be reflected in the Information window, and vice versa.

94 THE USER'S MANUAL

When an existing file is copied to (specified as the TO argument of a COPY
command), it will be overwritten, but its comment will be retained. Any com
ment attached to a FROM file will not be copied unless the CLONE or COM
option of COPY is specified. If the ALL option is given, FILENOTE adds the
<comment> to all the files in the specified directory. If the QUIET option is
given, screen output is suppressed.
Examples:

1> FILENOTE Sonata Hallegro non troppoH

attaches the filenote allegro non troppo to the Sonata file.

1> FILENOTE Toccata H*Hpresto*H.

Here the filenote is "presto"

FIXFONTS

Format: FIXFONTS
Template: (none)
Purpose: To update the .font files of the FONTS: directory
Path: SYS:System/FixFonts
Specification: FIXFONTS runs the FixFonts program. (FIXFONTS does not

support any arguments.) Your disk light will come on while the FONTS:
directory is updated. When the update is finished, the light goes out and a
Shell prompt appears.

Example:

1> FIXFONTS

Format:

Template:
Purpose:
Path:

FKEY

FKEY [FI-FI0=<string>] [SF1-SFI0=<string>] [CX_PRIORI
TY=n] [CX_POPUP=yes I no][CX_POPKEY=<key>]
KEY,CX_PRIORITY /K/N,CX]OPUP /K, CX_POPKEY /K
To assign text to function and shifted functions keys
Extras2.0:Tools/Commodities/FKey

AMIGADOS COMMANDS 95

Specification: FKEY is a Commodities Exchange program that allows you to
assign a text string to the function keys and shifted function keys. The out
put of the function keys is viewable through the Execute Command menu
item or in a Shell window.

Example:

1> RUN FKEY F4=INFO\n ex POPUP=no

assigns the INFO command to the F4 key. The FKey program is started but the
CX_POPUP=no option keeps the window from opening. Pressing F4 while
working in a Shell window is the same as typing the INFO command and
pressing Return.

Format:

Template:

Purpose:
Path:

FONT

FONT [FROM <filename>] [EDIT] [USE] [SAVE] [WORK
BENCH] [SCREEN] [SYSTEM]
FROM,EDIT /S,USE/S,SA VE/S,WORKBENCH/S,SCREEN /S,
SYSTEM/S
To specify the font(s) used by the system
SYS:Prefs/Font

Specification: FONT with no arguments or with the EDIT argument opens
the Font editor.

The FROM argument must be used in combination with at least one WORK
BENCH, SCREEN, or SYSTEM switch. (You can use more than one switch.)
This allows you to specify a particular font to be used in the designated area(s)
of the screen. The FROM file must be one that was previously saved with the
Save As menu item of the Font editor's Project menu. Even if the font in the
FROM file was originally saved as one type of text, it can be used in a different
area of the screen by specifying the appropriate switch. For instance, if the
FROM file was created when you saved a font as Screen text, that font can be
used as the Workbench icon text by specifying the WORKBENCH switch after
the filename.

If you specify the USE option, the font will be loaded into the appropriate
area and used, just as if you had opened the Font editor, selected the appropri
ate radio button, chosen the font, and selected the Use gadget. If you specify the
SA VE option, that font will be saved.

If you do not specify USE or SA VE, EDIT is assumed, and the Font editor is
opened. If a FROM file and a WORKBENCH, SCREEN, or SYSTEM switch is

96 THE USER'S MANUAL

specified, the Font editor will open with the font saved in the FROM file dis
played next to the selected radio button(s). If no switch is specified with the
FROM file, the editor will display the last used configuration.
Examples:

1> FONT Prefs/Presets/Font. screen vJORKBENCH

opens the Font editor. The font previously saved in the Font.screen file will be
displayed in the Workbench icon text gadget. You must select the Save, Use, or
Cancel gadget to close the editor.

1> FONT Prefs/Presets/Font.screen WORKBENCH USE

uses the font in Font.screen as the Workbench icon text. The Font editor is not
opened. The font choice will be lost if the system is rebooted.

1> FONT Prefs/Presets/Font.screen SCREEN WORKBENCH USE

uses the font saved in the Font.screen file as both the Screen text and the
Workbench icon text.

Format:

Template:

FORMAT

FORMAT DRIVE <drive> NAME <name> [NOICONS]
[QUICK] [FFS] [NOFFS]
DRIVE/ A/K,NAME/ A/K,NOICON /S,QUICK/S,FFS/S,
NOFFS/S

Purpose: To format a disk for use with the Amiga
Path: SYS:System/Format
Specification: To format a disk, you must specify both the DRIVE and the

NAME keywords. The name can be from 1 to 31 characters in length. If you
include spaces in the name, it must be enclosed in double quotes.

The NO ICONS option prevents a Trashcan icon from being added to the
newly formatted disk.

The QUICK option specifies that FORMAT will only format and create the
root block (and track), the boot block (and track), and create the bitmap blocks.
This is useful when reformatting a previously formatted floppy disk.

Normally, floppy disks are formatted with the old file system. For hard disks,
FORMAT uses information specified by the HDToolbox program or in the

AMIGADOS COMMANDS 97

MountList to determine the DOS type and file system. The FFS option marks
the disk as being used with the FastFileSystem and overrides the MountList
keywords or any other default file systems.
Examples:

1> FORMAT DRIVE DFO: NAME EmptyDisk

formats the disk in drive DFO:, erases any data, and names the disk EmptyDisk.
To reformat, or erase, a disk that already contains data, use the QUICK option.

1> FORMAT DRIVE DF2: NAME NewDisk QUICK

Format:
Template:
Purpose:
Path:

GET <name>
NAME/A

GET

To get the value of a local variable
Internal

Specification: GET is used to retrieve and display the value of a local environ
ment variable. The value is displayed in the current window. Local envi
ronment variables are only recognized by the Shell in which they are creat
ed, or by any Shells created from a NEWSHELL command executed in the
original Shell. If you open an additional Shell by opening the Shell icon or
by using the Execute Command menu item, previously created local envi
ronment variables will not be available.

Example:

1> GET editor
Extras2.0:Tools/MEmacs

See also: SET

--------------- -- ---------------------------------------

Format:
Template:
Purpose:

GETENV

GETENV <name>
NAME/A
To get the value of a global variable

98 THE USER'S MANUAL

Path: Internal
Specification: GETENV is used to retrieve and display the value of a global

environment variable. The value is displayed in the current window. Global
variables are stored in ENV: and are recognized by all Shells.

Example:

1> GETENV editor
Extras2.0:Tools/MEmacs

See also: SETENV

GRAPHICDUMP

Format: GRAPHICDUMP [TINY I SMALL I MEDIUM I LARGE I
<xdots>:<ydots>]

Template: TINY IS,SMALLlS,MEDIUM/S,LARGE/S,
<xdots>:<ydots> IS

Purpose: To print the frontmost screen
Path: Extras2.0:Tools/GraphicDump
Specification: GRAPHIC DUMP sends a dump of the frontmost screen to the

printer about 10 seconds after issuing the command. The size options,
which correspond to the program's acceptable Tool Types, determine the
width of the printout:

TINY
SMALL
MEDIUM
LARGE

1/ 4 the total width allowed by the printer.
1/2 the total width allowed by the printer.
3 I 4 the total width allowed by the printer.
the full width allowed by the printer.

The height of the printout is such that the perspective of the screen is main
tained.

To specify specific dimensions, substitute the absolute width in dots for
<xdots> and the absolute height for <ydots>.
Examples:

1> GRAPHICDUMP SMALL

AMIGADOS COMMANDS 99

produces a printout of the frontmost screen that is about one-half the total
width allowed by the printer.

1> GRAPHICDUMP 600:300

produces a printout that is 600 dots wide by 300 dots high.

ICONEDIT

Format: ICONEDIT
Template: (none)
Purpose: To edit the appearance and type of icons
Path: Extras2.0:Tools / IconEdit
Specification: ICONEDIT opens the IconEdit program. The command does

not support any arguments.
Example:

1> ICONEDIT

.------- - ---------------------

ICONTROL

Format: ICONTROL [FROM <filename> 1 [EDIT] [USE] [SAVE]
Template: FROM,EDIT /S,USE/S,SA VE/S
Purpose: To specify parameters used by the Workbench
Path: SYS:Prefs/IControl
Specification: ICONTROL without any arguments or with the EDIT argu

ment opens the IControl editor. The FROM argument lets you specify a file
to open. This must be a file that was previously saved with the Save As
menu item of the IControl editor. For instance, if you have saved a special
configuration of the IControl editor to a file in the Presets drawer, you can
use the FROM argument to open that file. If the USE switch is also given,
the editor will not open, but the settings in the FROM file will be used. If
the SAVE switch is given, the editor will not open, but the settings in the
FROM file will be saved.

Example:

1> ICONTROL Prefs/Presets/IControl.pre USE

100 THE USER'S MANUAL
---- --

uses the settings that were saved in the IControl.pre file. The editor is not
opened.

Format:
Template:
Purpose:
Path:

ICONX
(none)

ICONX

To allow execution of a script file from an icon
C:ICONX

Specification: ICONX allows you to execute a script file of AmigaDOS com
mands via an icon.

To use ICONX, create or copy a project icon for the script. Open the icon's
Information window and change the Default Tool of the icon to C:ICONX. Add
the WINDOW= and DELAY= Tool Types if you chose, and select Save to store
the changed .info file. The script can then be executed by double-clicking on the
icon.

When the icon is opened, ICONX changes the current directory to the directo
ry containing the project icon before executing the script. An input/ output win
dow for the script file will be opened on the Workbench screen. The icon's
WINDOW= Tool Type can be used to specify the size of the window. You can
add a delay (specified in seconds) after the execution of the file is complete with
the DELAY= Tool Type. This keeps the window open to allow time for reading
the output. If a 0 is specified for DELAY=, ICONX waits for a Ctrl-C before exit
ing. Extended selection can be used to pass files that have icons to the script.
Their filenames appear to the script as keywords. To use this facility, the .KEY
keyword must appear at the start of the script. In this case, the AmigaDOS EXE
CUTE command is used to execute the script file.
See also: EXECUTE

Format:

Template:

Purpose:

IF

IF [NOT] [WARN] [ERROR] [FAIL] [<string> EQ I GT I GE
<string>] [V AL] [EXISTS <filename>]
NOT /S,WARN/S,ERROR/S,FAIL/S"EQ/K,GT /K,GE/K,
V AL/S,EXISTS/K
To evaluate conditional operations in script files

AMIGADOS COMMANDS 101

Path: Internal
Specification: In a script file, IF, when its conditional is true, carries out all the

subsequent commands until an ENDIF or ELSE command is found. When
the conditional is not true, execution skips directly to the END IF or to the
ELSE. The conditions and commands in IF and ELSE blocks can span more
than one line before their corresponding ENDIFs.

Following are some of the ways you can use the IF, ELSE, and ENDIF com
mands:

IF <condition>
<comrnand(s)>
ENDIF

IF <condition>
<comrnand(s)>
ELSE
<comrnand(s)>
ENDIF

IF <condition>
<comrnand(s)>
IF <condition>
<comrnand(s)>
ENDIF
ENDIF

ELSE is optional, and nested IFs jump to the nearest ENDIF.
The additional keywords are as follows:

NOT: Reverses the interpretation of the result.
WARN: True if previous return code is greater than or equal to 5.
ERROR: True if previous return code is greater than or equal to 10; only

available if you set FAlLA T to greater than 10.
FAIL: True if previous return code is greater than or equal to 20; only

available if you set F AILAT to greater than 20.
<a> EQ : True if the text of a and b is identical (disregarding case).
EXISTS <file>: True if the file exists.

If more than one of the three condition-flag keywords (WARN, ERROR, FAIL)
are given, the one with the lowest value is used.

IF supports the GT (greater than) and GE (greater than or equal to) compar
isons. Normally, the comparisons are performed as string comparisons.
However, if the V AL option is specified, the comparison is a numeric compari
son.

Note: You can use NOT GE for LT and NOT GT for LE.

You can use local or global variables with IF by prefacing the variable name
with a $ character.
Examples:

102

IF EXISTS Work/Prog
TYPE Work/Prog

THE USER'S MANUAL

ELSE ECHO "It's not here"
ENDIF

If the file Work/Prog exists in the current directory, then AmigaOOS displays
it. Otherwise, AmigaOOS displays the message It's not here and continues after
the ENDIF.

IF ERROR
SKIP errlab
ENDIF
ECHO "No error"
LAB err lab

If the previous command produced a return code greater than or equal to 10
then AmigaOOS skips over the ECHO command to the errlab label.
See also: EXECUTE, FAlLA T, LAB, QUIT, SKIP

Format:

Template:

IHELP

IHELP[CYCLE:::<key>] [MAKEBIG=<key>] [MAKESMALL=
<key>] [CYCLESCREEN =<ke-y>] [ZIPWINOOW =<key>]
[CX_PRIORITY=<n>]
CYCLE/K,MAKEBIG/K,MAKESMALL/K,CYCLESCREEN/K,
ZIPWINOOW /K,CX_PRIORITY /K/N

Purpose: To enable the keyboard to take over certain mouse operations
Path: Extras2.0:Tools / Commodities/ IHelp
Specification: IHELP is a Commodities Exchange program that lets you
assign functions normally performed by the window gadgets to keys. The argu
ments supported by IHeip are the same as the Tool Types that can be entered
into the icon's Information window. If a <key> argument specifies multiple
keys, be sure to enclose the entire argument in double quotes. A list of the argu
ments follows:

CYCLE: Cycles any open tool or project screens from the back of the screen
to the front.

MAKEBIG: Makes the active window as large as possible without moving it.

MAKESMALL: Makes the active window as small as possible.

AMIGADOS COMMANDS 103

CYCLESCREEN: Cycles through all open screens.

ZIPWINOOW: Zooms the active window. (This is the same as selecting the
window's zoom gadget.)

The CX_PRIORITY=<n> argument sets the priority of IHeip in relation to all
the other Commodity Exchange programs. All the Commodity Exchange pro
grams are set to a default priority of O. For instance, if IHeip has a priority of 3,
it will intercept any keys specified for the arguments before any other Exchange
programs.
Example:

l>IHELP "CYCLE=Alt F7" "MAKESMALL=Control S" "MAKEBIG=
Control B"

If you were to press Alt-F7, any project or tool windows would cycle from front
to back. The Ctrl-S combination makes the selected window small, while the
Ctrl-B combination makes the selected window bigger.

Format:
Template:
Purpose:
Path:

INFO [<device>]
DEVICE

INFO

To give information about the file system(s)
CINFO

Specification: INFO displays a line of information about each disk or parti
tion. This includes the maximum size of the disk, the used and free space,
the number of soft disk errors that have occurred, and the status of the disk.

With the DEVICE argument, INFO provides information on just one device
or volume.
Example:

1> INFO

unit Size Used Free Full Errs

DFO: 879K 1738 20 98%
DFl: 879K 418 1140 24%

o
o

Status Name

Read Only Workbench2. 0
Read/Write Text-6

104 THE USER'S MANUAL

Volumes available:
Workbench2.0 [Mounted]
Text-6 [Mounted]

----- ----

INITPRINTER

Format:
Template:
Purpose:

INITPRINTER
(none)
To initialize a printer for print options specified in the
Preferences editors

Path: Extras2.0:Tools/InitPrinter
Specification: INITPRINTER runs the InitPrinter program. (It does not sup

port any arguments.) You will hear the printer reset, then the Shell prompt
will return.

Example:

1> INITPRINTER

INPUT

Format: INPUT [FROM <filename>] [EDIT] [USE] [SAVE]
Template: FROM,EDIT /S,USE/S,SA VE/S
Purpose: To specify different speeds for the mouse and keyboard
Path: SYS:Prefs/Input
Specification: INPUT without any arguments or with the EDIT argument

opens the Input editor. The FROM argument lets you specify a file to open.
This must be a file that was previously saved with the Save As menu item
of the Input editor. For instance, if you have saved a special configuration
of the Input editor to a file in the Presets drawer, you can use the FROM
argument to open that file. If the USE switch is also given, the editor will
not be opened, but the settings in the FROM file will be used. If the SAVE
switch is given, the editor will not open, but the settings in the FROM file
will be saved.

Example:

1> INPUT Prefs/Presets/Input.fast SAVE

AMIGADOS COMMANDS 105

loads and saves the settings from the InpuUast file. Even if the system is
rebooted, those settings will still be in effect. The editor does not open.

Format:

Template:
Purpose:

Path:

INSTALL

INSTALL [DRIVE] <DFO: I DFl: I DF2: IDF3:> [NO BOOT]
[CHECK] [FFS]
DRIVE/ A,NOBOOT /S,CHECK/S,FFS/S
To write the boot block to a formatted floppy disk, specifying
whether it should be bootable
C:INSTALL

Specification: INSTALL clears a floppy disk's boot block area and writes a
valid boot block onto the disk. By default, the disk will be given the boot
block of the filing system specified when the disk was initially formatted,
either the old filing system (OFS) or the FastFileSystem (FFS). To force
FastFileSystem, use the FFS switch.

The NOBOOT option removes the boot block from an AmigaDOS disk, mak
ing it not bootable.

Warning: The NOBOOT option will write a boot block on a non
AmigaDOS disk. INSTALL uses the default DOS type, OFS, when writing
to a non-AmigaDOS disk.

The CHECK option checks for valid boot code. It reports whether a disk is
bootable or not and whether standard Commodore-Amiga boot code is present
on the disk. The condition flag is set to 0 if the boot code is standard (or the disk
isn't bootable), 5 (WARN) otherwise.
Examples:

1> INSTALL DFO: CHECK
No bootblock installed

indicates that there is a non-bootable floppy in DFO:.

1> INSTALL DFO:

makes the disk in drive DFO: a bootable disk.

1> INSTALL DFO: CHECK

106 THE USER'S MANUAL

Appears to be FFS bootblock

indicates that there is an FFS floppy in DFO:.

Format:
Template:
Purpose:

Path:

IPREFS
(none)

IPREFS

To communicate Preferences information stored in the individ
ual editor files to the Workbench
C:IPREFS

Specifications: IPREFS reads the individual system Preferences files and pass
es the information to the Workbench so that it can reply accordingly.
IPREFS is generally run in the Startup-sequence after the Preferences files
are copied to ENV:. Each time a user selects Save or Use from within an edi
tor, IPREFS is notified and passes the information along to Workbench. If
necessary, IPREFS resets Workbench to implement those changes. If any
project or tool windows are open, IPREFS displays a requester asking you
to close any nondrawer windows.

Format:
Template:
Purpose:
Path:

JOIN

JOIN {<file I pattern>} AS I TO <filename>
FILE/M/ A,AS=TO/K/ A
To concatenate two or more files into a new file
C:JOIN

Specification: JOIN copies all the listed files, in the order given, to one new
file. This destination file cannot have the same name as any of the source
files. You must supply a destination filename. The original files remain
unchanged. Any number of files may be JOINed in one operation.

TO can be used as a synonym for AS.

Example:

1> JOIN Part1 Part2 Part3 AS Textfile

AMIGADOS COMMANDS 107
-- ------

KEYS HOW

Format: KEYSHOW
Template: (none)
Purpose: To display the current Keymap
Path: Extras2.0:Tools/KeyShow
Specification: KEYSHOW opens the KeyShow window. (The command does

not support any arguments.) To exit the program, select the window's close
gadget.

Example:

1> KEYSHOW

- --- -------

LAB
---- - --- -----

Format: LAB [<string>]
Template: (none)
Purpose: To specify a label in a script file
Path: Internal
Specification: LAB is used in scripts to define a label that is looked for by the

SKIP command. The label <string> may be of any length but must consist
of alphanumeric characters. No symbols are allowed. If the <string> con
tains spaces, it must be enclosed in quotes.

See also: EXECUTE, IF, SKIP

Format:

Template:

Purpose:
Path:

LIST

LIST U<dir I pattern>}] [P I PAT <pattern>] [KEYS] [DATES]
[NODATES] [TO <name>] [SUB <string>] [SINCE <date>]
[UPTO <date>] [QUICK] [BLOCK] [NOHEAD] [FILES] [DIRS]
[LFORMAT <string>] [ALL]
DIR/M,P=PAT /K,KEYS/S,DATES/S,NODATES/S,TO/K,
SUB/K, SINCE/K, UPTO/K,QUICK/S, BLOCK/S,
NOHEAD/S, FILES/S, DIRS/S, LFORMAT /K,ALL/S
To list specified information about directories and files
CLIST

108 THE USER'S MANUAL
- --- ------------------

Specification: LIST displays information about the contents of the current
directory. If you specify a <dir>, <pattern>, or <filename> argument, LIST
will display information about the specified directory, all directories or files
that match the pattern, or the specified file, respectively.

Unless other options are specified, LIST displays the following:

Name: The name of the file or directory.
Size: The size of the file in bytes. If there is nothing in this file, the field will

read empty. For directories, this entry reads Dir.
Protection: The protection bits that are set for this file are shown as letters.

The clear (unset) bits are shown as hyphens. Most files show the
default protection bits, - - - - rwed for readable/writable/ exe
cutable/ deletable. See the PROTECT command for more on pro
tection bits.

Date and time: The date and time the file was created or last altered.
Comment: The comment, if any, placed on the file using the FILENOTE com

mand. It is preceded by a colon (:).

LIST has options that will change the way the output is displayed. These
options are explained below:

KEYS: Displays the block number of each file header or directory.
DATES: Displays dates in the form DD-MMM-YY (the default unless you

use QUICK).
NODATES: Will not display date and time information.
TO <name>: Specifies an output file or device for LIST; by default, LIST out-

puts to the current window.
SUB <string>: Lists only files containing the substring <string>.
SINCE <date>: Lists only files created on or after a certain date.
UPTO <date>: Lists only files created on or before a certain date.
QUICK: Lists only the names of files and directories.
BLOCK: Displays file sizes in blocks, rather than bytes.
NOHEAD: Suppresses the printing of the header information.
FILES: Lists files only (no directories).
DIRS: Lists directories only (no files).
LFORMA TP: Defines a string to specially format LIST output.
ALL: Lists all files in directories and subdirectories.

The LFORMAT option modifies the output of LIST and can be used as a
quick method of generating script files. When LFORMAT is specified, the
QUICK and NOHEAD options are automatically selected. When using LFOR-

AMIGADOS COMMANDS 109

MAT you must specify an output format specification string; this string is incor
porated into the script file. If you want the output to be saved, you must redi
rect it to a file by using the> operator or specifying a TO file.

The format for the output format specification string is LFORMAT= <string>.
To include the output of LIST in this string, use the substitution operator %S.
The path and filename can be made part of the string this way. Whether the
path or the filename is substituted for an occurrence of %S depends on how
many occurrences are in the LFORMAT line, and their order, as follows:

Substituted with each occurrence
Occurrences

of %S 1st 2nd 3rd 4th
1 filename
2 path filename
3 path filename filename
4 path filename path filename

Some new options allow you to specify fields to be printed in the LFORMAT
output. These options are:

%A Prints file attributes (protection bits).
%B Prints size of file in blocks.
%C Prints any comments attached to the file.
%D Prints the date associated with the file.
%K Prints the file key block.
%L Prints the length of file in bytes.
%N Prints the name of the file.
%P Prints the file parent path.
% T Prints the time associated with the file.

You can put a length specifier and/or a justification specifier between the
percent size (%) and the field specifier.
Examples:

1> LIST Dirs
Monitors
T

Trashcan

Dir
Dir
Dir

rwed
rwed
rwed

27-June-90
Wednesday
2 -Jun-90

11:43:59
11:37:43
17:54:20

Only the directories in the current directory, in this case SYS:, are listed. (A
shortened version of the typical output is shown above.)

1> LIST Li#? TO RAM:Libs.file

110 THE USER'S MANUAL

LIST will search for any directories or files that start with LI. The output of LIST
will be sent to the Libs.file in RAM:.

1> LIST DFO:Documents UPTO 09-0ct-90

Only the files or directories on the Documents directory of DFO: that have not
been changed since October 9,1990, will be listed.

1> LIST >RAM:Scriptnotes #? LFORMAT="filenote %S%S
Testnote"

A new script file, Scriptnotes, is created in RAM:. The contents will include a
list of all the files in the current directory. When Scriptnotes is executed, it will
add the filenote Testnote to each file. For instance, if the current directory is S:,
the contents of Scriptnotes as produced by this command might look like this:

filenote s:HDBackup.config Testnote
filenote s:DPat Testnote
filenote s:Ed-startup Testnote
filenote s:PCD Testnote
filenote s:Shell-startup Testnote
filenote s:SPat Testnote
filenote s:Startup-sequence Testnote

Format:
Template:
Purpose:
Path:

LOADWB

LOADWB [-DEBUG] [DELAY] [CLEANUP] [NEWPATH]
-DEBUG/S,DELA Y /S,CLEANUP /S,NEWP ATH/S
To start Workbench
C:LOADWB

Specification: LOADWB starts the Workbench. Normally, this is done when
booting, by placing the LOADWB command in the Startup-sequence file. If
you shut down the Workbench, LOADWB can be used from a Shell to
restart it.

Workbench snapshots the current paths in effect when the LOADWB com
mand is executed. It uses these paths for each Shell started from Workbench.
Example: If you have quit the Workbench and are working through a Shell,
typing:

1> LOAlJVJB

AMIGADOS COMMANDS 111

will bring the Workbench back. Typing LOADWB when the Workbench is
already loaded has no effect. LOADWB NEWPATH will cause Workbench to
take a new snapshot of the current paths. LOADWB -DEBUG will start
Workbench with a special menu that can be used by programmers to flush
memory. This is handy for debugging code.

Format:

Template:

Purpose:

Path:

LOCK

LOCK <drive> [ON I OFF] [<passkey>]

DRIVEl A,ON IS,OFF IS,PASSKEY

To set the write-protect status of a disk

CLOCK

Specification: LOCK sets or unsets the write-protect status of a disk or parti
tion. The LOCK remains on until the system is rebooted or until the LOCK
is turned off with the LOCK OFF command.

An optional passkey may be specified. If the passkey is used to lock a hard
disk partition, the same passkey must be specified to unlock the partition. The
passkey may be any number of characters in length.

Example:

1> LOCK Work: ON SecretCode

The Work: partition is locked. You can read the contents of Work: with com
mands like DIR, LIST or MORE, but you cannot alter the contents of the parti
tion. If you try to edit the contents of a file on Work:, a requester will appear
stating that Work: is write-protected. For instance, if you try to create a new
directory, the following message will appear:

1> MAKEDIR WORK:Test

Can't create directory Work:Test

Disk is write-protected

To unlock the partition, type:

1> LOCK Work: OFF SecretCode

112

Format:
Template:
Purpose:
Path:

THE USER'S MANUAL

MAKEDIR

MAKEDIR 1 <name> I
NAME/M
To create a new directory
C:MAKEDIR

Specification: MAKEDIR creates a new, empty directory(s) with the name(s)
you specify. The command works within only one directory level at a time,
so any directories on the given path(s) must already exist. The command
fails if a directory or a file of the same name already exists in the directory
above it in the hierarchy. MAKEDIR does not create a drawer icon for the
new directory.

Examples:

1> MAKEDIR Tests

creates a directory Tests in the current directory.

1> MAKEDIR DF1:Xyz

creates a directory Xyz in the root directory of the disk in DFl:.
1> CD DFO:
1> MAKEDIR Documents Payab1es Orders

creates three directories, Documents, Payables, and Orders, on the disk in DFO:.

Format:
Template:
Purpose:
Path:

MAKELINK

MAKELINK [FROM] <file> [TO] <file> [HARD]
FROM/ A,TO/ A,HARD/S
To create a link between files
C:MAKELINK

Specification: MAKE LINK creates a file on a disk that is a pointer to another
file, this is known as a link. When an application or command calls the
FROM file, the TO file is actually used. By default, MAKELINK supports
hard links-the FROM file and TO file must be on the same volume.

AMIGADOS COMMANDS 113

Note: 50ft links, which can be links across volumes, are not currently imple
mented.

Format:
Template:
Purpose:
Path:

MEMACS

MEMACS [<filename>] [goto <n>] [OPT W]
None.
To create and edit text files
SYS:Utilities/Tools/MEMACS

Specification: MEMAC5 is a screen-oriented editor that allows you to create
and edit multiple text files simultaneously. You can use MEMACS to create
a new file or alter an existing one. Text is displayed on screen and can be
scrolled vertically or horizontally using the cursor keys. To add new text,
you simply type it in. To delete existing text, you use the delete keys.

The filename argument specifies the file you want to edit. If the file exists, the
MEMAC5 screen appears and the named file is loaded into memory for editing.
If the file does not exist, MEMACS creates the file and presents a blank screen
ready for text to be entered.

The optional go to argument specifies a line number to position the cursor on
when MEMACS is started. The OPT W argument tells MEMACS to open on the
Workbench screen. If this argument is omitted, MEMACS opens its own screen
which takes a little more memory.
Examples:

1> MEMACS myfile OPT W

starts up MEMACS on the Workbench screen with myfile loaded and ready to
be edited. If myfile does not already exist, it is created.

1> MEMACS myfile goto 17

starts up MEMACS on its own screen with myfile loaded and ready to be edit
ed. The cursor will be positioned on line 17 instead of at the beginning of the
file. If myfile does not already exist, it is created.

MEMACS Command Quick Reference

Here is a list of commands you can give the MEMAC5 text editor once it is
started. In this list, a carat symbol (") means press the control key (Ctrl) at the

114 THE USER'S MANUAL

same time as the letter. For instance, /\X means hold down the control key and
press X. Esc means press the Escape key at the same time as the letter. For
instance, EscW means hold down the Escape key and press W.

FILING COMMANDS (PROJECT MENU)

/\X F

/\X/\R

/\X/\V

/\

Rename. Changes the name of the current file being edited;
MEMACS will prompt you for the new name to use.
Read-file. This commands replaces the current file with a new one.
MEMACS will prompt you for the new file to use.
Visit-file. This command lets you work with multiple files at the
same time. MEMACS will prompt you for the name of the visit file.
Enter a filename and press return and a new MEMACS window
opens showing the visit file you requested ready for editing.
Insert-file. MEMACS will prompt you for the name of the file to
insert. Enter a filename and press return and the new file is inserted
at the cursor position.
Save-file. MEMACS saves the file, overwriting the old one.
Save-file-as. MEMACS saves the file but first prompts you for a file
name to use for the save.
Save-mod. Saves the current file and any visit files only if they have
been changed. The original files are overwritten.
Save-exit. Saves any changes and exits. The original file is overwrit
ten.
New-CLI. A new Shell will open so you can enter AmigaOOS com
mands. Enter ENDSHELL or ENOCLI to close the Shell and return to
MEMACS.
CLI-command. MEMACS prompts you for an AmigaOOS command
to pass to the Shell. Any messages from AmigaOOS are displayed on
the lower half of the screen. Use ENOSHELL or ENOCLI to return to
MEMACS. (Use /\X 1 to close the Shell output window.)
Quit. Quit MEMACS. The file is not saved.

EDITING COMMANDS

/\W Kill-region (Cut). This command cuts a marked block (or region)
from the text and copies it into the kill buffer.

/\Y Yank (Paste). This command copies a previously cut block from the
kill buffer into the text at the cursor position.

AMIGADOS COMMANDS 115

A@ Set-mark. This command sets the beginning position of a marked
block for cut and paste operations. The ending position of the block
does not have to be set; it follows the cursor.

EscW Copy-region. This command copies the marked block to the kill
buffer.

AXAL Lower-region. This command makes the marked block all upper
case.

"X"U Upper-region. This command makes the marked block all lower
case.

AXAB List-buffers. MEMACS will display the list of all files currently being
edited and the size of the buffers used to hold them.

AXB Select-buffer. MEMACS prompts you for the name of the buffer you
wish to edit. Enter a name and press return.

EscAY Insert-buffer. MEMACS prompts you for the name of a file to insert
at the cursor position. Enter a name and press return.

AXK Kill-buffer. MEMACS prompts you for the name of a buffer to delete.
Enter a name and press return.

AXJ Justify-buffer. Removes all blank spaces and tabs from the left-hand
side of the current text file.

"L Redisplay. This command redraws the display screen.
"Q Quote-char. Use this key combination first if you want to type the

control character, escape, or return in your text or for searches.
"J Indent. Moves the cursor to the next line and automatically indents

the same amount of space as the previous line.
AT Transpose. Swaps the position of two adjacent characters.
AG Cancel. Ends a long command such as query search and replace.

WINDOW COMMANDS

AXI
AX2

"XN
"XP
AXZ

AXAZ

One-window. Makes the current buffer a single full-size screen.
Split-window. Splits the current buffer in half so that you can look at
two separate parts of the text at the same time.
Next-window. Moves the cursor to the next window.
Prev-window. Moves the cursor to the previous window.
Expand-window. In a split-window screen this command adds a line
to the current window and subtracts a line from the adjacent win-
dow.
Shrink-window. In a split-window screen this command subtracts a
line from the current window and adds a line to the adjacent win
dow.

EscAV Next-w-page. In a split-window screen this command makes text in
the adjacent window scroll up a page.

116 THE USER'S MANUAL
------- -

"XV Prev-w-page. In a split-window screen this command makes text in
the adjacent window scroll down a page.

MOVE COMMANDS

Esc<
Esc>
Esc,
Esc.
"X"G

"V
EscV
EscF
EscB

"Z
EscZ

Top-of-buffer. Moves the cursor to the top of the text buffer.
End-of-buffer. Moves the cursor to the last line in the text buffer.
Top-of-window. Moves the cursor to the top of the window.
End-of-window. Moves the cursor to the last line in the window.
Go-to-line. MEMACS Prompts you to enter a line number and moves
the cursor to that line.
Swap-dot&mark. Swaps the cursor position with a mark set earlier.
This lets you quickly toggle between two positions in the text.
Next-page. Scrolls the text up a page.
Prev-page. Scrolls the text down a page.
Next-word. Moves the cursor to the end of the next word.
Previous-word. Moves the cursor to the first letter of the previous
word.
Scroll-up. Scrolls the text down one line.
Scroll-down. Scrolls the text up one line.

LINE COMMANDS

"A
"E
"N
"P
Esc!
"X"O

Open-line. Splits the line at the cursor making one line into two. The
cursor stays in position at the end of the upper line.
Kill-line. Deletes the line the cursor is on and copies the text to the
kill buffer for later paste (yank) operations.
Kill-to-eol. Deletes text between the cursor and the end of the line
and copies it to the kill buffer for paste (yank) operations.
Start-of-line. Positions the cursor at the beginning of the line.
End-of-line. Positions the cursor at the end of the line.
Next-line. Moves the cursor down a line.
Previous-line. Moves the cursor up a line.
Line-to-top. Moves the line the cursor is on to the top of the window.
Delete-blanks. Deletes all blank lines between the cursor and the next
line containing any text.
Show-line#. Displays the cursor position line and column number,
and the relative amount of text above the cursor as a percent.

WORD COMMANDS

EscD Delete-forw. Deletes text between the cursor and the end of word.

AMIGADOS COMMANDS 117

EscH Delete-back. Deletes text between the cursor and the start of word.
EscU Upper-word. Changes text between the cursor and the end of word

to upper case.
EscL Lower-word. Changes text between the cursor and the end of word

to lower case.
EscC Cap-word. Change the letter under the cursor to a capital and all

remaining letters in the word to lower case.
Esc" Switch-case. Change the case of all letters between the cursor and

end of word.

SEARCH COMMANDS

"S Search-forward. MEMACS prompts you for a text string to search
for. Type in a word and press return. If the word you entered is
found MEMACS positions the cursor on it.

"R Search-backward. MEMACS prompts you for a text string to search
for. Type in a word and press return. If the word is found anywhere
in the preceding text MEMACS positions the cursor on it.

EscR Search-replace. MEMACS first prompts you for a text string to
search for and then for a text string to replace it with. Type in the
words you want to change and press return.

EscQ Query-sr. Same as searchreplace except that, for each occurrence of
the string found, MEMACS positions the cursor on it and gives you
the choice of making the replacement or not.

EscF Fence-Match. Moves the cursor to the next occurrence of the charac
ter currently under the cursor.

EXTRA COMMANDS

"U Set-argo Lets you type in a number for the next command you use.
This is especially important for the Set command.

EscS Set. Allows you to set various MEMACS parameters. MEMACS
prompts you for the name of the parameter to set as follows:

Screen

Interlace
Mode

Left
Right
Tab

Toggles between a Workbench screen and a custom
screen.
Toggles interlace mode on and off.
+cmode or -cmode toggles C editing mode features.
+wrap or -wrap toggles word wrap mode on or off.
Sets left margin.
Sets right margin.
Sets the increment for tab spacing.

118

I\X(

EscK

EscE

Format:
Template:
Purpose:
Path:

Indent
Case
Backup

THE USER'S MANUAL

Sets the indent level for cmode usage.
Toggles case-sensitive search mode on or off.
ON for automatic backups in <filename>.bak. SAFE for
backups with protection from overwriting. OFF to turn
off automatic backups.

Start-macro. Tells MEMACS to start recording any subsequent
keystrokes.
Stop-macro. Tells MEMACS to stop recording keystrokes.
Execute-macro. Automatically repeats all keystrokes and menu oper
ations performed between Start-macro and Stop-macro.
Set-key. Allows you to define keyboard shortcuts. MEMACS
prompts you for the key to define. Press a function key, help key, or
numeric keypad key and MEMACS displays its current definition.
You can type in a new definition or just press return.
Reset-keys. Restores function keys, help key, and numeric keypad
keys to their default definitions.
Execute-file. Lets you execute a file of MEMACS commands as a
script. MEMACS prompts you for the name of the file to execute.
Type in a name and press return. The script file you execute must
contain only MEMACS commands with command names typed in
exactly as they appear in the menus.
Execute-line. Lets you execute a single line of MEMACS commands.
MEMACS prompts you for the command line. Type in only
MEMACS commands with command names entered exactly as they
appear in the menus.

MORE

MORE <filename>
FILENAME/K
To display the contents of an ASCII file
SYS:Utilities/More

Specification: MORE displays the contents of the file <filename>. If the file is
not in the current directory, you must specify the complete path. If you
don't specify a file, MORE will display a file requester.

MORE also accepts input from a PIPE. Since standard input from the Pipe
Handler is of unknown length, the Backspace, >, and %n commands are dis
abled when the MORE input is from a PIPE.

AMIGADOS COMMANDS 119

If the EDITOR environment variable is defined and you are using MORE
from the Shell, you can bring up an editor to use on the file you are viewing
(type Shift-E). The EDITOR variable should have the complete path to the edi
tor specified, that is, C:ED.
Example:

1> MORE DFO:TestFile

displays the contents of the ASCII file called TestFile on the disk in drive DFO:.

Format:
Template:
Purpose:
Path:

MOUNT

MOUNT <device> [FROM <filename> 1
DEVICE/ A,FROM/K
To make a device connected to the system available
C:MOUNT

Specification: MOUNT causes AmigaDOS to recognize devices connected to
the system. When the MOUNT command is issued, MOUNT looks in the
DEVS:MountList file (or the optional FROM file) for the parameters of the
device that is being mounted. MOUNT commands are usually placed in the
Startup-sequence file.

Example: Sample uses of MOUNT in the Startup-sequence include
MOUNT Speak:

MOUNT Aux:
MOUNT Pipe:

These commands MOUNT the Speak.handler, Aux.handler, and Pipe.handler
found in the L: directory.

Format:
Template:
Purpose:
Path:

NEWCLI
(none)

NEweLl

To start a new Shell process
Internal

120 THE USER'S MANUAL

Specification: NEWCLI starts a new Shell process. It is the same as using the
NEWSHELL command. See the specifications for NEWSHELL for more
information.

Format:
Template:
Purpose:
Path:

NEWSHELL

NEWSHELL [<window specification>] [FROM <filename>]
WINDOW,FROM
To open a new interactive Shell window
C:NEWSHELL

Specification: NEWSHELL invokes a new, interactive Shell. The new window
becomes the currently selected window and process. The new window has
the same current directory, prompt string, and stack size as the one from
which it was invoked. However, each Shell window is independent, allow
ing separate input, output, and program execution.

The window can be sized, dragged, zoomed, and depth-adjusted just like
most other Amiga windows. To create a custom window, you can include the
WINDOW argument. You may specify the initial dimensions, location, and title
of the window with this <window specification> syntax:

CON:x/y/width/height/title/options
where:

x is the number of pixels from the left edge of the screen to the left bor
der of the Shell window.

y is the number of pixels from the top of the screen to the top of the
Shell window.

width is the width of the Shell window, in pixels.
height is the height of the Shell window, in pixels.
title is the text that appears in the Shell window title bar.
NEWSHELL uses the default startup file S:Shell-startup, unless a FROM file

name is specified. You might have several different Shell-startup files, each hav
ing different command aliases, for example. You can call such customized Shell
environments with FROM.

The NEWCLI command has the same effect as NEWSHELL; it invokes a
new Shell process.

AMIGADOS COMMANDS 121

Examples:

1> NEWSHELL

A new Shell window will open.

1> NEWSHELL CON:O/O/640/200/Myshe11/CLOSE

A window starting in the upper left corner of the screen and measuring 640 pix
els wide and 200 pixels high will open. The window is titled Myshell, and it has
a close gadget. If you add the command to your User-startup file, a Shell win
dow opens automatically when your Amiga is booted.

1> NEWSHELL FROM S:Programming.startup

opens a new Shell, but instead of executing the Shell-startup file, the
Programming. startup file is executed. You could have aliases and prompt com
mands in the Programming-startup file that you only use when you are pro
gramming.

Format:

Template:

NOCAPSLOCK

NOCAPSLOCK [CX_PRIORITY=<n>]

CX_PRIORITY /K/N

Purpose: To disable the Caps Lock key

Path: Extras2.0:Tools/Commodities/NoCapsLock

Specification: NOCAPSLOCK is a Commodity Exchange program that tem
porarily disables the Caps Lock key.

CX_PRIORITY=<n> sets the priority of NoCapsLock in relation to all the
other Commodity Exchange programs. All the Commodity Exchange programs
are set to a default priority of O.

To kill NoCapsLock, press Ctrl-E.

Example:

1> NOCAPSLOCK

122

Format:
Template:

THE USER'S MANUAL

NOFASTMEM

NOFASTMEM
(none)

Purpose: To force the Amiga to use only resident Chip RAM
Path: SYS:System/NoFastMem

Specification: NOFASTMEM disables any Fast (or expansion) RAM used by
the system. The expansion memory can be turned on again by sending the
NoFastMem program a break, either via the BREAK command or by typing
Ctrl-C. Ctrl-C will only work if you don't start the program with the RUN
command.

Example:

1> NOFASTMEM

Format:
Template:
Purpose:
Path:

OVERSCAN

OVERSCAN [FROM <filename>] [EDIT] [USE] [SAVE]
FROM,EDIT /S,USE/S,SA VE/S
To change the sizes of the display areas for text and graphics
SYS: Prefs/ Overscan

Specification: OVERSCAN without any arguments or with the EDIT argu
ment opens the Overscan editor. The FROM argument lets you specify a file
to open. This must be a file that was previously saved with the Save As
menu item of the Overscan editor. For instance, if you have saved a special
configuration of the Overscan editor to a file in the Presets drawer, you can
use the FROM argument to open that file. If the USE switch is also given,
the editor will not open, but the settings in the FROM file will be used. If
the SAVE switch is given, the editor will not open, but the settings in the
FROM file will be saved.

Example:

1> OVERSCAN Prefs/Presets/Overscan.graphics SAVE

loads and saves the Overscan sizes saved in the Overscan.graphics file.

AMIGADOS COMMANDS 123

PALETTE

Format: PALETTE [FROM <filename>] [EDIT] [USE] [SAVE]
Template: FROM,EDIT /S,USE/S,SA VE/S
Purpose: To change the colors of the Workbench screen
Path: SYS:Prefs/Palette
Specification: PALETTE without any arguments or with the EDIT argument

opens the Palette editor. The FROM argument lets you specify a file to
open. This must be a file that was previously saved with the Save As menu
item of the Palette editor. For instance, if you have saved a special configu
ration of the Palette editor to a file in the Presets drawer, you can use the
FROM argument to open that file. If the USE switch is also given, the editor
will not be opened, but the settings in the FROM file will be used. If the
SAVE switch is given, the editor will not open, but the settings in the
FROM file will be saved.

Example:

1> PALETTE Prefs/Presets/Palette.grey USE

loads and uses the colors saved in the Palette. grey file. If the system is rebooted,
the previously saved colors are used.

Format:
Template:
Purpose:

PATH

PATH [{<dir>}] [ADD] [SHOW] [RESET] [QUIET] [REMOVE]
PATH/M,ADD /S,SHOW /S,RESET /S,QUIET IS, REMOVE/S
To control the directory list that the Shell searches to find com
mands

Path: Internal
Specification: PATH lets you see, add to, or change the search path that

AmigaDOS follows when looking for a command or program to execute.
When a directory is in the search path, you no longer need to specify the
complete path to any files or subdirectories within that directory. You can
just enter the filename, and AmigaDOS will look through the directories in
the search path until it finds the file.

Enter the PATH command alone, or with the SHOW option, and the directo
ry names in the current search path will be displayed. Normally, when PATH is
displaying the directory names, a requester appears if a volume that is part of

124 THE USER'S MANUAL

the search path cannot be found. For instance, if you added a floppy disk to the
search path, then removed that disk from the disk drive, a requester would ask
you to insert the disk.

If you specify the QUIET option, PATH will not display requesters for vol
umes that are not currently mounted. If PATH encounters an unmounted vol
ume, it simply displays the volume name. The names of any directories on that
volume included in the PATH are not displayed.

The ADD option specifies directory names to be added to the current PATH.
You can add up to ten directories with one PATH ADD command (the ADD
keyword is optional); names of the directories must be separated by at least one
space. When you issue the PATH command, AmigaDOS searches for each of
the ADDed directories.

To replace the existing search path with a completely new one, use PATH
RESET followed by the names of the directories. The existing search path,
except for the current directory and SYS:C, is erased and the new one is substi
tuted.

The REMOVE option eliminates the named directory from the search path.

Examples:

1> PATH EXTRAS2.0:Too1s ADD

adds the Tools directory on the Extras2.0 disk to the search path of the Shell. If
the Extras2.0 disk is not in a disk drive, a requester will ask you to insert it in
any drive.

If you remove Extras2.0 from the drive, and type:

1> PATH

a list of directories in the search path will be displayed. A requester will ask you
to insert Extras2.0. However, if you had typed:

1> PATH QUIET

The list of directories in the search path will be displayed; however, when the
path comes to Extras2.0:Tools, only the volume name, Extras2.0:, will appear in
the list.

See also: ASSIGN

Format:
Template:
Purpose:
Path:

AMIGADOS COMMANDS

POINTER

POINTER [FROM <filename>] [EDIT] [USE] [SAVE]
FROM,EDIT /S,USE/S,SA VE/S
To change the appearance of the screen pointer
SYS:Prefs /Pointer

125

Specification: POINTER without any arguments or with the EDIT argument
opens the Pointer editor. The FROM argument lets you specify a file to
open. This must be a file that was previously saved with the Save As menu
item of the Pointer editor. For instance, if you have saved a special version
of the pointer to a file in the Presets drawer, you can use the FROM argu
ment to open that file. If the USE switch is also given, the editor will not be
opened, but the settings in the FROM file will be used. If the SAVE switch is
given, the editor will not open, but the settings in the FROM file will be
saved.

Example:

1> POINTER Prefs/Presets/Pointer.star USE

loads and uses the pointer saved in the Pointer. star file. If the system is reboot
ed, the previously saved pointer appears.

PRINTER

Formal: PRINTER [FROM <filename>] [EOTTI [USE] [SAVE]
Template: FROM,EDIT /S,USE/S,SA VE/S
Purpose: To specify a printer and print options
Path: SYS:Prefs/Printer
Specification: PRINTER without any arguments or with the EDIT argument

opens the Printer editor. The FROM argument lets you specify a file to
open. This must be a file that was previously saved with the Save As menu
item of the Printer editor. For instance, if you have previously saved a
printer configuration in a file in the Presets drawer, you can use the FROM
argument to open that file. If the USE switch is also given, the editor will
not be opened, but the settings in the FROM file will be used. If the SAVE
switch is given, the editor will not open, but the settings in the FROM file
will be saved.

Example:

126 THE USER'S MANUAL

1> PRINTER Prefs/Presets/Printer.epson SAVE

loads and saves the specifications saved in the Printer.epson file.

PRINTERGFX

Format: PRINTERGFX [FROM <filename>] [EDIT] [USE] [SA VEl
Template: FROM,EDIT /S,USE/S,SA VE/S
Purpose: To specify graphic printing options
Path: SYS:Prefs/PrinterGfx
Specification: PRINTERGFX without any arguments or with the EDIT argu

ment opens the PrinterGfx editor. The FROM argument lets you specify a
file to open. This must be a file that was previously saved with the Save As
menu item of the PrinterGfx editor. For instance, if you have saved a special
set of PrinterGfx options to a file in the Presets drawer, you can use the
FROM argument to open that file. If the USE switch is also given, the editor
will not be opened, but the settings in the FROM file will be used. If the
SAVE switch is given, the editor will not open, but the settings in the
FROM file will be saved.

Example:

1> PRINTERGFX Prefs/Presets/PrinterGfx.halftone USE

loads and uses the specifications saved in the PrinterGfx.halftone file. If the sys
tem is rebooted, the last saved specifications will be loaded.

PRINTFILES

Format: PRINTFILES {H] <filename>}
Template: -flS,FILENAME/ A/M
Purpose: To send file(s) to the printer
Path: Extras2.0:Tools/PrintFiles
Specification: PRINTFILES prints the specified file. The -f flag turns on the

form feed mode. When printing multiple files, be sure to specify the flag
before each filename.

Example:

AMIGADOS COMMANDS 127

1> PRINTFILES -f DFO:testfile -f DFO:docfile

prints the testfile and docfile files, stored on the disk inserted in drive DFO:. The
-f argument adds a form feed between the two files so that they each start on a
new page.

Format:
Template:
Purpose:
Path:

PROMPT

PROMPT [<prompt>]
PROMPT
To change the prompt string of the current Shell
Internal

Specification: PROMPT allows you to customize the prompt string, the text
printed by the Shell at the beginning of a command line. The prompt string
may contain any characters, including escape sequences. (In the examples
in this manual, the prompt string is shown as 1>.)

The default prompt string is:

J/%N.%S> II

which displays the Shell number, a period, the current directory, a right angle
bracket, and a space.

The substitutions available for the <prompt> string are:

%N Displays the Shell number.
%S Displays the current directory.
%R Displays the return code for the last operation.

A space is not automatically added to the end of the string. If you want a space
between the prompt and typed-in text, place it in the string, and enclose the
string in double quotes.

You can embed commands in the prompt string by enclosing the command
in backward quotes O.

PROMPT alone, without a string argument, resets the prompt to the default.
Examples:

1> PROMPT %N
1

128 THE USER'S MANUAL

Only the Shell number is shown. The> is removed from the prompt.

1> PROMPT -%N.%S.%R> -
1. SYS: .0>

The Shell number, current directory, and return code of the previous command
are shown. A space is included after the >.

1> PROMPT - 'date'>
Tuesday 11-Sep-90 14:36:39>

The DATE command is executed and used as the prompt. The prompt is not
updated as the time changes. You would have to execute the PROMPT com
mand again to update the Shell prompt.

Format:

Template:
Purpose:
Path:

PROTECT

PROTECT [FILE] <file I pattern> [FLAGS] [+ I -] [<flags>]
[ADD I SUB] [ALL] [QUIET]
FILE/ A,FLAGS,ADD/S,SUB/S,ALL/S,QUIET /S
To change the protection bits of a file
C:PROTECT

Specification: All files have a series of protection bits stored with them which
control their attributes. These bits can be altered to indicate the type of file
and the file operations permitted. PROTECT is used to set or clear the pro
tection bits of a file.

The protection bits are represented by letters:

r The file can be read.
w The file can be written to (altered).
e The file is executable (a program).
d The file can be deleted.
s The file is a script.
p The file is a pure command and can be made resident.
a The file has been archived.

To see the protection bits associated with a file, use the LIST command. The
protection field is displayed with set (on) bits shown by their letters and clear

AMIGADOS COMMANDS 129

(off) bits shown by hyphens. For instance, a file that is readable, writable, and
deletable will have - - - -rw-d in the protection field.

To specify the entire protection field at once, simply give the letters of the bits
you want set as the FLAGS argument, without any other keywords. The named
bits will be set, and all the others will be cleared.

The symbols + and - (or the equivalent keywords ADD and SUB) are used to
control specific bits without affecting the state of unspecified bits. Follow + or -
with the letter(s) of the bit(s) to set or clear, respectively, and only those bits will
be changed. Don't put a space after the symbol or between the letters. The order
of the letters does not matter. ADD and SUB work similarly, but there must be a
space between the keyword and the letter(s). You cannot both set and clear bits
in the same command.

The ALL option adds or removes the specified protection bits from all the
files in the specified directory. The QUIET option suppresses the screen output.
Examples:

1> PROTECT DFO:Memo +rw

sets only the protection bits r (readable) and w (writable) to the file Memo on
DFO:. No other protection bits are changed.

1> PROTECT L:#? e SUB

clears the e (executable) protection bit from all the files in the L: directory.

1> PROTECT Work:Paint rwed

The protection status of Paint becomes U - - - -rwed".
See Also: LIST

Format:
Template:
Purpose:
Path:

QUIT

QUIT [<return code>]
ReiN
To exit from a script file with a specified return code
Internal

Specification: QUIT is used to stop the execution of the script upon the speci
fied return code. The default return code is zero. It is recommended that
you use the standard return code values of 5,10, and 20.

130 THE USER'S MANUAL

Example:

ASK HDo you want to stop now?H

IF WARN

QUIT 5

ENDIF

ECHO HOK, the script is continuing. H

If you press Y at the prompt, the script will be aborted, as WARN is equal to
a return code of 5. If you press N or press Return:

OK, the script is continuing.

will be displayed in the Shell window.

Format:
Template:
Purpose:
Path:

-- - --- -------------

RELABEL

RELABEL [DRIVE] <drive> [NAME] <name>

DRIVEl A,NAMEI A
To change the volume name of a disk
C:RELABEL

Specification: RELABEL changes the volume name of the disk in the given
drive to the <name> specified. Volume names are set initially when you
format a disk.

If you have a floppy disk system with only one disk drive, be sure to specify
the disks by volume name, instead of drive name.
Examples:

1> RELABEL Workbench2.0: My2.0Disk

changes the name of the Workbench2.0 disk to My2.0Disk. Notice that you
don't need the colon after the second name.

1> RELABEL DF2: DataDisk

changes the name of the disk in DF2: to DataDisk.

AMIGADOS COMMANUS 131
---- ----- ---- ---- ----- ---------

Format:
Template:
Purpose:
Path:

REMRAD

REMRAD [<drive>] [FORCE]
DEVICE,FORCE/S
To remove the recoverable ramdrive.device
C:REMRAD

Specification: If you want to remove the recoverable ramdrive.device (usually
mounted as RAD:) from memory, and you do not want to turn the system
oft you can use the REMRAD command. If you have mounted more than
one recoverable ramdrive.device, use the DRIVE specification.

REMRAD commands the ramdrive.device to delete all of its files and become
inactive. The next time the Amiga is rebooted, the ramdrive.device is removed
from memory completely. If the device is in use at the time the REMRAD com
mand is given, the operation aborts with a drive in use message. To remove it
even if it is in use, you must use the FORCE option.

Format:
Template:
Purpose:
Path:

RENAME

RENAME [{FROM}] <name> [TO I AS] <name> [QUIET]
FROM/ A/M,TO=AS/ A, QUIET /S
To change the name of a file or directory
C:RENAME

Specification: RENAME renames the FROM file or directory with the speci
fied TO name. FROM and TO must be on the same disk. If the name refers
to a directory, RENAME leaves the contents of the directory unchanged.
(The directories and files within that directory keep the same names and
contents.)

If you rename a directory, or if you use RENAME to give a file another direc
tory name (for example, you rename :Bill/Letter to :Mary /LeUer), AmigaDOS
changes the position of that directory or file in the filing system hierarchy.

I The colon before the directory indicates that the directory is in the ro~
~ectory. J

Examples:

1> RENAME Work/Prog1 AS :Artnur/Example

132 THE USER'S MANUAL

renames the file Progl as Example, and moves it from the Work directory to the
Arthur directory. The Arthur directory must exist in the root directory for this
command to work.

1> RENAME 7.2Fax 8.16Fax 9.22Fax TO Faxes

moves the 7.2Fax, 8.16Fax, and 9.22Fax files to the Faxes directory. The Faxes
directory must already exist.

Format:

Template:

RESIDENT
---- -----

RESIDENT [<resident name>] [<filename>] [REMOVE] [ADD]
[REPLACE] [PURE I FORCE][SYSTEM]
NAME,FILE,REMOVE/S,ADD /S,REPLACE/S,PURE=FORCE
IS,SYSTEM/S

Purpose: To display and modify the list of resident commands
Path: Internal
Specification: RESIDENT is used to load commands and add them to the resi

dent list maintained by the Shell. This allows the command to be executed
without it having to be reloaded from disk each time. This eliminates the
time it takes to load the command and reduces memory use when multi
tasking.

To be made resident, a command should be both reentrant and reexecutable.
A reentrant command can properly support independent use by two or more
programs at the same time. A reexecutable command does not have to be
reloaded to be executed again. Commands that have these characteristics are
called pure and have the p (pure) protection bit set.

1

,- LIST the C: directory to check for the presence of the p protection bit tol

L d~termine wh~ch commands are pure. ________ ~

Many of the commands in the C: directory, as well as the More command in
Utilities, are pure commands and can be made resident. If a command does not
have its pure bit set, it probably cannot be made resident safely. (Just setting the
pure bit does not make a command or program pure.)

The REPLACE option is the default option and does not need to be explicitly
stated. If RESIDENT is invoked with no options, it lists the programs on the res
ident list. If no <resident name> is specified (that is, just a filename is specified),
RESIDENT will use the filename portion as the name on the resident list.

AMIGADOS COMMANDS 133

Note: The full path to the file must be used.

If a <resident name> is specified and RESIDENT finds a program with that
name already on the list, it will attempt to replace the command. That <resident
name> must then be used to reference the resident version of the command.
The replacement will succeed only if the already-resident command is not in
use.

To override REPLACEment and make several versions of a command resi
dent simultaneously, use the ADD option, giving a different <resident name>
for each version loaded.

If the SYSTEM option is specified, the command is added to the system por
tion of the resident list. Any commands added to the resident list with the SYS
TEM option cannot be removed. To list SYSTEM files on the RESIDENT list,
you must specify the SYSTEM option.

The PURE option forces RESIDENT to load commands that are not marked
as pure (that is, they do not have their pure bit set), and can be used experimen
tally to test the pureness of other commands and programs.

WARNING: Use the PURE option with caution. Remember that for a
command to be made RESIDENT, it must be both reentrant and reexe
cutable. Although it is unlikely, some of your programs may be pure
enough to be fully reentrant and usable by more than one process at the
same time. Other programs may not be fully reentrant but may be pure
enough to be reexecutable. Such commands can be made RESIDENT, but
you must be extremely careful to use the command in only one process at
a time.

The availability of Internal commands can also be controlled with RESI
DENT. To deactivate an Internal command (for instance, if an application has
its own command of the same name), use RESIDENT <Command> REMOVE.
AmigaDOS will no longer recognize the Internal command. The AmigaDOS
command can be reactivated with the REPLACE option.
Examples:

1> RESIDENT C:COPY

makes the COpy command resident (replaces any previous version).
1> RESIDENT Copy2 DF1:C/COPY ADD

adds another version of COpy to the resident list, under the name Copy2.

134 THE USER'S MANUAL

1> RESIDENT Xdir DF1:C/Xdir PURE

makes an experimental, non pure version of the DIR command resident.

1> RESIDENT CD REMOVE

makes the Internal CD command unavailable.

1> RESIDENT CD REPLACE

restores the CD command to the system.

See also: PROTECT

------ -- - -- - -- - -- - -- - ------ -----

Format:

Template:

Purpose:

Path:

RUN

RUN <command> [+ {<command>}]

COMMAND/F

To execute commands as background processes

CRUN

Specification: RUN is used to launch background processes. A background
process does not open its own window for input or output and does not
take over the parent Shell.

RUN attempts to execute the <command> and any arguments entered on the
command line. You can RUN multiple commands by separating them with plus
signs (+). If you press Return after a plus sign, RUN will interpret the next line
as a continuation of the same command line.

To allow the closing of the Shell window in which the process was started,
redirect the output of RUN with RUN >NIL: <command>. A new background
Shell has the same search path and command stack size as the Shell from which
RUN was given.

You can RUN commands stored on the resident list. For speed, resident com
mands are checked before commands in the command path. A Shell started
with RUN NEWSHELL still uses the default startup file, S:Shell-startup.

AMIGAOOS COMMANDS

Examples:

1> RUN COPY Text PRT:+
DELETE Text +
ECHO llPrinting finished ll

135

prints the Text file by copying it to the printer device, deletes it, then displays
the given message. Plus signs are used to concatenate the command lines.

1> RUN EXECUTE Comseq

executes, in the background, all the commands in the file Comseq.

SAY

Format: SAY [-m] [-f) [-r] [-n] [-s <n>] [-p <n>] [-x <filename>]
Template: -m/S,-f/S,-r /S,-n/S,-s/K/N,-p /K/N,-x/K
Purpose: To speak phrases or files through the Amiga
Path: SYS:Utilities/Say
Specification: SAY utilizes the Amiga's speech capabilities. It supports the

same options as when run through the Workbench, except that when run
through the Shell, you can specify a file and its contents will be spoken. The
options are:

-m Specifies a male voice.
-f Specifies a female voice.
-r Specifies a robot voice.
-n Specifies a natural voice.
-s <n> Type the -s option, followed by a number from 40 to 400 to

control the speed of the voice. Do not put a space between
the -s and the number.

-p <n> Type the -p option, followed by a number from 65 to 320 to
control the pitch of the voice.

-x <filename> Type the -x option followed by a filename, and the Amiga
will "read" the contents of that file.

Do not forget the hyphen before each alphabetical option.
Example:

1> SAY -m -s125 -p65 -x s:startup-sequence

136 THE USER'S MANUAL

The Amiga will read the contents of the Startup-sequence file in a male voice at
a moderately paced speed.

-- - -------------------

SCREENMODE

Format: SCREENMODE [FROM <filename>] [EDIT] [USE] [SA VEl
Template: FROM,EDIT /S,USE/S,SA VE/S
Purpose: To select a display mode
Path: SYS:Prefs/ScreenMode
Specification: SCREENMODE without any arguments, or with the EDIT

argument, opens the ScreenMode editor. The FROM argument lets you
specify a file to open. This must be a file that was previously saved with the
Save As menu item of the ScreenMode editor. For instance, if you have pre
viously saved your ScreenMode settings to a file in the Presets drawer, you
can use the FROM argument to open that file. If the USE switch is also
given, the editor is not opened, but the settings in the FROM file are used. If
the SAVE switch is given, the editor will not open, but the settings in the
FROM file will be saved.

Example:

1> SCREENMODE Prefs/Presets/ScreenMode.Hires USE

You will be prompted to close all nondrawer windows, and the system will
reset and use the settings saved in the ScreenMode.Hires file. The editor win
dow will not open. When the system is rebooted, the display mode returns to
the last selection saved.

- --- -------------------------

Format:

Template:

Purpose:

Path:

SEARCH

SEARCH [FROM] <name I pattern> [SEARCH I NAME]
<string I pattern> [ALL] [NONUM] [QUIET] [QUICK] [FILE]
[PATTERN]
FROM/M,SEARCH/ A,ALL/S,NONUM/S,QUIET IS,
QUICK/S, FILE/S,PATTERN/S
To look for the specified text string in the file of the specified
directory or directories
C:SEARCH

AMIGAOOS COMMANDS 137

Specification: SEARCH looks through all the files in the FROM directory for
the given SEARCH string. (The FROM and SEARCH keywords are option
al.) If the ALL switch is given, SEARCH also looks through all the subdirec
tories of the FROM directory. SEARCH displays the name of the file being
searched and any line that contains the text sought. You must place quota
tion marks around any search text containing a space. The search is case
indifferent (capitalization is ignored).

The options are as follows:

NONUM
QUIET
QUICK
FILE

Line numbers are not printed with the strings.
Searches quietly; filenames being searched are not displayed.
Uses a more compact output format.
Looks for a file by the specified name, rather than for a string in
the file.

PATTERN Uses pattern matching in the search.
SEARCH leaves a 0 in the condition flag if the object is found, and a 5

(WARN) otherwise. This makes it useful in scripts. To abandon the search of
the current file and continue to the next file, if any, type Ctrl-O. SEARCH is
aborted when a Ctrl-C is typed.
Examples:

1> Search DEVS: alternative
(dir)

Keymaps (dir)
Printers (dir)

clipboard.device ..
MountList ..

14 /* This is an example of an alternative type of non
filing device mount.
narrator.device ..
parallel.device ..
printer.device ..
serial. device ..
system-configuration ..

searches through the OEVS: directory for the word alternative. It is found on
line 14 of the MountList file.

1> SEARCH Universe: Ulntelligent life u ALL

138 THE USER'S MANUAL

searches for Intelligent life (or intelligent life) in every file on the volume
Universe:.

1> SEARCH Work:#?source SEARCH Progtest.c?? FILE PATTERN

locates all Progtest.c files with a two-character suffix in directories ending in
.source in the Work volume.

Format:
Template:
Purpose:

Path:

SERIAL

SERIAL [FROM <filename>] [EDIT] [USE] [SAVE]
FROM,EDIT /S,USE/S,SA VE/S
To set the specifications for communication through the serial
port
SYS:Prefs / Serial

Specification: SERIAL without any arguments or with the EDIT argument
opens the Serial editor. The FROM argument lets you specify a file to open.
This must be a file that was previously saved with the Save As menu item
of the Serial editor. For instance, if you have saved a special configuration
of the Serial editor to a file in the Presets drawer, you can use the FROM
argument to open that file. If the USE switch is also given, the editor will
not open, but the settings in the FROM file will be used. If the SAVE switch
is given, the editor will not open, but the settings in the FROM file will be
saved.

Example:

1> SERIAL Prefs/Presets/Serial.9600 USE

loads and uses the specifications saved in the Seria1.9600 file. If the system is
rebooted, the last saved settings will take effect.

~-----

Format:
Template:
Purpose:
Path:

SET
--~ ---~---------

SET [<name>] [<string>]
NAME,STRING/F
To set a local variable
Internal

AMIGADOS COMMANDS 139

Specification: SET with <name> and <string> arguments creates a new envi
ronment variable. The first word after SET is taken as the <name>.
Everything else on the command line is taken as the <string> argument.
Quotation marks are not required.

SET with no arguments list the current local variables.
An environment variable created with SET is local to the Shell in which it was

created. If you create a new Shell with the NEWSHELL command, that Shell
will also recognize any variables created in its parent Shell. However, if you
create a new Shell with the Execute Command menu item or by opening the
Shell icon, variables created with SET are not recognized.

You can call environment variables in a script or on a command line by plac
ing a dollar sign ($) in front of the variable name. To remove a local variable
definition, use the UNSET command.
Examples:

1> SET origin This process launched from icon

creates the local variable origin which stores a reminder that a Shell was
invoked from an icon rather than a NEWSHELL.

1> ECHO $origin
This process launched from icon.

See also: GET, UNSET

Format:
Template:
Purpose:
Path:

SETCLOCK

SETCLOCK LOAD I SAVE I RESET
LOAD /S,SA VE/S,RESET /S
To set or read the battery backed-up hardware clock
C:SETCLOCK

Specification: SETCLOCK SA VE sets the date and time of the battery backed
up hardware clock from the current system time (saved with the Time edi
tor or with the DATE command). SETCLOCK SAVE is typically used after a
DATE command.

SETCLOCK LOAD sets the current system time from the battery backed-up
clock. It is typically included in the Startup-sequence to automatically load the
correct time when the Amiga is booted. The RESET option resets the clock com-

140 THE USER'S MANUAL
-- ------------------------

pletely. This may be necessary if a poorly written program that does not follow
the rules turns the clock off or sets the test bit of the clock.
Example:

1> DATE 17-Aug-92 05:45:54
1> SETCLOCK SAVE

saves the date, August 17, 1992, and the time, 5:45 a.m., to the battery backed
up hardware clock. That clock keeps time even when the Amiga is powered off.
When the system is booted, the SETCLOCK LOAD command in the Startup
sequence sets the system clock with the time saved in the hardware clock.
See also: DATE

The battery backed-up clock keeps the time even when the Amiga is
turned off. Amiga 500s do not have battery backed-up clocks, unless an
A501 RAM expansion cartridge has been installed.

Format:

Template:
Purpose:
Path:

SETDATE

SETDATE <file I pattern> [<weekday-name>] [<date>]
[<time>] [ALL]
FILE/ A,WEEKDAY,DATE,TIME,ALLIS
To change a file or directory's timestamp
C:SETDATE

Specification: SETDATE changes the timestamp (date and time of creation or
last change) of a file or directory. SETDATE <file> changes the date/time of
the file to the current system date/time. SETDATE does not affect the soft
ware or hardware clocks. The output of the DATE command may be used as
input to SETDATE.

Examples:

1> SETDATE TestFile

changes the date and time associated with TestFile to the current date and time.

1> SETDATE TestFile 16-09-89 15:25:52

change the date and time associated with TestFile to September 16, 1989,3:25
p.m.
See also: DATE

Format:
Template:
Purpose:
Path:

AMIGADOS COMMANDS

SETENV

SETENV [<name>] [<string>]
NAME,STRING/F
To set a global variable
Internal

141

Specification: SETENV with <name> and <string> arguments creates a new
global environment variable. The first word after SETENV is taken as the
<name>. Everything else on the command line is taken as the <string>
argument. Quotation marks are not required.

SETENV with no arguments list the current global variables. Global variables
are stored in ENV: and are used by all processes. However, if a local variable
(defined by SET) and a global variable share the same name, the local variable
will be used.

Environment variables are called by scripts or other commands by including
a dollar sign ($) in front of the variable name.

To remove a global variable definition, use the UNSETENV command.
Examples:

1> SETENV Editor Extras2.0:Tools/MErnacs
creates the environment variable Editor which can be used with the More utili
ty. This specifies the editor as being MEmacs, located in the Tools drawer of the
Extras2.0 disk. The variable Editor is available in any Shell.

1> SETENV Editor C:ED

Same as above, only the editor specified is the editor ED.
See also: GETENV, UNSETENV

Format:

Template:

Purpose:
Path:

SETFONT

SETFONT <size> [SCALE] [PROP] [ITALIC] [BOLD]
[UNDERLINE]
NAMEI A,SIZE/N I A,SCALE IS,PROP IS,IT ALIC/S,BOLD IS,
UNDERLINE IS
To change the Shell font
CSETFONT

142 THE USER'S MANUAL

Specification: SETFONT lets you change the font used in a particular Shell
window, overriding the System Default Text setting specified in the Font
editor. SETFONT is only effective in the window in which it is invoked.

You must specify both a font name and a size when using the SETFONT com
mand. The other options are:

SCALE
PROP
ITALIC
BOLD
UNDERLINE

Enables bitmap font scaling.
Allows proportional fonts.
The font will be italic.
The font will be boldface.
The font will be underlined.

Invoking SETFONT clears the Shell window of its current contents and displays
a new prompt, in the new font, at the top of the window.
Example:

1> SETFONT Topaz 13 BOLD UNDERLINE

The Shell window will clear, and the new prompt will be in 13 point Topaz,
underlined and boldface.

SETMAP

Format: SETMAP <keymap>
Template: KEYMAP / A
Purpose: To change the keymap used by the Amiga
Path: SYS:System/SetMap
Specification: SETMAP specifies the keymap used by the Amiga. The avail

able files are listed below:

Keymap Keyboard
cdn French Canadian
chI Swiss French
ch2 Swiss German
d German
dk Danish
e Spanish
f French
gb Great Britain

AMIGADOS COMMANDS 143

Italian
is Icelandic
n Norwegian
s Swedish
usaO (For programs developed before Vl.D)
usa American
usa2 Dvorak

To have the system always use a specific keymap, add the SETMAP command
to your Startup-sequence file.
Example:

To change to a French Canadian keymap, type:

1> SETMAP cdn

The keymap file must be in DEVS:Keymaps for SetMap to find it.

Format:
Template:
Purpose:
Path:

SETPATCH

SETPATCH [QUIET]
QUIET/S
To make ROM patches in system software
CSETPATCH

Specification: SETPA TCH installs temporary modifications to the operating
system. If needed, it must be run at the beginning of the Startup-sequence
file. Updated versions of SETPATCH will be made available when neces
sary as AmigaDOS development continues.

Format:
Template:
Purpose:
Path:

SKIP

SKIP [<label>] [BACK]
LABEL,BACK/S
To skip to a label when executing script files
Internal

Specification: SKIP is used in scripts to allow you to skip ahead in the script
to a <label> defined by a LAB statement. If no <label> is specified, SKIP
jumps to the next LAB statement.

144 THE USER'S MANUAL

SKIP always searches forward from the current line of the file. However,
when the BACK option is used, SKIP starts searching for the label from the
beginning of the file. This allows SKIPs to points prior to the SKIP command.

You can only SKIP back as far as the last EXECUTE statement. If there are no
EXECUTE statements in a script, you will SKIP back to the beginning of the file.

If SKIP does not find the label you specified, the command sequence termi
nates and the message Label <label> not found by Skip is displayed.
Example: Assume you have the following script, called CheckFile:

.KEY name
IF exists <name>

SKIP message
ELSE
ECHO H<name> is not in this directory.H
ENDIF
LAB message

ECHO "The <name> file does exist."
You can run the script by typing:

1> EXECUTE CheckFile Document

If the Document file exists in the current directory, the execution of the script
will skip ahead to the LAB command. The message The Document file does
exist will be displayed in the Shell window.

If the Document file is not in the current directory, the execution of the script
will jump to the line after the ELSE statement, and the message Document that
is not in this directory will be displayed.
See also: EXECUTE, LAB

Format:

Template:
Purpose:
Path:

SORT

SORT [FROM] <file I pattern> [TO] <filename> [COLST ART
<n>] [CASE] [NUMERIC]
FROM/ A,TO/ A,COLSTART /K,CASE/S,NUMERIC/S
To alphabetically sort the lines of a file
C:SORT

Specification: SORT will sort the FROM file alphabetically, line-by-line, send
ing the sorted results to the TO file. SORT assumes the file is a normal text
file in which lines are separated by Returns or line feeds. SORT normally

AMIGADOS COMMANDS 145

disregards capitalization. If the CASE switch is given, capitalized items will
be output first.

The COLSTART keyword allows you to specify the character column at
which the comparison will begin. SORT compares the lines from that point on,
and comparison will wrap around to the beginning of the line if the lines being
compared match to the end.

When the NUMERIC option is specified, the lines are interpreted as numbers
from the first column rightward, stopping at the first non-numeric character.
Lines not beginning with numbers are treated as O. The lines are output in
numerical order. If the CASE switch is given with NUMERIC, CASE is ignored.
Example:

1> SORT DFO:Glossary DFO:Glossary.alpha

sorts the lines in the Glossary file, arranges them alphabetically, and outputs
them to a new file called Glossary.alpha. The case of the words is disregarded.

Format:
Template:
Purpose:
Path:

STACK [<n>]
SIZE/N

STACK

To display or set the stack size within the current Shell
Internal

Specification: When you run a program, it uses a certain amount of stack, a
special area in memory allocated for the program. The stack required for a
program should be given in the program's documentation. However, if a
program causes system failure, you may wish to experiment with various
stack sizes.

Commands that perform operations that consist of multiple levels may
require additional stack space.

Stack sizes generally range from 4000 to 25,000 bytes. If the stack size is too
small, a system failure may occur. A stack size that is too large may take too
much memory away from other system functions.

WARNING: If you run out of stack space, you may receive a Software
Failure message. If you have altered the stack for the program that caused
the Software Failure message, try increasing the stack size.

146

Format:

Template:

Purpose:
Path:

THE USER'S MANUAL

STATUS

STATUS [<process>] [FULL] [TCB] [CLI I ALL] [COMMAND
<command>]
PROCESS/N,FULL/S,TCB/S,CLI=ALL/S,COM=COM
MAND/K
To list information about Shell/CLI processes
C:STATUS

Specification: STATUS without any arguments lists the numbers of the cur
rent Shell/CLI processes and the program or command, if any, running in
each. The <process> argument specifies a process number, and STATUS
will only give information about that process.

For information on the stacksize, global vector size, priority, and current
command for each process, use the FULL keyword. The TCB keyword is simi
lar, but omits the command information.

With the COMMAND option, you can tell STATUS to search for a command.
STATUS then scans the Shell list, looking for the specified <command>. If the
command is found, the Shell number is output, and the condition flag is set to O.
Otherwise the flag is set to 5 (WARN). This is useful in script files.
Examples:

1> STATUS 1
Process 1: Loaded as command: status

1> STATUS 1 FULL
Process 1: stk 4000, gv 150, pri 0 Loaded as command:
status
1> STATUS >RAM:Xyz COMMAND=COPY

1> BREAK <RAM:Xyz >NIL: ?

sends a break to the process executing COPY.
See also: BREAK

Format:
Template:

TIME [EDIT]
EDIT/S

TIME

Purpose:
Path:

AMIGADOS COMMANDS 147

To set the system clock
SYS:PREFS /TIME

-- ------------

Specification: TIME without any arguments or with the EDIT argument
opens the Time editor.

Example:

1> TIME

Format:

Template:
Purpose:
Path:

------- -- - -- -- -

TYPE

TYPE {<file I pattern>} [TO <name>1 [OPT HI N] [HEX] [NUM
BER]
FROM/ A/M,TO/K,OPT /K,HEX/S,NUMBER/S
To display a text file
C:TYPE

Specification: TYPE will output the contents of the named file to the current
window, if no destination is given, or to a specified output file. If more than
one filename is specified, and the TO keyword is not used, the filenames
will be typed in sequence.

The OPT H and OPT N options are also available by the HEX and NUMBER
keywords, respectively. The HEX option causes the file to be typed as columns
of hexadecimal numbers, with an ASCII character interpretation column. This
option is useful for analyzing object files. The NUMBER option numbers the
lines as they are output.

To pause output, press the Space bar. To resume output, press Backspace,
Return, or Ctrl-X. To stop output, press Ctrl-C (***BREAK is displayed).
Example:

1> TYPE DEVS:MountList

The contents of the MountList file in the DEVS: directory are displayed on the
screen.

Format:
Template:

UNALIAS

UNALIAS [<name>]
NAME

148 THE USER'S MANUAL

Purpose: To remove an alias
Path: Internal
Specification: UNALIAS removes the named alias from the alias list. With no

arguments, UNALIAS lists the current aliases.
See also: ALIAS

Format:
Template:
Purpose:
Path:

UNSET

UNSET [<name>]
NAME
To remove a local variable
Internal

Specification: UNSET removes the named local variable from the variable list
for the current process.

With no arguments, UNSET lists the current variables.
See also: SET

UNSETENV

Format: UNSETENV [<name>]
Template: NAME
Purpose: To remove a global variable
Path: Internal
Specification: UNSETENV removes the named global variable from the cur

rent variable list.
With no arguments, UNSETENV lists the current variables.

See also: SETENV

Format:

Template:

Purpose:

VERSION

VERSION [<library I device I file>] [<version #>] [<revision #>]
[<unit #>]
NAME,VERSION,REVISION,UNIT,FILE/S,INTERNALS,RES/
S,FULL/S
To find software version and revision numbers

AMIGADOS COMMANDS 149

Path: C:VERSION

Specification: VERSION finds the version and revision number of a library,
device, command, or Workbench disk. VERSION can also test for a specific
version/revision and set the condition flags if the version/revision is
greater. This is useful in scripts.

VERSION with no <library I device I file> argument prints the Kickstart ver
sion number and the Workbench version number and sets the environment
variables. If a name is specified, version attempts to open the library, device,
drive, or file and read the version information.

When a <version #> (and possibly a <revision #» is specified, VERSION sets
the condition flag to 0 if the version (and revision) number of the Kickstart,
library, or device driver is greater than or equal to the specified values.
Otherwise, the flag is set to 5 (WARN). (If a revision number is not specified, no
comparison on the revision number is performed.)

The <unit #> option allows you to specify a unit number other than O. This
may be necessary for accessing multiunit devices.

Examples:

1> VERSION

Kickstart version 36.202 Workbench version 36.77

1> VERSION Prefs/Font

Prefs/Font version 36.191

-- -- ----- - -- -- - ----- - - ----

Format:

Template:

Purpose:

Path:

WAIT

W AlI [<n>] [SEC I SECS] [MIN I MINS] [UNTIL <time>]

/N,SEC=SECS/S,MIN=MINS/S,UNTIL/K

To wait for the specified time

C:WAIT

Specification: WAIT is used in command sequences or after RUN to wait for a
certain period, or to wait until a certain time. Unless you specify otherwise,
the waiting period is 1 second.

The <n> argument specifies the number of seconds (or minutes, if MINS is
given) to wait.

150 THE USER'S MANUAL

Use the keyword UNTIL to wait until a particular time of the day, given in
the format HH:MM.

Examples:

1> WAIT 10 MINS

waits 10 minutes.

1> WAIT UNTIL 21:15

waits until 9:15 p.m.

Format:

Template:

Purpose:

Path:

WBCONFIG

WBCONFIG [FROM <filename>] [EDIT] [USE] [SAVE]

FROM,EDIT /S,USE/S,SA VE/S

To control the appearance of the backdrop window and the
option of bringing windows to the front by double-clicking in
them

SYS:Prefs /WBConfig

Specification: WBCONFIG without any arguments or with the EDIT argu
ment opens the WBConfig editor. The FROM argument lets you specify a
file to open. This must be a file that was previously saved with the Save As
menu item of the WBConfig editor. For instance, if you have saved a special
configuration of the WBConfig editor to a file in the Presets drawer, you
can use the FROM argument to open that file. If the USE switch is also
given, the editor will not open, but the settings in the FROM file will be
used. If the SAVE switch is given, the editor will not open, but the settings
in the FROM file will be saved.

Example:

1> WBCONFIG Prefs/Presets/Backdrop.on USE

loads the settings saved in the Backdrop.on file. If the system is rebooted, the
last saved specifications will be loaded.

AMIGADOS COMMANDS 151
- - ------- ------ -----

Fomlat:

Template:

Purpose:

Path:

WBPATTERN

WBPATTERN [FROM <filename>] [EDIT] [USE] [SAVE]
[WORKBENCH] [WINDOW]

FROM,EDIT /S,USE/S,SAVE/S,WORKBENCH/S, WIN
DOW/S

To create background patterns for the Workbench and win
dows

SYS:Prefs/WBPattern

Specification: WBP A TTERN with no arguments or with the EDIT argument
opens the WBPattern editor.

The FROM argument must be used in combination with a WORKBENCH or
WINDOW switch. (You can use more than one switch.) This allows you to spec
ify a particular pattern to be used in the designated area(s) of the screen. The
FROM file must be one that was previously saved with the Save As menu item
of the WBPattern editor's Project menu. Even if the pattern in the FROM file
was originally saved for one area of the screen, it can be used in a different area
of the screen by specifying the appropriate switch. For instance, if the FROM
file was created when you saved a pattern for the Workbench, that pattern can
be used in the windows by specifying the WINDOW switch after the filename.

If you specify the USE option, the pattern will be loaded into the appropriate
area and used, just as if you had opened the WBPattern editor, selected the
appropriate radio button, created the pattern, and selected the Use gadget. If
you specify the SAVE option, that pattern will be saved.

If you do not specify USE or SA VE, EDIT is assumed, and the WBPattern edi
tor is opened. If a FROM file and a WORKBENCH or WINDOW switch is speci
fied, the Font editor will open, the pattern saved in the FROM file is displayed,
and the appropriate radio button is selected. If no switch is specified with the
FROM file, the editor displays the last used pattern.

Examples:

1> WBPATTERN FROM SYS: Prefs/Presets/Diamonds WORKBENCH

SAVE

loads and saves the pattern saved in the Diamond file as the background pat
tern for the Workbench.

1> WBPATTERN FROM SYS:Prefs/Presets/Dots WTNDOWS

152 THE USER'S MANUAL

opens the WBPattern editor. The pattern saved in the Dots file appears in the
magnified view, and the Windows radio button is selected. You must select the
Save, Use, or Cancel gadget to proceed.

WHICH

Format:

Template:

WHICH <command> [NORES] [RES] [ALL]

FILE/ A,NORES/S,RES/S,ALL/S

Purpose:

Path:

To search the command path for a particular item

C:WHICH

Specification: WHICH lets you find a particular command, program, or direc
tory by entering its name. If the named item is in the search path, WHICH
displays the complete path to that item. WHICH lists resident commands as
RESIDENT and internal commands as INTERNAL.

Normally, WHICH searches the resident list, the current directory, the com
mand path(s), and the C: directory. The condition flag is set to 5 (WARN) if the
file is not found.

If the NORES option is specified, the resident list is not searched. If the RES
option is specified, only the resident list is searched.

The ALL switch causes the search to continue through the full search path,
even after one or more instances of the named item have been found and listed.
This procedure ensures that all versions of a command or program are found. It
can, however, lead to multiple listings of the same command, if that command
is reached by more than one route (for example, C: and the current directory).

Examples:

1> WHICH avail

C:avail

1> WHICH C:

Workbench2.0:C

1> WHICH alias

INTERNAL alias

AMIGAOOS COMMANDS 153

WHY
- --- ----- ----

Format:
Template:

WHY
(none)

Purpose: To print an error message that explains why the previous com
mand failed

Path: Internal
Specification: Usually when a command fails the screen displays a brief mes

sage. This message typically includes the name of the file (if that was the
problem) but does not go into detail.

For example, the message Can't open <filename> may appear. This could
happen for a number of reasons-AmigaDOS may not be able to locate the file,
the file may be of the wrong type, or there is insufficient disk space or RAM for
the operation requested.

If the reason is not immediately obvious, enter WHY to get a more complete
explanation.
Examples:

1> COPY DFO:
Bad arguments

1> WHY
Last command failed because required argument missing

The WHY message points to the error: A destination for the COpy was not
given.

AmigaDOS Command Quick Reference

ADDBUFFERS
ADD MONITOR

ALIAS
ASK
ASSIGN

AUTOPOINT
AVAIL

Commands the file system to add cache buffers.
Informs the Amiga that a non-RGB style monitor has been
added to your system.
Sets or displays command aliases.
Obtains user input when executing a script file.
Controls assignment of logical device names to file system
directories.
Automatically selects any window the pointer is over.
Reports the amount of Chip and Fast memory available.

154 THE USER'S MANUAL
---- -----

BINDDRIVERS Binds device drivers to hardware.
BINDMONITOR Assigns names to the different display modes.
BLANKER Causes the monitor screen to go blank if no input has

been received within a specified period of time.
BREAK Sets attention flags in the specified process.
CALCULATOR Provides an on-screen calculator.
CD Sets, changes, or displays the current directory.
CHANGET ASKPRI Changes the priority of a currently running process.
CLOCK Provides an on-screen clock.
CMD Redirects printer output to a file.
COLORS Changes the colors of the frontmost screen.
COPY Copies files or directories.
CPU Sets or clears the CPU caches, checks for a particular pro

cessor, loads the ROM image into fast, 32-bit memory, or
sets an illegal memory access handler which will output
information over the serial port at 9600 baud if a task
accesses page zero (lower 256 bytes) or memory above
16M.

DATE
DELETE
DIR
DISKCHANGE

DISKCOPY
DISKDOCTOR
DISPLAY
ECHO
ED
EDIT

ELSE
ENDCLI
ENDIF
ENDSHELL
ENDSKIP
EVAL
EXCHANGE

EXECUTE
FAIL AT

FAULT

Displays or sets the system date and/ or time.
Deletes files or directories.
Displays a sorted list of the files in a directory.
Informs the Amiga that you have changed a disk in a disk
drive.
Copies the contents of one disk to another.
Attempts to repair a corrupted disk.
Displays graphics saved in IFF ILBM format.
Displays a string.
Edits text files (a screen editor).
Edits text files by processing the source file sequentially (a
line editor).
Specifies an alternative for an IF statement in a script file.
Ends a Shell process.
Terminates an IF block in a script file.
Ends a Shell process.
Terminates a SKIP block in a script file.
Evaluates simple expressions.
Monitors and controls the Commodity Exchange pro
grams.
Executes a script with optional argument substitution.
Instructs a command sequence to fail if a program gives a
return code greater than or equal to the given value.
Prints the messages(s) for the specified error code(s).

FILENOTE
FIXFONTS
FKEY
FONT
FORMAT
GET
GETENV
GRAPHICDUMP
ICONEDIT
ICONTROL
ICONX
IF
IHELP

INFO
INITPRINTER

INPUT
INSTALL

IPREFS

JOIN
KEYSHOW
LAB
LIST
LOADWB
LOCK
MAKEDIR
MAKE LINK
MORE
MOUNT
NEWCLI
NEWSHELL
NOCAPSLOCK
NOFASTMEM
OVERSCAN
PALETTE
PATH

POINTER
PRINTER

AMIGAOOS COMMANDS

Attaches a comment to a file.
Updates the .font files of the FONTS: directory.
Assigns text to function and shifted functions keys.
Specifies the font(s) used by the system.
Formats a disk for use with the Amiga.
Gets the value of a local variable.
Gets the value of a global variable.
Prints the frontmost screen.
Edits the appearance and type of icons.
Specifies parameters used by the Workbench.
Allows execution of a script file from an icon.
Evaluates conditional operations in script files.

155

Enables the keyboard to take over certain mouse opera
tions.
Gives information about the file system(s).
Initializes a printer for print options specified in the
Preferences editors.
Specifies different speeds for the mouse and keyboard.
Writes the boot block to a formatted floppy disk, specify
ing whether it should be bootable.
Communicates Preferences information stored in the indi
vidual editor files to the Workbench.
Concatenates two or more files into a new file.
Displays the current Keymap.
Specifies a label in a script file.
Lists specified information about directories and files.
Starts Workbench.
Sets the write-protect status of a disk
Creates a new directory.
Creates a link between files.
Displays the contents of an ASCII file.
Makes a device connected to the system available.
Starts a new Shell process.
Opens a new interactive Shell window.
Disables the Caps Lock key.
Forces the Amiga to use only resident Chip RAM.
Changes the sizes of display areas for text and graphics.
Changes the colors of the Workbench screen.
Controls the directory list that the Shell searches to find
commands.
Changes the appearance of the screen pointer.
Specifies a printer and print options.

156 THE USER'S MANUAL
-------------------- ---------------------

PRINTERGFX
PRINTFILES
PROMPT
PROTECT
QUIT
RELABEL
REMRAD
RENAME
RESIDENT
RUN
SAY
SCREENMODE
SEARCH

SERIAL

SET
SETCLOCK
SETDATE
SETENV
SETFONT
SETMAP
SETPATCH
SKIP
SORT
STACK
STATUS
TIME
TYPE
UNALIAS
UNSET
UNSETENV
VERSION
WAIT
WBCONFIG

WBPATTERN

WHICH
WHY

Specifies graphic printing options.
Sends file(s) to the printer.
Changes the prompt string of the current Shell.
Changes the protection bits of a file.
Exits from a script file with a specified return code.
Changes the volume name of a disk.
Removes the recoverable ramdrive.device.
Changes the name of a file or directory.
Displays and modifies the list of resident commands.
Executes commands as background processes.
Speaks phrases or files through the Amiga.
Selects a display mode.
Looks for the specified text string in the files of the speci
fied directory or directories.
Sets the specifications for communication through the
serial port.
Sets a local variable.
Sets or reads the battery backed-up hardware clock.
Changes a file or directory's timestamp.
Sets a global variable.
Changes the Shell font.
Changes the key map used by the Amiga.
Makes ROM patches in system software.
Skips to a label when executing script files.
Alphabetically sorts the lines of a file.
Displays or sets the stack size within the current Shell.
Lists information about Shell/ CLl processes.
Sets the system clock.
Displays a text file.
Removes an alias.
Removes a local variable.
Removes a global variable.
Finds software version and revision numbers.
Waits for the specified time.
Controls the appearance of the backdrop window and the
option of bringing windows to the front by double-click
ing in them.
Creates background patterns for the Workbench and win
dows.
Searches the command path for a particular item.
Prints an error message that explains why the previous
command failed.

Chapter 3

AllligaDOS
Error Messages

This chapter lists the possible AmigaOOS errors, along with probable causes
and suggestions for recovery.

103 Not enough memory
Probable Cause: Not enough memory in your Amiga to carry out the opera

tion.
Recovery Suggestion: Close any unneeded windows and applications, then

reissue the command. If it still doesn't work, try rebooting. It may be that
you have enough memory but it has become fragmented. It is possible that
you may need to add more RAM to your system.

104 Process table full
Probable Cause: There is a limit to the number of possible processes.
Recovery Suggestion: Stop one or more tasks.

114 Bad template
Probable Cause: Incorrect command line.
Recovery Suggestion: Consult the documentation for the correct command

format.
115 Bad number

Probable Cause: The program was expecting a numeric argument.
Recovery Suggestion: Consult the documentation for the correct command

format.
116 Required argument missing

Probable Cause: Incorrect command line.

157

158 THE USER'S MANUAL

Recovery Suggestion: Consult the documentation for the correct command
format.

117 Argument after "=" missing
Probable Cause: Incorrect command line.
Recovery Suggestion: Consult the documentation for the correct command

format.
118 Too many arguments

Probable Cause: Incorrect command line.
Recovery Suggestion: Consult the documentation for the correct command

format.
119 Unmatched quotes

Probable Cause: Incorrect command line.
Recovery Suggestion: Consult the documentation for the correct command

format.
120 Argument line invalid or too long

Probable Cause: Your command line is incorrect or contains too many argu
ments.

Recovery Suggestion: Consult the documentation for the correct command
format.

121 File is not executable
Probable Cause: You misspelled the command name, or the file may not be a

load able (program or script) file.
Recovery Suggestion: Retype the filename and make sure that the file is a

program file. Remember, to execute a script, either the s bit must be set or
the EXECUTE command must be used.

122 Invalid resident library
Probable Cause: You are trying to use commands with a previous version of

AmigaOOS, for example, Version 2.0 commands with Version 1.3.
Recovery Suggestion: Reboot with the current version of AmigaOOS.

202 Object is in use
Probable Cause: The specified file or directory is already being used by

another application. If an application is reading a file, no other program
can write to it, and vice versa.

Recovery Suggestion: Stop the other application that is using the file or direc
tory, and reissue the command.

203 Object already exists
Probable Cause: The name that you specified already belongs to another file

or directory.
Recovery Suggestion: Use another name, or delete the existing file or directo

ry, and replace it.

AMTGADOS ERROR MESSAGES 159

204 Directory not found
Probable Cause: AmigaDOS cannot find the directory you specified. You may

have made a typing or spelling error.
Recovery Suggestion: Check the directory name (use DIR if necessary).

Reissue the command.
205 Object not found

Probable Cause: AmigaDOS cannot find the file or device you specified. You
may have made a typing or spelling error.

Recovery Suggestion: Check the filename (use DIR) or the device name (use
INFO). Reissue the command.

206 Invalid window description
Probable Cause: This error occurs when specifying a window size for a Shell,

ED, or ICONX window. You may have made the window too big or too
small, or you may have omitted an argument. This error also occurs with
the NEWSHELL command, if you supply a device name that is not a win
dow.

Recovery Suggestion: Reissue the window specification.
209 Packet request type unknown

Probable Cause: You have asked a device handler to attempt an operation it
cannot do. For example, the console handler cannot rename anything.

Recovery Suggestion: Check the request code passed to device handlers for
the appropriate request.

210 Object name invalid
Probable Cause: There is an invalid character in the filename or the filename

is too long. Remember, filenames cannot be longer than 30 characters and
cannot contain control characters.

Recovery Suggestion: Retype the name, being sure not to use any invalid
characters or exceed the maximum length.

211 Invalid object lock
Probable Cause: You have used something that is not a valid lock.
Recovery Suggestion: Check that your code only passes valid locks to

AmigaDOS calls that expect locks.
212 Object not of required type

Probable Cause: You may have specified a filename for an operation that
requires a directory name, or vice versa.

Recovery Suggestion: Consult the documentation for the correct command
format.

213 Disk not validated
Probable Cause: If you have just inserted a disk, the disk validation process

may be in progress. It is also possible that the disk is corrupt.
Recovery Suggestion: If you've just inserted the disk, wait for the validation

process to finish. This may take less than a minute for a floppy disk or up

160 THE USER'S MANUAL

to several minutes for a hard disk. If the disk is corrupt, it cannot be vali
dated. In this case, try to retrieve the disk's files and copy them to another
disk. You may have to use DISKDOCTOR.

214 Disk is write-protected
Probable Cause: The plastic tab is in the write-protect position.
Recovery Suggestion: If you're certain you want to write to that particular

disk, remove the disk, move the tab, and reinsert the disk. Otherwise, use a
different disk.

215 Rename across devices attempted
Probable Cause: RENAME only changes a filename on the same volume. You

can use RENAME to move a file from one directory to another, but you
cannot move files from one volume to another.

Recovery Suggestion: Use COpy to copy the file to the destination volume.
Delete it from the source volume, if desired. Then use RENAME.

216 Directory not empty
Probable Cause: This error occurs if you attempt to delete a directory that

contains files or subdirectories.
Recovery Suggestion: If you are sure you want to delete the complete directo

ry, use the ALL option of DELETE.
217 Too many levels

Probable Cause: You've exceeded the limit of 15 soft links.
Recovery Suggestion: Reduce the number of soft links.

218 Device (or volume) not mounted
Probable Cause: If the device is a floppy disk, it has not been inserted in a

drive. If it is another type of device, it has not been mounted with MOUNT.
It is also possible that you have made a typing error when specifying the
device name.

Recovery Suggestion: Insert the correct floppy disk, check the spelling of the
device name, mount the device, or revise your MountList file.

219 Seek error
Probable Cause: You have attempted to call SEEK with invalid arguments.
Recovery Suggestion: Make sure that you only SEEK within the file. You can

not SEEK outside the bounds of the file.
220 Comment is too long

Probable Cause: Your filenote has exceeded the maximum number of charac
ters (79).

Recovery Suggestion: Use a shorter filenote.
221 Disk is full

Probable Cause: There is not enough room on the disk to perform the
requested operation.

Recovery Suggestion: Delete some unnecessary files or directories, or use a
different disk.

AMIGAOOS ERROR MESSAGES 161

222 Object is protected from deletion
Probable Cause: The d (deletable) protection bit of the file or directory is

clear.
Recovery Suggestion: If you are certain that you want to delete the file or

directory, use PROTECT to set the d bit or use the FORCE option of
DELETE.

223 File is write protected
Probable Cause: The w (writeable) protection bit of the file is clear.
Recovery Suggestion: If you are certain that you want to overwrite the file,

use PROTECT to set the w bit.
224 File is read protected

Probable Cause: The r (readable) protection bit of the file is clear.
Recovery Suggestion: Use PROTECT to set the r bit of the file.

225 Not a valid DOS disk
Probable Cause: The disk in the drive is not an AmigaDOS disk, it has not

been formatted, or it is corrupt.
Recovery Suggestion: Check to make sure you are using the correct disk. If

you know the disk worked before, use DISKDOCTOR or another disk
recovery program to salvage its files. If the disk has not been formatted,
use FORMAT to do so.

226 No disk in drive
Probable Cause: The disk is not properly inserted in the specified drive.
Recovery Suggestion: Insert the appropriate disk in the specified drive.

232 No more entries in directory
Probable Cause: This indicates that the AmigaDOS call EXNEXT has no more

entries in the directory you are examining.
Recovery Suggestion: Stop calling EXNEXT.

233 Object is soft link
Probable Cause: You tried to perform an operation on a soft link that should

only be performed on a file or directory.
Recovery Suggestion: AmigaDOS uses the Action_Read_Link packet to

resolve the soft link and retries the operation.

GLOSSARY 163

Chapter 4

Glossa.ry

Arguments
Additional information supplied to commands.

Boot
The startup process for a computer. It comes from the expression "pulling

yourself up by the bootstraps."
Character pointer

Pointer to the left edge of a line window in EDIT. You use it to define the part
of a line that EDIT may alter.

Character string
Sequence of printable characters.

Command
An instruction you give directly to the computer.

Command Line Interface (CLI)
A process that decodes user input.

Console handler
See terminal handler.

Command template
The method of defining the syntax for each command.

Control combination
A combination of the CTRL key and a letter or symbol. The CTRL key is

pressed down while the letter or symbol is typed. It appears in the docu
mentation, for example, in the form CTRL-A.

Current directory
This is either the root directory or the last directory you set yourself in with

the command CD.

164 THE USER'S MANUAL

Current drive
The disk drive that is inserted and declared to be current. The default is SYS:.

Default
Initial setting, or in other words, what happens if you do nothing. In this

manual default means" in the absence of something else."
Delimiter characters

Characters used at the beginning and end of a character string.
Destination file

File being written to.
Device name

Unique name given to a device, for example, DFO: = floppy drive 0:.
Directory

A collection of files.
File

A collection of related data.
File Handle

An internal AmigaOOS value that represents an open file or device.
Filename

A name given to a file for identification purposes.
Immediate mode

Commands that are executed immediately.
Keyword

Arguments to commands that must be stated explicitly.
Logical Device

A name you can give to a directory with the ASSIGN command that you can
then use as a device name.

Memory
This is sometimes known as RAM and is where a computer stores its data

and instructions.
Multiprocessing

The execution of two or more processes in parallel, that is, at the same time.
Object Code

Binary output from an assembler or compiler and binary imput to a linker.
Output queue

Buffer in memory holding data before being written out to file.
Priority

The relative importance of a process.
Process

A job requested by the operating system or the user.
Qualified string

A string preceded by one or more qualifiers.

Queue
See Output queue.

Reboot
Restart.

Root directory

GLOSSARY 165

The top level in the filing system. Files and directories within the root direc
tory have their names preceded by a colon (:).

Sequential files
A file that can be accessed at any point by starting at the beginning and scan

ning sequentially until the point is reached.
Source file

File being read from.
Stream

An open file or device that is associated with a file handle. For example, the
input stream could be from a file and the output stream could be to the
console device.

System disk
A disk containing the Workbench and AmigaDOS commands.

Syntax
The format or "grammar" you use for giving a command.

Terminal handler
A process handling input and output from the terminal or console.

Volume name
The unique name associated with a disk.

Wild card
Symbols used to match any pattern.

--- ---

Part II

THE DEVELOPER'S
MANUAL

Chapter 5

Programming on the
Amiga

This chapter introduces the reader to programming in C or Assembler under
AmigaDOS.

Introduction
This manual assumes that you have some familiarity with either C or

Assembler. It does not attempt to teach either of these languages. An introduc
tion to C can be found in the book The C Programming Language by Brian W.
Kernighan and Dennis M. Ritchie, published by Prentice-Hall. There are a num
ber of books on writing 68000 assembler, including Programming the MC68000
by Tim King and Brian Knight, published by Addison-Wesley.

Program Development for the Amiga
This section describes how to develop programs for the Amiga. It describes

what you need before you start, how you can call the system routines, and how
to create a file that you can execute on the Amiga.

Getting Started

Before you start writing programs for the Amiga, you need the following items:

169

170 THE DEVELOPER'S MANUAL

1. Documentation on AmigaDOS and other system routines that you can call.

2. Documentation on the language you intend to use. If you intend to use
Assembler or C, then this manual tells you how to use these tools although
it does not contain any specific information normally found in a language
reference manual.

3. Header files containing the necessary Amiga structure definitions and the
values for calling the system routines that you need. Commodore-Amiga
provides these header files as included files for either C (usually ending in
.h) or Assembler (ending in .i). To use a particular resident library, you
must include one or more header files containing the relevant definitions.
For example, to use AmigaDOS from C, you must include the file "dos.h".

4. An assembler or compiler.

5. The Amiga linker as well as the standard Amiga library (amiga.lib) contain
ing functions, interface routines, and various absolute values.

Calling Resident Libraries

You should note that there are two ways of calling system routines from a user
assembly program. C programmers simply call the function as specified. You
usually call a system routine in Assembler by placing the library base pointer
for that resident library in register A6 and then jumping to a suitable negative
offset from that pointer. The offsets are available to you as absolute externals in
the Amiga library, with names of the form _ LVOname. So, for instance, a call
could be JSR _ LVOname(A6), where you have loaded A6 with a suitable
library base pointer. These base pointers are available to you from the
OpenLibrary 0 call to Exec; you can find the base pointer for Exec at location 4
(the only absolute location used in the Amiga). This location is also known as
AbsExecBase which is defined in amiga.lib.

You can call certain RAM-based resident libraries and the AmigaOOS library
in this way, if required. Note that the AmigaOOS library is called "dos.library".
However, you do not need to use A6 to hold a pointer to the library base; you
may use any other register if you need to. In addition, you may call AmigaDOS
using the resident library call feature of the linker. In this case, simply code a
JSR to the entry point and the linker notes the fact that you have used a refer
ence to a resident library. When your code is loaded into memory, the loader
automatically opens the library and closes it for you when you have unloaded.
The loader automatically patches references to AmigaDOS entry points to refer
to the correct offset from the library base pointer.

PROGRAMMING ON THE AMIGA 171

Creating an Executable Program

To produce a file that you can execute on the Amiga, you should follow the
four steps below. You can do each step either on the Amiga itself or on a suit
able cross-development computer.

1. Get your program source into the Amiga. To do this, you can type it directly
in using an editor, or you can transfer it from another computer.

2. Assemble or compile your program.
3. Link your program together, including any startup code you may require at

the beginning, and scan the Amiga library and any others you may need to
satisfy any external references.

4. Load your program into the Amiga and watch it run!

Running a Program Under the eLI
There are two ways you can run a program. First, you can run your program
under a CLI (also known as the Shell). Second, you can run your program
under the Workbench. This section describes the first of the two ways.

Running a program under the CLI (Shell) is a little like using an old-fash
ioned line-oriented teletype (TTY) system although you might find a Shell use
ful, for example, to port your program over to your Amiga as a first step in
development. To load and enter your program, you simply type the name of
the file that contains the binary and possibly follow this with a number of argu
ments.

Initial Environment in Assembler
When you load a program under a Shell, you type the name of the program and
a set of arguments. You may also specify input or output redirection by means
of the ">" and "<" symbols. The Shell automatically provides all this informa
tion for the program when it starts up.

When the Shell starts up a program, it allocates a stack for that program. This
stack is initially 4000 bytes, but you may change the stack size with the STACK
command. AmigaDOS obtains this stack from the general free memory heap
just before you run the program; it is not, however, the same as the stack that
the Shell uses. AmigaDOS pushes a suitable return address onto the stack that
tells the Shell to regain control and unload your program. Below this on the
stack at 4(SP) is the size of the stack in bytes, which may be useful if you wish
to perform stack checking.

Your program starts with register AO pointing to the arguments you, or any
one else running your program typed. AmigaDOS stores the argument line in

172 THE DEVELOPER'S MANUAL

memory within the CLI stack and this pointer remains valid throughout your
program. Register DO indicates the number of characters in the argument line.
You can use these initial values to decode the argument line to find out what
the user requires. Note that all registers may be corrupted by a user program.

To make the initial input and output file handles available, you call the
AmigaDOS routines InputO and OutputO. Remember that you may have to
open the AmigaDOS library before you do this. The calls return file handles
that refer to the standard input and output the user requires. This standard
input and output (I/O) is usually the terminal unless you redirected the I/O by
including ">" or "<" on the argument line. You should not close these file han
dles with your program; the CLI opened them for you and it will close them, if
required.

Initial Environment in C

When programming in C, you should always include the startup code as the
first element in the linker input. This means that the linker enters your program
at the startup code entry point. This section of code scans the argument list and
makes the arguments available in "argv", with the number of arguments in
"argc" as usual. It also opens the AmigaDOS library and calls InputO and
OutputO for you, placing the resulting file handles into "stdin" and "stdout". It
then calls the C function "main".

Failure of Routines

Most AmigaDOS routines return a zero if they fail; the exceptions are the Read
and Write calls that return minus 1 on finding an error. If you receive an error
return, you can call IoErrO to obtain more information on the failure. IoErrO
returns an integer that corresponds to a full error code, and you may wish to
take different actions depending on exactly why the call failed. A complete list
of error codes and messages can be found at the end of Chapter 2.

Terminating a Program

To exit from a program, it is sufficient to give a simple RTS using the initial
stack pointer (SP). In this case, you should provide a return code in register DO.
This is zero if your program succeeded; otherwise, it is a positive number. If
you return a nonzero number, then the CLI notices an error. Depending on the
current fail value (set by the command FAILAT), a noninteractive CLI, such as
one running a command script set up by the EXECUTE command, terminates.
A program written in C can simply return from "main" which returns to the
startup code; this clears DO and performs an RTS.

PROGRAMMING ON THE AMIGA 173

Alternatively, an assembler program may call the AmigaDOS function Exit 0,
which takes the return code as an argument. This instructs your program to exit
no matter what value the stack pointer has. A C program should call the exit
routine provided by the compiler manufacturer. Typically, this function is
called exit 0; note the lower case e.

It is important at this stage to stress that AmigaDOS does not control any
resources; this is left entirely up to the programmer. Any files that a user pro
gram opens must be closed before the program terminates. Likewise, any locks
it obtains must be freed, any code it loads must be unloaded, and any memory
it allocates returned. Of course, there may be cases where you do not wish to
return all resources, for example, when you have written a program that loads a
code segment into memory for later use. This is perfectly acceptable, but you
must have a mechanism for eventually returning any memory, file locks, and so
on.

Running a Program Under the Workbench
To run a program under the Workbench, you need to appreciate the different
ways in which a program may be run on the Amiga. Under the CLI your pro
gram is running as part of the CLI process. It can inherit I/O streams and other
information from the CLI, such as the arguments you provided.

If a program is running under the Workbench, then AmigaDOS starts it as a
new process running at the same time as Workbench. Workbench loads the pro
gram and then sends a message to get it started. You must therefore wait for
this initial message before you start to do anything. You must retain the mes
sage and return it to Workbench when your program has finished, so that
Workbench can unload the code of your program.

For C programmers, this is all done by simply using a different part of the
startup routine. For assembly language programmers, this work must be done
yourself.

You should also note that a program running as a new process initiated by
Workbench has no default input and output streams. You must ensure that
your program opens all the I/O channels that it needs, and that it closes them
all when it has finished.

Basic Input and Output Programming
This section covers the basics of dos.library I/O functions. Many C compilers
supply their own standard I/O functions which differ from the dos.library rou-

174 THE DEVELOPER'S MANUAL
------------ - -- ------

tines described here. See your compiler manual for information on its standard
I/O functions.

The original dos.library was written in BCPL, a precursor to the C program
ming language. Although dos.library was rewritten in C and assembler for 2.0,
remnants of BCPL remain to keep dos.library backwards compatible. One of
these is the BCPL pointer, or BPTR.

BCPL only thinks in 32-bit, longwords. When BCPL thinks about an individu
al memory address, it thinks of a four byte wide quantity rather than a single
byte quantity (like the CPU), so when BCPL thinks of memory address 2, it
thinks of the second (after the zeroth and the first) set of four bytes (what the
CPU thinks of as addresses 8 through 11).

Because AmigaDOS uses BPTRs, programming certain areas of AmigaDOS
will require converting normal adresses to and from BPTRs. To convert a nor
mal address (which must be longword aligned) to a BPTR, divide it by four (»
2). The dos.h include file contains macros to convert between the two address
formats. Note that, because a BPTR refers to a long word (a 32-bit address), any
thing it addresses must be long word aligned.

Another BCPL remnant is the BCPL string, or BSTR. A BSTR is a BPTR to a
BCPL style string. The first byte of a BCPL string contains the length of the
string. The remaining bytes make up the actual characters of the string.

One of the basic features of AmigaDOS is file input and output. To perform
file I/O, DOS requires something called a file handle. A file handle is what DOS
uses to identify and keep track of an open file.

Another thing that DOS uses when reading and writing files is a Lock.
AmigaOOS uses a Lock to "lock" a file, or to prevent two (or more) processes
from manipulating a file at the same time. While a file is locked, other processes
cannot make changes to it.

There are two types of locks, shared locks and exclusive locks. A shared lock
normally is used for read-only access to a file. There can be many shared locks
on a file at any given time. The purpose of a shared lock is to prevent another
process from writing to a file while your process is reading it. An exclusive lock
is used for write access to a file. While any locks exist on a file (shared or exclu
sive), no one can create a new exclusive lock on the file.

To open a file (and obtain a file handle to it), use the dos.library's Open 0
function:

BPTR myfilehandle
accessMode);

Open UBYTE *filename, LONG

where myfilehandle is a BPTR to a FileHandle structure, filename is a C string
naming the file to open (relative to the current directory), and accessMode is
either, MODE_OLDFILE, MODE_NEWFILE, or MODE_READWRITE.

PROGRAMMTNG ON THE AMIGA 175
----- - -- - --- - ---------------

MODE_OLDFILE opens an existing file for reading or writing. In this mode,
DOS creates a read lock on the file (which changes to a write lock while you are
trying to write to the file). Attempting to open a nonexistant file in this mode
causes the OpenO to fail (returning a NULL). MODE_NEWFILE opens a file for
reading and writing, and will delete the file if it already exists. In this mode,
DOS creates an exclusive lock on the file. MODE_READWRITE, a new mode
added in release 2.0, opens a file (with a shared lock) for reading and writing
but will not delete the file if it already exists.

The Read 0 and Write 0 functions are used to read and write blocks of data
to and from a buffer:

LONG actualcount
LONG length);

LONG actual count
LONG length);

Read BPTR filehandle, APTR buffer,

Write (BPTR filehandle, APTR buffer,

Normally, these functions are used for reading and writing large blocks of
data as they are not very efficient for small reads and writes. Release 2.0 intro
duced buffered reading and writing routines that are much more efficient for
very small blocks of data. They are discussed later.

The ReadO and WriteO calls take the same arguments: a file handle for the
file in question, a buffer that holds the data, and a count of how many bytes to
read or write. Both functions return the actual number of bytes read or written.
If ReadO returns a zero, then no characters were read and the current file posi
tion is at the end of the file. If either function returns -1, an error occurred (use
the dos.library function IoErrO to get the code of the most recent DOS error).

DOS maintains a current position for open files. DOS increments a file's cur
rent position for every byte it reads or writes. ReadOs and WriteOs are relative
to the current position, so if you open an already existing file and you want to
write additional data to it, you must make sure that the current file position is
at the end of the file. When OpenO first opens a file, the file's current position is
at the beginning of the file.

Using the Seek 0 function, a program can move the current file position:

LONG oldposition Seek BPTR filehandle, LONG
fileposition, LONG offset_from_where);

Seek O's fileposition field is the new file position, which is relative to the off
set. The offset (offset_from_where) is one of the following:

176 THE DEVELOPER'S MANL'AL

OFFSET_BEGINNING

the fileposition (which should be
zero here) is relative to the end
of the file.
the fileposition is relative to the
current file position.
the fileposition is relative to the
beginning of the file.

SeekO returns the file position before the SeekO occurred, or a -1 to indicate
an error.

To close an open file handle, use dos.library's CloseO function:

LONG returnvalue = Close(BPTR file);

Under release 2.0, CloseO returns either DOSTRUE (-1) for success or
DOSFALSE (0) for failure. Prior to release 2.0, the return value was undefined.

The following is a very simple example of basic file I/O.

;/* - Execute me to compile me with Lattice S.10a
LC -bl -cfistq -v -y -j73 RW.c
Blink FROM LIB:C.o,RW.o TO RW LIBRARY LIB:LC.lib,LIB:Amiga.lib
quit
*/

/*
**

This program opens the file "s:startup-sequence" and
copies it to "ram:qwe".

#include <dos/ dos.h>
#include <dos/ dosextens.h>
#include <clib / dos_protos.h>
#include <clib / alib _stdio_protos.h>

/* to compile this with the 1.3 #includes, change the
above four #includes to:

#include <libraries / dos.h>
#include <libraries/ dosextens.h>
*/

#ifdef LATTICE
int CXBRK(void) {return(O);} /* Disable Lattice CTRL/C handling * /
int chkabort(void) { return(O); }

PROGRAMMING ON THE AMIGA

#endif

/* For most applications, the buffer size below is way too small.
**
**

*/

For most programming purposes, the buffer should be MUCH larger
to make reading and writing more efficient.

#define BUFSIZE 256

UBYTE *vers = f/\O$VER: RW 1.0";

UBYTE buffer[BUFSIZE];

void main(void)
{

BPTR myfile, startup;
LONG count, actual;

if (myfile = Open("ram:qwe", MODE_NEWFILE))

if (startup = Open(lfa:startup-sequence", MODE_OLDFILE))
{

count = 1;
j* keep writing until we hit the end of the file
** or an error occurs. * /
while «actual = Read(startup, buffer, BUFSIZE)) && (count> 0))

count = Write(myfile, buffer, actual);

if (actual < 0) printf(f/Error while reading\n");
if (count < 0) printf(f/Error while writing\n");
Close(startup);

Close(myfile) ;

Using File Handlers

177

Each AmigaDOS device has a process associated with it called a handler. The
handler process is used by AmigaDOS to talk to Exec devices. A handler is
responsible for processing a standard set of commands that AmigaDOS sends

178 THE DEVELOPER'S MANUAL

when it needs to use a device. AmigaDOS can use handlers for things such as
reading and writing files, writing to the console, or sending output to a printer.
DHO:, RAM:, CON:, and SER: each are controlled with their respective handler
process.

One particular type of handler is the file handler. A file handler is used to
maintain a filing system (i.e., files and directories) on a particular device. The
handler process responsible for DFO: is one example of a file handler. This han
dler allows AmigaDOS to use the Exec device trackdisk.device. If you try to
read a file from DFO:, DOS sends a read request to DFO:'a handler process.
DFO:'a handler interprets the read command and extracts the file data from
some place on the disk. OOS does not know anything about how the underly
ing device works, it just asks the file handler for data and the handler supplies
it. This scheme makes adding new AmigaDOS devices to the system relatively
easy.

Although writing handlers is beyond the scope of this section, using them is
not. The handler makes it possible to think about various forms of I/O as file
I/O. For example, using the OpenO routine, it is possible to open a console win
dow and write to it as if it was a file:

consoleFH = Open (ICON:20/20/500/l00/Console",
MODE_NEWFILE) i

This opens a console window on the Workbench screen. You can write direct
ly to the console window and read directly from it using the file handle
returned by the Open() call (note that when reading from a CON: window file
handle, the user must hit return before the data can be read).

Every process has a standard input and standard output file handle associat
ed with it. For Shell-based programs, the standard I/O handles are normally
the Shell's console window. It is possible to redirect the standard I/O for a pro
gram started from the Shell using the < input) and> (output) redirection opera
tors. With these the user can, for example, redirect output from a Shell-based
program to a file, or to PRT:. The dos.library routines InputO and OutputO
return the current standard input and output file handles, respectively:

BPTR inputFH
BPTR outputFH

Input (void) i
Output (void) i

Release 2.0 introduced two new functions, SelectInputO and SelectOutputO
which allow a program to change the current standard I/O handles:

oldinputFH = SelectInput(BPTR newinputFH)i
oldoutputFH = SelectOutput(BPTR newoutputFH)i

PROGRAMMING ON THE AMIGA 179

where newinputFH/newoutputFH is an open, valid file handle, and
oldinputFH /oldoutputFH is the previous standard input/ output handle. Do
not carelessly discard the old file handle as it is still valid and will have to be
closed or reinstated eventually.

Buffered liD

Release 2.0 introduced a series of buffered I/O routines. The buffered I/O rou
tines improve the performance of small reads and writes by reducing the over
head involved in reading and writing small blocks of data.

The buffered I/O equivalents to ReadO and WriteO are:

LONG actualblocks = FRead (BPTR fh, APTR buffer, ULONG
blocklength, ULONG numblocks);
LONG actualblocks = FWrite(BPTR fh, APTR buffer, ULONG
blocklength, ULONG numblock);

These two functions are similar to their unbuffered counterparts, but their
arguments differ slightly. Instead of requiring a number of bytes to read or
write, FReadO and FWriteO will read/write a number (numblocks) of blocks.
Each block is blocklength bytes long. These functions return the number of
blocks actually written or read (or zero if EOF is read). If there is an error, both
functions return the number of blocks written or read, but the number will dif
fer from the number of blocks requested.

When switching back and forth from buffered to unbuffered I/O, you must
flush the file buffer using the FlushO routine:

void Flush(BPTR fh);

Currently, DOS flushes the buffer when it is full, or when someone writes a \n,
\0, \r, or \ 12. When using buffered I/O on your original standard input file
handle, you must FlushO before reading any data.

There are some routines for buffered reading and writing single characters
and strings:

LONG FGetC(BPTR fh);
UBYTE *FGets(BPTR fh, UBYTE *buf, ULONG buflen);
LONG FPuts(BPTR fh, UBYTE *str);
void FPutC(BPTR fh, ULONG ch);
LONG WriteChars(UBYTE *buf, unsigned long buflen);
LONG PutStr(UBYTE *str);
LONG UnGetC(BPTR fh, long character);

180 THE DEVELOPER'S MANUAL
-------------------------- -----------------------------

See the Autodocs (in chapter 6) for more information on these and other relat
ed functions.

There are also some buffered I/O functions for writing formatted data to a
file handle:

LONG VFPrintf(BPTR fh, UBYTE *formatstring,
LONG *argarray);
LONG VPrintf(UBYTE *formatstring, LONG *argarray };

where formatstring is a C style string that contains a printfO-like formatting
template with the following supported % options:

%flags] [width.limit] [lengthltype

flags
width

limit

length

type

-only one allowed. '-' specifies left justification.
-field width. If the first character is a '0', the field will be padded

with leading O's.
-must follow the field width, if specified
-maximum number of characters to output from a string (only valid

for %s).
-size of input data defaults to WORD for types d, x, and c, '1' changes

this to long (32-bit).
-supported types are:

b -BSTR, data is 32-bit BPTR to byte count followed by a byte
string. or NULL terminated byte string. A NULL BPTR is
treated as an empty string (Added in V36 Exec).

d -decimal.
x -hexadecimal.
s -string, a 32-bit pointer to a NULL terminated byte string. In

V36, a NULL pointer is treated as an empty string.
c --character

The argarray is a pointer to an array of arguments corresponding to the
entries in the formatting template.

The only difference between these two functions is that VPrintf() writes to the
current standard output file handle and VFPrintfO writes to the file handle you
supply. The advantage to using these two functions over a function such as
printf() is that printf() has to be linked into a program (from amiga.lib), making
the program larger. VPrintf() and VFPrintf() are already in the ROMs. so using
these functions does not require linking in extra code.

PROGRAMMING ON THE AMIGA 181

Standard Command Line Parsing

Release 2.0 introduced standard command line parsing. The ReadArgsO routine
is the heart of this feature:

struct RDArgs *rda = ReadArgs(UBYTE *argtemplate,
LONG *argarray, struct RDArgs *myrda);

The first argument, argtemplate, is a C style string that describes program
options settable from the command line. Each option should be a full, descrip
tive name (for example "Quick" not "Q"). Each option can be prepended by an
abbreviation of the form "abbrev=option" ("Q=Quick"). The argtemplate
options are delimited by commas. Each option can also be followed by modi
fiers that specify characteristics of individual options. The valid modifiers are:

IS-Switch. This is considered a boolean variable, and will be set if the option
name appears in the command-line. The entry is the boolean (0 for not set, non
zero for set).

IK-Keyword. This means that the option will not be filled unless the keyword
appears. For example if the template is "Name/K", then unless
"Name=<string>" or "Name <string>" appears in the command line, Name
will not be filled.

IN-Number. This parameter is considered a decimal number, and will be con
verted by ReadArgsO. If a number specified is invalid, ReadArgsO will fail. The
entry will be a pointer to the longword number or NULL (this is how you know
if a number was specified).

IT-Toggle. This is similar to a switch (/5), but causes the boolean value to tog
gle.

I A-Required. This keyword tells ReadArgsO to fail if this option is not speci
fied in the command line.

IF-Rest of line. If this is specified, the entire rest of the line is taken as the
parameter for the option, even if other option keywords appear in it.

1M-Multiple. This means the option will take any number of arguments,
returning them as an array of pointers. Any arguments not considered to be
part of another option will be added to this option. Only one 1M should appear
in a template. Example: for a template "Oir IM,All/S" the commandline "foo

182 THE DEVELOPER'S MANUAL

bar all qwe" will set the boolean "all", and return an array consisting of "foo",
"bar", and "qwe". The entry in the array will be a pointer to an array of string
pointers, the last of which will be NULL.

There is an interaction between 1M parameters and I A parameters. If there
are unfilled I A parameters after parsing, ReadArgsO will grab strings from the
end of a previous 1M parameter list to fill the I A's. This is used for things like
Copy ("Froml A/M,Tol A").

ReadArgsO second argument, argarray, is an array of LONGs used by
ReadArgsO to store the values of the command line arguments. Before passing
this array to ReadArgsO, a program must either set the array entries to reason
able default values or clear them.

If it is successful, ReadArgsO returns a pointer to a RDArgs structure (from
<dos/rdargs.h». ReadArgsO uses this structure internally to control its opera
tion. It is possible to pass ReadArgsO a custom RDArgs structure (myrda in the
ReadArgsO prototype above). For most applications, myrda will be NULL,
because most applications do not need to control ReadArgsO.

struct RDArgs {

} ;

struct CSource RDA_Source;

LONG RDA_DAList;

/* Select input source */

/* PRIVATE. */

UBYTE *RDA_Buffer; /* Optional string parsing space.

LONG RDA_BufSiz; /* Size of RDA Buffer (0 .. n) */

UBYTE *RDA_ExtHelp; /* Optional extended help */
LONG RDA_Flags; /* Flags for any required control

*/

*/

Any successful call to ReadArgsO (even those that use a custom RDArgs struc
ture) must be complemented with a call to FreeArgsO:

void FreeArgs(struct RDArgs *rda);

where rda is the RDArgs structure used by ReadArgsO.
An application can use a custom RDArgs structure to provide an alternate

command line source, an alternate temporary storage buffer, or an extended
help string. The custom RDArgs structure must be allocated with
AllocDosObjectO and deallocated with FreeDosObjectO. See the Autodocs
(chapter 6) for more details on these functions.

The RDArgs.RDA_Source field is used to supply ReadArgaO with an alter
nate command line to parse. ReadArgsO will use it only if the RDA_Source
fields are filled in. The CSource structure (from <dos/rdargs.h» is as follows:

struct CSource
UBYTE
LONG
LONG

} ;

PROGRAMMING ON THE AMIGA

*CS_Buffer;
CS_Length;
CS_CurChr;

183

Where CS_Buffer is the command line to parse, CS_Length is the length of
CS_Buffer, and CS_CurChr is the position in CS_Buffer from which ReadArgsO
should begin its parsing. Normally CS_CurChr is initialized to zero. Note that
currently the buffer must end with a newline (\n).

RDA_DAList is private and must be set to NULL before ReadArgsO uses this
structure.

The RDA_Buffer and RDA_BufSiz fields allow an application to supply a
fixed-size buffer in which to store parsed data. This allows the application to
pre-allocate a buffer rather than requiring ReadArgsO to allocate buffer space. If
either RDA_Buffer or RDA_BufSiz is NULL, ReadArgsO assumes the applica
tion has not supplied a buffer.

RDA_ExtHelp is a text string which ReadArgsO displays if the user asks for
additional help. The user asks for additional help by typing a question mark
when ReadArgsO prompts the user for input (which normally happens only
when he or she types a question mark as the only argument on the command
line).

RDA_Flags is a bit field used to toggle certain options of ReadArgsO.
Currently, only one option is implemented, RDAF _NOPROMPT. When set,
RDAF _NOPROMPT prevents ReadArgsO from prompting the user.

The following code, ReadArgs.c, uses a custom RDArgs structure to pass a
command line to ReadArgs.

;/* ReadArgs.c - Execute me to compile me with Lattice S.10a
LC -bl -cfistq -v -y -j73 ReadArgs.c
Blink FROM LIB:c.o,ReadArgs.o TO ReadArgs
LIB:LC.lib,LIB:Amiga.lib
quit
*/

#include <dos/dos.h>
#include <dos/rdargs.h>
#include <clib/dos-protos.h>
#include <clib/alib_stdio_protos.h>
#ifdef LATTICE

LIBRARY

int CXBRK(void) { return(O); } /* Disable Lattice CTRL/C
handling *1

184 THE DEVELOPER'S MANUAL

int chkabort(void) { return(O); }

#endif

UBYTE *vers = "\OSVER: ReadArgs 1.0";

#define TEMPLATE "S=SourceFi1es/A/M,D=DebugLevel/K/N,L=link/S"

#define OPT_SOURCE 0

#define OPT DEBUG 1

#define OPT_LINK 2

#define OPT COUNT 3

/*

**

**

*/

The array of LONGS where ReadArgs() will store the data from

the con~d line arguments. C guarantees that all the array

entries will be set to zero.

LONG result [OPT_COUNT] ;

/* My custom RDArgs */

struct RDArgs *myrda;

ULONG StrLen(UBYTE *);

void main(void)

UWORD x;

UBYTE **sourcefiles;

/* Need to ask DOS for a RDArgs structure */

if (myrda = (struct RDArgs *)AlloCDosObject(DOS_RDARGS, NULL))

/* set up my parameters for ReadArgs() */

/* use the following command line */

myrda->RDA_Source.CS_Buffer = "filel file2 file3

D=l Link file4 file5\n";

myrda->RDA Source.CS_Length

(LONG)StrLen(myrda->RDA_Source.CS_Buffer);

PROGRAMMING ON THE AMIGA

/* parse my command line */
if (ReadArgs(TEMPLATE, result, myrda))
{

/*start printing out the results */

185

/*
**

We don't need to check if there is a value in
result [OPT_SOURCE] because the ReadArgs ()
template

**

**
**
*/

requires (using the /A modifier) that there
be
file names, so ReadArgs() will either fill in
a value or ReadArgs() will fail

sourcefiles
/* VPrintf()

in

(UBYTE **)result[OPT_SOURCE];
is a lot like Printf() except it's

**
**

ROM, and the arguments are referenced from an
array rather than being extracted from the
stack.

*/

VPrintf("Files specified:\n", NULL);
for (x=O; sourcefiles[x]; x++)

VPrintf("\t%s\n", (LONG *)&sourcefiles[x]);

/* Is there something In the "DebugLevel"
option?

** If there is, print it.
*/

if (result[OPT_DEBUG])
VPrintf ("Debugging Level
*) resul t [OPl'_DEBUG]) ;

%ld\n", (LONG

/* If the link toggle was present, say something
about it. */

if (result [OPT_LINK])
VPrintf("linking ... \n", NULL);

FreeArgs (myrda) ;

FreeDosObject(DOS RDARGS, myrda);

186 THE DEVELOPER'S MANUAL

ULONG StrLen(UBYTE *string)
{

ULONG x = OL;

while (string[x++]);
return (x) ;

Chapter 6

Calling AllligaDOS

This chapter describes the functions provided by the AmigaOOS resident
library. To help you, it provides an explanation of the syntax, a full description
of each function, and a quick reference card of the available functions.

Syntax
The syntax used in this chapter shows the C function call for each AmigaOOS
function and the corresponding register you use when you program in assem
bler.

Register Values

The letter/number combination (DO .. .on) represents registers. The text to the
left of an equals sign represents the result of a function. A register (that is, DO)
appearing under such text indicates the register value of the result. Text to the
right of an equals sign represents a function and its arguments, where the text
enclosed in parentheses is a list of the arguments. A register (for example, 02)
appearing under an argument indicates the register value of that argument.

Note that not all functions return a result.

Case

The letter case (that is, lower or upper case) IS significant. For example, you
must enter the word "FileInfoBlock" with the first letter of each component
word in upper case.

187

188 THE DEVELOPER'S MANUAL

Boolean Returns

-1 (TRUE or SUCCESS), 0 (FALSE or FAILURE)

Values

All values are longwords (that is, 4-byte values or 32 bits). Values referred to as
"string" are 32-bit pointers to NULL-terminated series of characters.

AmigaDOS Functions
This reference section describes the functions provided by the AmigaOOS resi
dent library. Each function is arranged alphabetically. Under each function
name there is a brief description of the function's purpose, a specification of the
register values, and an explanation of the syntax of the arguments and result.
To use any of these functions, you must link with amiga.lib.

A quick reference list of all AmigaOOS functions is included at the end of this
chapter.

AbortPkt

Name

AbortPkt: Aborts an asynchronous packet, if possible. (V36)

Synopsis

Abortpkt(port, pkt)

Dl D2

void AbortPkt (struct MsgPort * struct DosPacket *)

Function

This attempts to abort a packet sent earlier with SendPkt to a handler. There
is no guarantee that any given handler will allow a packet to be aborted, or if
it is aborted whether function requested completed first or completely. After
calling AbortPktO, you must wait for the packet to return before reusing it or
deallocating it.

CALLING AMIGAOOS

Inputs

port: port the packet was sent to

pkt: the packet you wish aborted

Bugs

As of V37, this function does nothing.

See also:SendPktO, DoPktO, WaitPktO

AddBuffers

Name

AddBuffers: changes the number of buffers for a file system

Synopsis

success = AddBuffers(filesystem, number)

DO Dl D2

BOOL AddBuffers(char * LONG)

Function

189

Adds buffers to a filesystem. If it succeeds, the number of current buffers is
returned in IoErrO. Note that "number" may be negative. The amount of
memory used per buffer, and any limits on the number of buffers, are depen
dent on the file system in question. If the call succeeds, the number of buffers
in use on the filesystem is returned by IoErrO.

Inputs

filesystem: name of device to add buffers to (with ":").

number: number of buffers to add. May be negative.

Result

success: success or failure of command

190 THE DEVELOPER'S MANUAL

Bugs

The V36 ROM filesystem (FFS/OFS) doesn't return the right number of
buffers unless preceded by an AddBuffers(fs, -1) (in-use buffers aren't count
ed). This is fixed in V37.

AddDosEntry

Name

AddDosEntry: adds a DOS List entry to the lists

Synopsis

success

DO

AddDosEntry(dlist)

D1

BOOL AddDosEntry(struct DosList *)

Function

Adds a device, volume, or assign to the DOS device list. This routine can fail
if it conflicts with an existing entry (such as another assign to the same name
or another device of the same name). Volume nodes with different dates and
the same name CAN be added, or with names that conflict with devices or
assigns.

Note: The DOS list does NOT have to be locked to call this. Do not access dlist
after adding unless you have locked the OOS device list.

Inputs

dlist: device list entry to be added

Result

success: success/failure indicator

See also: RemDosEntryO, FindDosEntryO, NextDosEntryO, LockDosListO,
MakeDosEntryO, FreeDosEntryO

CALLING AMIGADOS 191

AddPart

Name

AddPart: appends a file/ dir to the end of a path

Synopsis

success AddPart(dirname, filename, size

DO D1 D2 D3

BOOL AddPart(UBYTE *, UBYTE *, ULONG

Function

This routine adds a file, directory, or subpath name to a directory path name
taking into account any required separator characters. If filename is a fully
qualified path it will totally replace the current value of dirname.

Inputs

dimame: the path to add a file/directory name to.

filename: the filename or directory name to add. May be a relative pathname
from the current directory (example: foo/bar). Can deal with leading "/"(s),
indicating one directory up per "/", or with a ":", indicating it's relative to
the root of the appropriate volume.

size: size in bytes of the space allocated for dimame. Must not be o.

Result

success: nonzero for OK, FALSE if the buffer would have overflowed. If an
overflow would have occurred, dimame will not be changed.

Bugs

Doesn't check if a subpath is legal (that is, doesn't check for ':'s) and doesn't
handle leading "/"s in versions 2.0 through 2.02 (V36). Version 2.04 (V37)
should fix this, allowing filename to be any path, including absolute.

See also: FilepartO, PathPart()

192 THE DEVELOPER'S MANUAL

AddSegment

Name

AddSegment: adds a resident segment to the resident list

Synopsis

success AddSegment(name, seglist, type)

DO D1 D2 D3

BaaL AddSegment(char *, BPTR, LONG)

Function

Adds a segment to the DOS resident list, with the specified Seglist and type
(stored in seg_UC - normally 0). Note that currently unused types may
cause it to interpret other registers (04 and above) as additional parameters
in a future release.

Do not build Segment structures yourself!

Inputs

name: name for the segment.

seglist: DOS seglist of code for segment.

type: initial usecount, normally O.

Result

success: success or failure

Bugs

In 1.4 Beta 1, the return code was undefined, and an allocation failure would
bring up a deadend Alert. In 2.0, this routine works correctly.

See also: FindSegmentO, RemSegmentO, LoadSegO

CALLING AMIGADOS 193

AllocDosObject

Name

AllocDosObject: creates a DOS object

Synopsis

ptr = AllocDosObject(type, tags)
DO D1 D2
void *AllocDosObjectTagList(ULONG, struct TagItem *)
ptr = AllocDosObj ectTags (type, Tagl, ...)
void *AllocDosObjectTags (ULONG, ULONG, ...)

Function

Creates one of several DOS objects, initializes it, and returns it to you. Note
the DOS_STDPKT returns a pointer to the sp_Pkt of the structure.

Inputs

type: type of object requested.

tags: pointer to taglist with additional information.

Result

packet: pointer to the object or NULL
See also: FreeDosObject, <dos/ dostags.h>, <dos/ dos.h>

AssignAdd

Name

AssignAdd: adds a lock to an assign for multidirectory assigns

Synopsis

success = AssignAdd(name,lock)
DO Dl D2
BOOL AssignAdd(char *,BPTR)

194 THE DEVELOPER'S MANUAL

Function

Adds a lock to an assign, making or adding to a multidirectory assign. Note
that this only will succeed on an assign created with AssignLockO, or an
assign created with AssignLateO that has been resolved (converted into a
AssignLock -assign).

Note: You should not use the lock in any way after making this call successful
ly. It becomes the part of the assign, and will be unlocked by the system when
the assign is removed. If you need to keep the lock, pass a lock from DupLockO
to AssignLockO.

Inputs

name: name of device to assign lock to (without trailing ":").

lock: lock associated with the assigned name.

Result

success: success/failure indicator. On failure, the lock is not unlocked.
See also: LockO, AssignLockO, AssignPathO, AssignLateO, DupLockO,
RemAssignListO

AssignLate

Name

AssignLate: creates an assignment to a specified path later

Synopsis

success = AssignLate(name,path)
DO Dl D2
BOOL AssignLate(char *,char *)

Function

Sets up a assignment that is expanded on the FIRST reference to the name.
The path (a string) is attached to the node. When the name is referenced
(Open("FOO:xyzzy" ...), the string is used to determine where to set the
assign to, and if the directory can be locked, the assign acts from that point on
as if it had been created by AssignLockO.

CALLING AMIGAOOS 195

A major advantage is assigning data to unmounted volumes, which will be
requested on access (useful in startup sequences).

Inputs

name: name of device to be assigned (without trailing ":").

path: name of late assignment to be resolved on the first reference.

Result

success: success/failure indicator of the operation

AssignLock

Name

AssignLock- creates an assignment to a locked object

Synopsis

success = AssignLock(name, lock)

DO Dl D2

BOOL AssignLock(char *,BPTR)

Function

Sets up an assign of a name to a given lock. Passing NULL for a lock cancels
any outstanding assign to that name. If an assign entry of that name is
already on the list, this routine replaces that entry. If an entry is on the list
that conflicts with the new assign, then a failure code is returned.

Note: You should not use the lock in any way after making this call success
fully. It becomes the assign, and will be unlocked by the system when the
assign is removed. If you need to keep the lock, pass a lock from DupLockO
to AssignLockO.

Inputs

name: name of device to assign lock to (without trailing ":").

lock: lock associated with the assigned name.

196 THE DEVELOPER'S MANUAL

Result

success: success/ failure indicator. On failure, the lock is not unlocked.

AssignPath

Name

AssignPath: creates an assignment to a specified path

Synopsis

success = Assignpath(narne,path)
DO D1 D2
BOOL Assignpath(char *,char *)

Function

Sets up a assignment that is expanded on EACH reference to the name. This
is implemented through a new device list type (DLT_ASSIGNPATH, or the
like). The path (a string) would be attached to the node. When the name is
referenced (Open("FOO: xyzzy"), the string will be used to determine where
to do the open. No permanent lock is part of it. For example, you could
AssignPath c2: to df2:c, and references to c2: would go to df2:c, even if you
change disks.

The other major advantage is assigning things to unmounted volumes,
which will be requested on access (useful in startup sequences).

Inputs

name: name of device to be assigned (without trailing ":").

path: name of late assignment to be resolved at each reference.

Result

success: success/ failure indicator of the operation

AttemptLockDosList

Name

AttemptLockDosList: attempts to lock the DOS lists for use

CALLING AMIGADOS 197

Synopsis

dlist = AttemptLockDosList(flags)

DO Dl

struct DosList *AttemptLockDosList(ULONG)

Function

Locks the dos device list in preparation to walk the list. If the list is "busy"
then this routine returns NULL. See LockDosListO for more information.

Inputs

flags: flags stating which types of nodes you want to lock.

Result

dlist: pointer to the beginning of the list or NULL. This is NOT a valid node!

ChangeMode

Name

ChangeMode: changes the current mode of a lock or filehandle

Synopsis

success = ChangeMode(type, object, newmode)

DO Dl D2 D3
BOOL ChangeMode(ULONG, BPTR, ULONG)

Function

This routine allows you to attempt to change the mode in use by a lock or
filehandle. For example, you could attempt to turn a shared lock into an
exclusive lock. The handler may well reject this request.

WARNING: If you use the wrong type for the object, the system may
crash.

198 THE DEVELOPER'S MANUAL

Inputs

type: either CHANGE_PH or CHANGE_LOCK.

object: a lock or filehandle.

newmode: the new mode you want.

Result

success: Boolean

Bugs

This routine did not work in versions 2.0, 2.01, or 2.02 (V36). It should work
in 2.04 (V37). In the earlier versions, it can crash the machine.

CheckSignal

Name

CheckSignal: checks for break signals

Synopsis

signals = CheckSignal(mask)

DO D1
ULONG CheckSignals(ULONG)

Function

Checks to see if any signals specified in the mask have been set and if so,
returns them. Otherwise it returns FALSE. All signals specified in mask will
be cleared.

Inputs

mask: signals to check for

Result

signals: signals specified in mask that were set

CALLING AMIGADOS

Cli

Name

eli: returns a pointer to the eLI structure of the process

Synopsis

cliJltr = Cli ()

DO

struct CommandLineInterface *Cli(void)

Function

199

Returns a pointer to the eLI structure of the current process, or NULL if the
process has no eLI structure

Result

eli_ptr: pointer to the eLI structure, or NULL

Close

Name

Close: closes an open file

Synopsis

success = Close(file

DO Dl

BOOL Close(BPTR)

Function

The file specified by the filehandle is closed. You must elose all files you
explicitly opened, but you must not close inherited filehandles that are
passed to you (each filehandle must be closed once and ONLY once). If
CloseO fails, the filehandle is still deallocated and should not be used.

200 THE DEVELOPER'S MANUAL

Inputs

file: BCPL pointer to a filehandle

Results

success: returns if CloseO succeeded. Note that it might fail depending on
buffering and whatever I/O must be done to close a file being written to.

Note: this return value did not exist before V36!

See also: OpenO, OpenFromLockO

Compare Dates

Name

CompareDates: compares two datestamps

Synopsis

result = CompareDates(datel,date2)
DO Dl D2

LONG CompareDates(struct DateStamp *,struct DateStamp *)

Function

Compares two times for relative magnitude. <0 is returned if datel is later
than date2, 0 if they are equal, or >0 if date2 is later than datel.

Note: This ordering is NOT the same as in strcmp!

Inputs

datel, date2: DateStamps to compare

Result

result: <0,0, or >0 based on comparison of two date stamps
See also: DateStampO, DateToStrO, StrToDateO

CALLING AMIGADOS

CreateDir

Name

CreateDir: creates a new directory

Synopsis

lock
DO

CreateDir(name
Dl

BPTR CreateDir(char *)

Function

201

CreateDirO creates a new directory with the specified name. An error is
returned if it fails. Directories can only be created on devices that support
them, for example, disks. CreateDirO returns an exclusive lock on the new
directory, if it succeeds.

Inputs

name:- pointer to a null-terminated string

Results

lock: BCPL pointer to a lock or NULL for failure

CreateN ewProc

Name

CreateNewProc: creates a new process

Synopsis

process = CreateNewProc(tags)
DO Dl
struct Process *CreateNewProc(struct Tagltem *)
process = CreateNewProcTagList (tags)
DO Dl
struct Process *CreateNewProcTagList (struct Tagltem *)
process = CreateNewProcTags (Tagl, ...)

202 THE DEVELOPER'S MANUAL

struct Process *CreateNewProcTags (ULONG, ...)

Function

This function creates a new process according to the tags passed in. See
dos/ dostags.h for the tags. You must specify one of NP _Seglist or NP _Entry.
NP _Seglist takes a seglist (as returned by LoadSeg). NP _Entry takes a code
ptr for the routine to call. There are many options, as you can see by examin
ing dos/dostags.h.

The defaults are for a non-CLI process, with copies of your CurrentDir,
HomeDir (used for PROGDIR:), priority, consoletask, windowptr, and vari
ables. The input and output filehandles default to opens of NIL:, stack to
4000, and others as shown in dostags.h. This is a fairly reasonable default set
ting for creating threads, though you may wish to modify it (for example, to
give a descriptive name to the process.)

CreateNewProcO is callable from a task, though any actions that require
doing DOS I/O (DupLock of currentdir) will not occur.

Inputs

tags: a pointer to a TagItem array

Result

process: the created process, or NULL

CreateProc

Name

CreateProc: creates a new process

Synopsis

process = CreateProc(name, pri, seglist, stackSize)
DO D1 D2 D3 D4

struct MsgPort *CreateProc(char *, LONG, BPTR, LONG)

Function

CreateProcO creates a new AmigaDOS process of name "name". AmigaDOS
processes are a superset of Exec tasks.

CALLING AMIGADOS 203

A seglist, as returned by LoadSegO, is passed as 'seglist'. This represents a
section of code that is to be run as a new process. The code is entered at the
first hunk in the segment list, which should contain suitable initialization
code or a jump to such. A process control structure is allocated from memory
and initialized. If you wish to fake a seglist (that will never have DOS
UnLoadSegO called on it), use this code:

DS.l 0 ; Align to longword
DC.L 16 ; Segment "length" (faked)
DC.L 0 ;Pointer to next segment
... start of code ...

The size of the root stack on activation is passed as "stackSize". "pri" speci
fies the required priority of the new process. The result is the process msg
port address of the new process, or zero if the routine failed. The argument
'name' specifies the new process name. A zero return code indicates error.
The seglist passed to CreateProcO is not freed when it exits; it is up to the par
ent process to free it, or for the code to unload itself.

Under V36 and later, you probably should use CreateNewProcO instead.

Inputs

name: pointer to a NULL-terminated string.

pri: signed long (range -128 to +127).

seglist: BCPL pointer to a seglist.

stackSize: integer (must be a multiple of 4 bytes).

Result

process: process identifier

CurrentDir

Name

CurrentDir: makes a directory lock the current directory

Synopsis

oldLock
DO

CurrentDir(lock
D1

204 THE DEVELOPER'S MANUAL
---- --------

BPTR CurrentDir(BPTR)

Function

CurrentDirO causes a directory associated with a lock to be made the current
directory. The old current directory lock is returned. A value of zero is a valid
result here, this 0 lock represents the root of file system that you booted from.
Any call that has to OpenO, LockO, and go on a file requires the current direc
tory to be a valid lock or O.

Inputs

lock: BCPL pointer to a lock

Result

old Lock: BCPL pointer to a lock

See also: LockO, UnlockO, OpenO, DupLockO

DateStamp

Name

DateStamp: obtains the date and time in internal format

Synopsis

ds = DateStamp(ds);
DO Dl
struct DateStamp *DateStamp (struct DateStamp *)

Function

DateStampO takes a structure of three longwords that is set to the current
time. The first element in the structure is a count of the number of days. The
second element is the number of minutes elapsed in the day. The third is the
number of ticks elapsed in the current minute. A tick happens 50 times a sec
ond. DateStamp ensures that the day and minute are consistent. All three ele
ments are zero if the date is unset. DateStampO currently only returns even
multiples of 50 ticks. Therefore, the time you get is always an even number of
ticks. Time is measured from January I, 1978.

CALLING AMIGAOOS 205

Inputs

ds: pointer to asterisk DateStamp.

Results

The array is filled as described.

DateToStr

Name

DateToStr: converts a DateStamp to a string

Synopsis

success = DateToStr(datetime)
DO Dl
BOOL DateToStr(struct DateTime *)

Function

DateToStrO converts an AmigaDOS DateStamp to a human-readable ASCII
string as requested by your settings in the DateTime structure.

Inputs

DateTime: a pointer to an initialized DateTime structure. The DateTime struc
ture should be initialized as follows:

dat_Stamp: a copy of the datestamp you wish to convert to ASCII.

dat_Format: a format byte that specifies the format of the dat_StrDate. This
can be any of the following. (Note: If value used is something other than
those below, the default of FORMAT_DOS is used).

FORMAT_DOS: AmigaDOS format (dd-mmm-yy).

FORMAT_INT: International format (yy-mmm-dd).

FORMAT_USA: American format (mm-dd-yy).

FORMAT_CON: Canadian format (dd-mm-yy).

FORMAT DEF: Default format for locale.

206 THE DEVELOPER'S MANUAL

dat_Flags: a flags byte. The only flag that affects this function is:

DTF _SUBST: if set, a string such as Today, Monday, etc., will be used instead
of the dat_Format specification if possible.

DTF _FUTURE: ignored by this function.

dat_StrDay: pointer to a buffer to receive the day of the week string (Monday,
Tuesday, etc.). If null, this string will not be generated.

dat_StrDate: pointer to a buffer to receive the date string, in the format
requested by dat_Format, subject to possible modifications by DTF _SUBST.
If null, this string will not be generated.

dat_StrTime: pointer to a buffer to receive the time of day string. If NULL,
this will not be generated.

Result

success: a zero return indicates that the DateStamp was invalid, and could
not be converted. Nonzero indicates that the call succeeded.

See also: StrtoDateO, libraries/ datetime.h, DateStampO

Delay

Name

Delay: delays a process for a specified time

Synopsis

Delay (ticks)

Dl

Void Delay (ULONG)

Function

The argument 'ticks' specifies how many ticks (50 per second) to wait before
returning control.

CALLING AMIGADOS 207

Inputs

ticks: Integer

Bugs

Due to a bug in the timer. device in V1.2/V1.3, specifying a timeout of zero
for DelayO can cause unreliable timer and floppy disk operation. This defect
has been fixed in V36 and later versions.

DeleteFile

Name

DeleteFile: deletes a file or directory

Synopsis

success = DeleteFile(name
DO Dl
BOOL DeleteFile(char *)

Function

This routine attempts to delete the file or directory specified by "name". An
error is returned if the deletion fails. Note that all the files within a directory
must be deleted before the directory itself can be deleted.

Inputs

name: pointer to a null-terminated string

Result

success: Boolean

DeleteVar

Name

DeleteVar: deletes a local or environment variable

208 THE DEVELOPER'S MANUAL

Synopsis

success = DeleteVar(name, flags

DO Dl D2

BOOL DeleteVar(UBYTE *, ULONG)

Function

Deletes a local or environment variable

Inputs

name: pointer to a variable name. Note that variable names follow filesystem
syntax and semantics.

flags: combination of type of var to delete (low 8 bits), and flags to control the
behavior of this routine. Currently defined flags include:

GVF _LOCAL_ONLY: delete a local (to your process) variable.
GVF _GLOBAL_ONLY: delete a global environment variable.

The default is to delete a local variable if found, otherwise a global environ
ment variable if found (only for LV _V AR).

Result

success: if nonzero, the variable was successfully deleted; FALSE indicates
failure

Bugs

LV _ V AR is the only type that can be global

See also: GetVarO, SetVarO, FindVarO, DeleteFileO, dos/var.h

DeviceProc

Name

DeviceProc: returns the process MsgPort of specific I/O handler

CALLING AMIGAOOS 209

Synopsis

process = DeviceProc(name
DO Dl
struct MsgPort *DeviceProc (char *)

Function

DeviceProcO returns the process identifier of the process that handles the
device associated with the specified name. If no process handler can be found
then the result is zero. If the name refers to an assign then a directory lock is
returned in IoErrO. This lock should not be UnlockOed or ExamineOed (if you
wish to do so, DupLockO it first).

Bugs

In V36, if you try to DeviceProcO something relative to an assign made with
AssignPathO, it will fail. This is because there's no way to know when to
unlock the lock. If you're writing code for V36 or later, it is highly advised
you use GetDeviceProcO instead, or make your code conditional on V36 to
use GetDeviceProcO / FreeDeviceProcO.

DoPkt

Name

DoPkt: sends a DOS packet and wait for reply (V36)

Synopsis

resultl = DoPkt(port,action,argl,arg2,arg3,arg4,arg5)
DO Dl D2 D3 D4 D5 D6 D7
LONG = DoPkt(struct MsgPort *,LONG,LONG,LONG,LONG,

LONG)

Function

This function sends a packet to a handler and waits for it to return. Any sec
ondary return will be available in Dl AND from IoErrO. DoPktO will work
even if the caller is an Exec task and not a process; however, it will be slower,
and may fail for some additional reasons, such as being unable to allocate a

210 THE DEVELOPER'S MANUAL

signal. DoPktO uses your pr_MsgPort for the reply, and will call pr_PktWait.
(See BUGS regarding tasks, though.)

Inputs

port: pr_MsgPort of the handler process to send to.

action: the action requested of the filesystem/handler.

arg1, arg2, arg3, arg4, arg5: arguments, depending on the action, may not be
required.

Result

result1: the value returned in dp_Res1, or FALSE if there was some problem
in sending the packet or receiving it

Bugs

Using DoPktO from tasks doesn't work in DOS 2.0. Use AllocDosObjectO,
PutMsgO, and WaitPortO/GetMsgO for a workaround, or you can call
CreateNewProcO to start a process to do DOS I/O for you. Only allows five
arguments to be specified. For more arguments (packets support a maximum
of seven) create a packet and use SendPktO/WaitPktO.

DupLock

Name

DupLock: duplicates a lock

Synopsis

lock DupLock (lock)
DO Dl
BPTR DupLock(BPTR)

Function

DupLockO is passed a shared filing system lock. This is the ONLY way to
obtain a duplicate of a lock-simply copying is not allowed.

Another lock to the same object is then returned. It is not possible to create
a copy of an exclusive lock.

CALLING AMIGAOOS

A zero return indicates failure.

Inputs

lock: BCPL pointer to a lock

Result

new Lock: BCPL pointer to a lock

See also: LockO, UnLockO, DupLockFromFHO, ParentOfFHO

DupLockFromFH

Name

DupLockFromFH: gets a lock on an open file

Synopsis

lock

DO

DupLockFromFH(fh)

Dl

BPTR DupLockFromFH(BPTR)

Function

211

This routine obtains a lock on the object associated with fh. This routine only
works if the file was opened using a nonexclusive mode. Other restrictions
may be placed on success by the filesystem.

Inputs

fh: opened file for which to obtain the lock

Result

lock: obtained lock or NULL for failure

212 THE DEVELOPER'S MANUAL

EndNotify

Name

EndNotify: ends a notification request (V36)

Synopsis

EndNotify(notifystructure)
D1

VOID EndNotify(struct NotifyRequest *)

Function

This routine removes a notification request. It is safe to call even if
StartNotify failed. For NRF _SEND_MESSAGE, it searches your port for any
messages about the object in question and removes and replies to them before
returning.

Inputs

notifystructure: a structure passed to StartNotifyO.

ErrorReport

Name

ErrorReport: displays a Retry/Cancel requester for an error

Synopsis

status = ErrorReport(code, type, argl, device)
DO D1 D2 D3 AO
BOOL ErrorReport(LONG, LONG, ULONG, struct MsgPort *)

Function

Based on the request type, this routine formats the appropriate requester to
be displayed. If the code is not understood, it returns DOS_TRUE immediate
ly. Returns DOS_TRUE if the user selects CANCEL or if the attempt to put up
the requester fails, or if the process pr_WindowPtr is -1. Returns FALSE if the
user selects Retry. The routine will retry on DISKINSERTED for appropriate

CALLING AMIGADOS 213

error codes. These return values are the opposite of what AutoRequest
returns.

Note: This routine sets loErrO to code before returning.

Inputs

code: error code to put a requester up for. Current valid error codes are:

ERROR_DISK_NOT_ VALIDATED
ERROR_DISK_ WRITE_PROTECTED
ERROR_DISK_FULL
ERROR_DEVICE_NOT_MOUNTED
ERROR_NOT_A_DOS_DISK
ERROR_NO _DISK
ABORT_DISK_ERROR/* read/write error * /
ABORT_BUSY /* you MUST replace ... * /

type: Current request types are:

REPORT_LOCK
REPORT_FH
REPORT_VOLUME
REPORT_INSERT

arg1 is a lock (BPTR).
arg1 is a filehandle (BPTR).
arg1 is a volumenode (C pointer).
arg1 is the string for the volumename (will be
split on a":").
With ERROR_DEVICE_NOT_MOUNTED puts
up the "Please insert..." requester.

argl: variable parameter (see type).

device (optional): address of handler task for which report is to be made.
Only required for REPORT_LOCK, and only if argl==NULL.

Result

status: Cancel/Retry indicator (0 means retry)

ExAll

Name

ExAll: examines an entire directory

214 THE DEVELOPER'S MANUAL

Synopsis

continue = ExAll(lock, buffer, size, type, control)
DO Dl D2 D3 D4 D5

BOOL ExAll(BPTR,UBYTE *,LONG,LONG,struct ExAIIControl *)

Function

This routine examines an entire directory. Lock must be on a directory. Size is
the size of the buffer supplied.

The buffer is filled with (partial) ExAllData structures, as specified by the
type field.

Type is a value from those shown below that determines which informa
tion is to be stored in the buffer. Each higher value adds new data to the list
as described below:

ED_NAME
ED TYPE
ED_SIZE
ED_PROTECTION
ED_DATE
ED_COMMENT

fileName
type
size in bytes
protection bits
three longwords of date
comment (is NULL if no comment)

Thus, ED_NAME gives only filenames, and ED_COMMENT gives every
thing.

The ead_Next entry gives a pointer to the next entry in the buffer. The last
entry will have NULL in ead_Next.

The control structure is required so that FFS can keep track if more than
one call to ExAllO is required. This happens when there are more names in a
directory than will fit into the buffer. The format of the control structure is as
follows:

Note: the control structure MUST be allocated by AllocDosObjectO

1. Entries: This field tells the calling application how many entries are in
the buffer after calling ExAllO. Note: Make sure your code handles the 0
entries case, including 0 entries with continue nonzero.

2. LastKey: This field ABSOLUTEL Y MUST be initialized to a before calling
ExAllO for the first time. Any other value will cause nasty things to happen.
If ExAllO returns nonzero, then this field should not be touched before mak
ing the second and subsequent calls to ExAllO. Whenever ExAllO returns
nonzero, there are more calls required before all names have been received.

CALLING AMIGAOOS 215

As soon as a FALSE return is received then ExAllO has completed (if
IoErrO returns ERROR_NO_MORE_ENTRIES---otherwise it returns the error
that occurred, similar to ExNext.)

3. MatchString: If this field is NULL then all filenames will be returned. If
this field is non-null then it is interpreted as a pointer to a string that is used
to pattern match all file names before accepting them and putting them into
the buffer. The default AmigaDOS caseless pattern match routine is used.
This string MUST have been parsed by ParsePatternNoCaseO!

4. MatchFunc: Contains a pointer to a hook for a routine to decide if the
entry will be included in the returned list of entries. The entry is filled out
first, and then passed to the hook. If no MatchFunc is to be called then this
entry should be NULL. The hook is called with the following parameters (as
is standard for hooks):

BOOL = MatchFunc(hookptr, data, typeptr)
aO al a2

(aO = ptr to hook, al = ptr to filled in ExAllData, a2
ptr to longword of type) .

MatchFuncO should return FALSE if the entry is not to be accepted, other
wise return TRUE.

DOS will emulate ExAllO using ExamineO and ExNextO if the handler does
not support the ExAll packet.

Inputs

lock: lock on directory to be examined.

buffer: buffer for data returned (MUST be at least word-aligned, preferably
longword-aligned).

size: size in bytes of ''buffer''.

type: type of data to be returned.

control: control data structure (see Function and Note, above). MUST have
been allocated by AllocDosObjectO!

Result

continue: whether or not ExAllO is done. If FALSE is returned, either ExAllO
has completed OoErrO == ERROR_NO_MORE_ENTRIES), or an error
occurred (check IoErr()). If nonzero is returned, you MUST call ExAllO again
until it returns FALSE.

216 THE DEVELOPER'S MANUAL

Example

eac = AllocDosObject(DOS_EXALLCONTROL,NULL);

if (Jeac)

eac->eac_LastKey 0;

do {

more = ExAll(lock, EAData, sizeof(EAData), ED_FOO, eac);

if ((!more) && (IoErr() != ERROR_NO_MORE_ENTRIES))

/* ExAll failed abnormally */

break;

if (eac->eac_Entries == 0)

/* ExAll failed normally with no entries */

continue;

/* (-more- is *usually* zero) */

ead (struct ExAllData *) EAData;

do

Bugs

/* use ead here */

/* get next ead */
ead = ead->ed_Next;

while (ead);

} while (more);

FreeDosObject(DOS_EXALLCONTROL,eac) ;

Use only the V37 and later versions of this function.

Examine

Name

Examine: examines a directory or file associated with a lock

CALLING AMIGADOS 217

Synopsis

success = Examine (lock, FileInfoBlock
DO D1 D2
BOOL Examine(BPTR,struct FileInfoBlock *)

Function

ExamineO fills in information in the FilelnfoBlock concerning the file or direc
tory associated with the lock. This information includes the name, size, cre
ation date, and whether it is a file or directory. FilelnfoBlock must be long
word-aligned. ExamineO gives a return code of zero if it fails.

You may make a local copy of the FilelnfoBlock, as long as it is never
passed back to ExNextO. The FilelnfoBlock must be longword-aligned.
AllocDosObjectO will allocate it for you correctly.

Inputs

lock: BCPL pointer to a lock.

infoBlock: pointer to a FilelnfoBlock (must be longword-aligned).

Result

success: Boolean

ExamineFH

Name

ExamineFH: gets information on an open file

Synopsis

success = ExamineFH(fh, fib)
DO Dl D2
BOOL ExamineFH(BPTR, struct FileInfoBlock *)

Function

Examines a filehandle and returns information about the file in the
FileInfoBlock. There are no guarantees as to whether the fib_Size field will

218 THE DEVELOPER'S MANUAL

reflect any changes made to the file size it was opened, though file systems
should attempt to provide up-to-date information for it.

Inputs

fh: filehandle you wish to examine.

fib: FileInfoBlock, must be longword-aligned

Result

success: success/failure indication

Execute

Name

Execute: executes a eLI command

Synopsis

success = Execute (commandString, input, output
DO D1 D2 D3

BOOL Execute(char *, BPTR, BPTR)

Function

This function attempts to execute the string commandString as a Shell com
mand and arguments. The string can contain any valid input that you could
type directly in a Shell, including input and output redirection using < and >.
ExecuteO does not return until the commands in commandString have
returned.

The input filehandle is normally zero, and in this case ExecuteO will per
form whatever was requested in the commandString and then return. If the
input file handle is non-zero then after the (possibly non-zero empty)
commandString is performed subsequent input is read from the specified
input filehandle until end of that file is reached.

In most cases the output filehandle must be provided, and is used by the
Shell commands as their output stream unless output redirection was speci
fied. If the output filehandle is set to zero then the current window, normally
specified as *, is used. Note that programs running under the Workbench do
not normally have a current window.

CALLING AMIGADOS 219

ExecuteO may also be used to create a new interactive Shell process just
like those created with the NEWSHELL function. To do this you would call
ExecuteO with an empty commandString, and pass a filehandle relating to a
new window as the input filehandle. The output filehandle would be set to
zero. The Shell reads commands from the new window, and uses the same
window for output. This new Shell window can only be terminated by using
the ENDSHELL command.

Under V37, if an input filehandle is passed, and it's either interactive or a
NIL: filehandle, the pr_ConsoleTask of the new process will be set to that file
handle's process (the same applies to SystemTagList()).

For this command to work the program RUN must be present in C: in ver
sions before V36.

Inputs

commandString: pointer to a NULL-terminated string.

input: BCPL pointer to a filehandle.

output: BCPL pointer to a filehandle.

Result

success: Boolean, indicating whether ExecuteO was successful in finding and
starting the specified program. This is NOT the same as the return code of the
commands executed.

Exit

Name

Exit: exits from a program

Synopsis

Exit(returnCode
Dl

void Exit (LONG)

Function

ExitO is currently for use with programs written as if they were BCPL pro
grams. This function is not normally useful for other purposes.

220 THE DEVELOPER'S MANUAL

In general, therefore, please 00 NOT CALL THIS FUNCTION!
To exit, C programs should use the C language exitO function (note the

lower case letter e). Assembly programs should place a return code in DO,
and execute an RTS instruction with their original stack pointer.

Implementation

The action of ExitO depends on whether the program that called it is running
as a command under a CLI or not. If the program is running under the CLI
the command finishes and control reverts to the CLI. In this case, returnCode
is interpreted as the return code from the program.

If the program is running as a distinct process, ExitO deletes the process
and releases the space associated with the stack, segment list, and process
structure.

Inputs

returnCode: Integer

ExNext

Name

ExNext: examines the next entry in a directory

Synopsis

success ~ ExNext(lock, FileInfoBlock)
DO Dl D2

BOOL ExNext(BPTR, struct FileInfoBlock *)

Function

This routine is passed a directory lock and a FileInfoBlock that have been ini
tialized by a previous call to ExamineO, or updated by a previous call to
ExNextO. ExNextO gives a return code of zero on failure. The most common
cause of failure is reaching the end of the list of files in the owning directory.
In this case, IoErrO returns ERROR_NO_MORE_ENTRIE5 and a good exit is
appropriate.

So, follow these steps to examine a directory:

CALLING AMIGADOS 221
-------------- --------

1. Pass a Lock and a FileInfoBlock to ExamineO. The Lock must be on the
directory you wish to examine.

2. Pass ExNextO the same Lock and FileInfoBlock.

3. Do something with the information returned in the FileInfoBlock. Note
that the lib _ DirEntryType field is positive for directories, negative for files.

4. Keep calling ExNextO until it returns FALSE. Check IoErrO to ensure that
the reason for failure was ERROR_NO_MORE_ENTRIES.

Note: if you wish to recursively scan the file tree and you find another directory
while ExNext'ing you must Lock that directory and ExamineO it using a new
FileInfoBlock. Use of the same FileInfoBlock to enter a directory would lose
important state information such that it will be impossible to continue scanning
the parent directory. While it is permissible to UnLockO and LockO the parent
directory between ExNextO calls, this is NOT recommended.

Important state information is associated with the parent lock, so if it is freed
between ExNextO calls this information has to be rebuilt on each new ExNext
call, and will significantly slow down directory scanning.

It is NOT legal to ExamineO a file, and then to ExNext from that
FileInfoBlock.You may make a local copy of the FilelnfoBlock, as long as it is
never passed back to the operating system.

Inputs

lock: BCPL pointer to a lock originally used for the ExamineO call.

infoBlock: pointer to a FileInfoBlock used on the previous ExamineO or
ExNextO call.

Result

success: Boolean

Special note: The FileInfoBlock must be longword-aligned. AllocDosObjectO
will allocate them correctly for you.

Fault

Name

Fault: returns the text associated with a DOS error code

222 THE DEVELOPER'S MANUAL

Synopsis

success = Fault (code, header, buffer, len)

DO Dl D2 D3 D4

BOOL Fault (LONG, UBYTE *, UBYTE *, LONG)

Function

This routine obtains the error message text for the given error code. The
header is prepended to the text of the error message, followed by a colon.
Puts a null-terminated string for the error message into the buffer. By conven
tion, error messages should be no longer than 80 characters (+1 for termina
tion), and preferably no more than 60 characters.

The value returned by IoErrO is set to the code passed in. If there is no mes
sage for the error code, the message is "Error code <number> \n".

Inputs

code: error code.

header: header to output before error text.

buffer: buffer to receive error message.

len: length of the buffer.

Result

success: success / failure code

FGetC

Name

FGetC: reads a character from the specified input (buffered)

Synopsis

char

DO

FGetC(fh)

D1

LONG FGetC(BPTR)

CALLING AMIGADOS 223

Function

Reads the next character from the input stream. A -1 is returned when EOF or
an error is encountered. This call is buffered. Use FlushO between buffered
and unbuffered I/O on a filehandle.

Inputs

fh: filehandle to use for buffered I/O

Result

char: character read (0-255) or -1

Bugs

In V36, after an EOF was read, EOF would always be returned from FGetCO
from then on. Starting in V37, it tries to read from the handler again each time
(unless UnGetC (fh, -1) was called).
See also: FPutCO, UnGetCO, FlushO

FGets

Name

FGets: reads a line from the specified input (buffered)

Synopsis

buffer = FGets(fh, buf, len)
DO Dl D2 D3
UBYTE *FGets(BPTR, UBYTE *, ULONG)

Function

This routine reads in a single line from the specified input stopping at a
NEWLINE character or EOF. In either event, UP TO the number of len speci
fied bytes minus 1 will be copied into the buffer. Hence if a length of 50 is
passed and the input line is longer than 49 bytes, it returns 49 characters. It
returns the buffer pointer normally, or NULL if EOF is the first thing read.

If terminated by a newline, the newline WILL be the last character in the
buffer. This is a buffered read routine. The string read in IS null-terminated.

224 THE DEVELOPER'S MANUAL

Inputs

fh: filehandle to use for buffered 10.

buf: area to read bytes into.

len: number of bytes to read, must be > o.

Result

buffer: Pointer to buffer passed in, or NULL for immediate EOF or for an
error. If NULL is returned for an EOF, loErrO returns O.

FilePart

Name

FilePart: returns the last component of a path

Synopsis

fileptr = FilePart(path
DO Dl
UBYTE *FilePart(UBYTE *

Function

This function returns a pointer to the last component of a string path specifi
cation, which will normally be the file name. If there is only one component,
it returns a pointer to the beginning of the string.

Inputs

path: pointer to an path string. This pointer may be relative to the current
directory or the current disk.

Result

fileptr: pointer to the last component of the path.

Example

FilePart("xxx:yyy/zzz/qqq"} would return a pointer to the first q.
FilePart{"xxx:yyy"} would return a pointer to the first y.

CALLING AMIGADOS

See also: PathPartO, AddPathO

FindArg

Name

FindArg: finds a keyword in a template

Synopsis

index = FindArg(template, keyword)

DO Dl D2

LONG FindArg(UBYTE *, UBYTE *)

Function

225

This routine returns the argument number of the keyword, or -1 if it is not a
keyword for the template. Abbreviations are handled.

Inputs

keyword: keyword to search for in template.

template: template string to search.

Result

index: number of entry in template, or -1 if not found

FindCliProc

Name

FindCliProc: returns a pointer to the requested CLI process

Synopsis

proc = FindCliProc(num)

DO Dl

struct Process *FindCliProc(LONG)

226 THE DEVELOPER'S MANUAL

Function

This routine returns a pointer to the eLI process associated with the given
eLI number. If the process isn't an active eLI process, NULL is returned.

Note: This should normally be called inside a ForbidO, if you must use this
function at all.

Inputs

num: task number of eLI process

Result

proc: pointer to given eLI process

FindDosEntry

Name

FindDosEntry: finds a specific DOS List entry

Synopsis

newdlist = FindDosEntry(dlist,name, flags)
DO Dl D2 D3
struct DosList *FindDosEntry (struct DosList *, UBYTE
*,ULONG)

Function

Locates an entry on the device list. Starts with the entry dlist.

Note: must be called with the device list locked, no references may be made to
dlist after unlocking.

Inputs

dlist: the device entry to start with.

name: name of device entry (without ":") to locate.

flags: search control flags. Use the flags you passed to LockDosLisOt, or a
subset of them. LDF_READ/LDF_WRITE are not required for this call.

CALLING AMIGADOS 227

Result

newdlist: the device entry or NULL

FindSegment

Name

FindSegment: finds a segment on the resident list (V36)

Synopsis

segment = FindSegment(name, start, system)

DO D1 D2 D3

struct Segment *FindSegment (char *
LONG)

struct Segment *

Function

Finds a segment on the DOS resident list by name and type, starting at the
segment AFTER "start", or at the beginning if start is NULL. If system is zero,
it only returns nodes with a seg_UC of 0 or more. It does NOT increment the
seg_UC, and it does NOT do any locking of the list. You must ForbidO lock
the list to use this call.

To use an entry you have found, you must: if the seg_UC is 0 or more,
increment it, and decrement it (under ForbidO!) when you're done with the
seglist.
The other values for seg_UC are:

-1: system module, such as a filesystem or shell
-2: resident shell command
-999: disabled internal command, ignore

Negative values should never be modified. All other negative values between
o and -32767 are reserved to AmigaDos and should not be used.

Inputs

name: name of segment to find.

start: segment to start the search after.

system - true for system segment, false for normal segments.

228 THE DEVELOPER'S MANUAL

Result

segment: the segment found or NULL.

FindVar

Name

FindVar: finds a local variable (V36)

Synopsis

var FindVar(name, type)

DO D1 D2

struct LocalVar * FindVar(UBYTE * ULONG)

Function

Finds a local variable structure

Inputs

name: pointer to an variable name. Note variable names follow filesystem
syntax and semantics.

type: type of variable to be found. (see dos/var.h.)

Result

var: pointer to a LocalVar structure or NULL

See also: DeleteVarO, GetVarO, SetVarO, dos/var.h

Flush

Name

Flush: flushes buffers for a buffered file handle

CALLING AMIGADOS 229

Synopsis

success = Flush(fh)

DO Dl

BOOL Flush(BPTR)

Function

This routine flushes any pending buffered writes to the filehandle. All
buffered writes will also be flushed on CloseO. If the filehandle was being
used for input, it drops the buffer, and tries to SeekO back to the last read
position (so subsequent reads or writes will occur at the expected position in
the file).

Inputs

fh: filehandle to flush

Result

success: success or failure

Format

Name

Format: causes a filesystem to initialize itself (V37)

Synopsis

success = Format (filesystem, volumename,

DO Dl D2

BOOL Format(UBYTE *, UBYTE *, ULONG)

Function

dostype)

D3

Interface for initializing new media on a device. This function causes the
filesystem to write out an empty disk structure to the media, which should
then be ready for use. This function assumes the media has been lowlevel for
matted and verified already.

230 THE DEVELOPER'S MANUAL

Inputs

filesystem: name of device to be formatted. ":" must be supplied.

volumename: name for volume (if supported). No ":".

dostype: type of format, if filesystem supports multiple types.

Result

success: success/failure indicator

FPutC

Name

FPutC: writes a character to the specified output (buffered) (V36)

Synopsis

char FPutC(fh, char)

DO Dl D2

LONG FPutC(BPTR, UBYTE)

Function

Writes a single character to the output stream. This call is buffered. Use
FlushO between buffered and unbuffered I/O on a filehandle. Interactive file
handles are flushed automatically on a newline, return, "\0", or linefeed.

Inputs

fh: filehandle to use for buffered I/O.

char: character to write.

Result

char: either the character written, or EOF for an error

CALLING AMIGADOS 231

FPuts

Name

FPuts: writes a string to the specified output (buffered)

Synopsis

error = FPuts(fh, str)

DO D1 D2

LONG FPuts(BPTR, UBYTE *)

Function

This routine writes an unformatted string to the filehandle. No newline is
appended to the string and the length actually written is returned. This rou
tine is buffered.

Inputs

fh: filehandle to use for buffered I/O.

str: null-terminated string to be written to default output.

Result

error: 0 normally, otherwise -1. Note that this is opposite of most other OOS
functions, which return success.

FRead

Name

FRead: reads a number of blocks from an input (buffered)

Synopsis

count = FRead(fh, buf, blocklen, blocks)

DO D1 D2 D3 D4

LONG FRead(BPTR, UBYTE *, ULONG, ULONG)

232 THE DEVELOPER'S MANUAL

Function

Attempts to read a number of blocks, each blocklen long, into the specified
buffer from the input stream. This routine may return less than the number of
blocks requested, either due to EOF or read errors. This call is buffered.

Inputs

fh: filehandle to use for buffered I/O.

buf: area to read bytes into.

blocklen: number of bytes per block. Must be > o.
blocks: number of blocks to read. Must be > o.

Result

count - Number of _blocks_ read, or 0 for EOF. On an error, the number of
blocks actually read is returned.

Bugs

Doesn't clear IoErrO before starting. If you want to find out about errors, use
SetIoErr(OL) before calling.

FreeArgs

Name

FreeArgs: Free allocated memory after ReadArgaO (V36)

Synopsis

FreeArgs(rdargs)
Dl

void FreeArgs(struct RDArgs *)

Function

Frees memory allocated to return arguments in from ReadArgsO. If ReadArgs
allocated the RDArgs structure it will be freed.

CALLING AMIGAOOS

Inputs

rdargs: structure returned from ReadArgsO

See also: ReadArgsO, ReadItemO, FindArgO

FreeDeviceProc

Name

FreeDeviceProc: releases port returned by GetDeviceProc (V36)

Synopsis

FreeOeviceProc(devproc)

01

void FreeDeviceProc(struct OevProc *)

Function

233

Frees up the structure created by GetDeviceProcO, and any associated tempo
rary locks.

Decrements the counter incremented by GetDeviceProcO. The counter is in
an extension to the 1.3 process structure. After calling FreeDeviceProcO, do
not use the port or lock again! It is safe to call FreeDeviceProc(NULL).

Inputs

devproc: a value returned by GetDeviceProcO

Bugs

Counter not currently active in 2.0

FreeDosEntry

Name

FreeDosEntry: frees an entry created by MakeDosEntryO.

234 THE DEVELOPER'S MANUAL

Synopsis

FreeDosEntry(dlist)

D1

void FreeDosEntry(struct DosList *)

Function

Frees an entry created by MakeDosEntryO. This routine should be eliminated
and replaced by a value passed to FreeDosObjectO.

Inputs

dlist: Dos List to free

FreeDosObject

Name

FreeDosObject: frees an object allocated by AllocDosObject

Synopsis

FreeDosObject(type, ptr)

D1 D2

void FreeDosObject(ULONG, void *)

Function

Frees an object allocated by AllocDosObjectO. Do NOT call for objects allocat
ed in any other way.

Inputs

type: type passed to AllocDosObjectO.

ptr: ptr returned by AllocDosObjectO.

See also: AllocDosObject, dos/dos.h

CALLING AMIGADOS 235

FWrite

Name

FWrite: writes a number of blocks to an output (buffered)

Synopsis

count = FWrite(fh, buf, blocklen, blocks)
DO D1 D2 D3 D4

LONG FWrite(BPTR, UBYTE *, ULONG, ULONG)

Function

Attempts to write a number of blocks, each blocklen long, from the specified
buffer to the output stream. This routine may return less than the number of
blocks requested, if there is some error such as a full disk or read/write error.
This call is buffered.

Inputs

fh: filehandle to use for buffered I/O.

buf: area to write bytes from.

blocklen: number of bytes per block. Must be > O.

blocks: number of blocks to read. Must be > O.

Result

count: Number of _blocks_ written. On an error, the number of blocks actual
ly written is returned.

Bugs

FWrite doesn't clear IoErrO before starting. If you want to find out about
errors, use SetIoErr(OL) before calling.

GetArgStr

Name

GetArgStr: returns the arguments for the process (V36)

236

Synopsis

ptr = GetArgStr()
DO

THE DEVELOPER'S MANUAL

UBYTE *GetArgStr(void)

Function

GetArgStrO returns a pointer to the (NULL-terminated) arguments for the
program (process). This is the same string passed in a 0 on startup from CLI.

Result

ptr: pointer to arguments

GetConsoleTask

Name

GetConsoleTask: returns the default console for the process

Synopsis

port = GetConsoleTask()
DO
struct MsgPort *GetConsoleTask(void)

Function

Returns the default console task's port (pr_ConsoleTask) for the current pro
cess

Result

port: the pr_MsgPort of the console handler, or NULL

GetCurrentDirName

Name

GetCurrentDirName: returns the current directory name

CALLING AMIGAOOS

Synopsis

success = GetCurrentDirName(buf, len)
DO Dl D2
BaaL GetCurrentDirName(char *, LONG)

Function

237

Extracts the current directory name from the CLI structure and puts it into
the buffer. If the buffer is too small, the name is truncated appropriately and
a failure code returned. If no CLI structure is present, a null name is returned
in the buffer. The call fails with IoErrO = = ERROR_OBJECT_WRONG_TYPE.

Inputs

buf: buffer to hold extracted name

len: number of bytes of space in buffer

Result

success: success / failure indicator

GetDeviceProc

Name

GetDeviceProc: finds a handler to send a message to

Synopsis

devproc = GetDeviceProc(name, devproc)
DO Dl D2

struct DevProc *GetDeviceProc(UBYTE * struct DevProc *)

Function

This routine finds the handler / filesystem to send packets regarding 'name'
to. This may involve getting temporary locks. It returns a structure that
includes a lock and msgport to send to to attempt your operation. It also
includes information on how to handle multiple-directory assigns (by pass
ing the DevProc back to GetDeviceProcO until it returns NULL).

238 THE DEVELOPER'S MANUAL

The initial call to GetDeviceProcO should pass NULL for devproc. If after
using the returned DevProc, you get an ERROR_OBJECT_NOT_ FOUND,
and (devproc->dvp_Flags and DVPF _ASSIGN) is true, you should call
GetDeviceProc again, passing it the devproc structure. It will either return a
modified DevProc structure, or NULL (with ERROR_NO_MORE_ENTRIES
in IoErr()). Continue until it returns NULL.

This call also increments the counter that locks a handler/fs into memory.
After calling FreeDeviceProcO, do not use the port or lock again!

Inputs

name: name of the object you wish to access. This can be a relative path
("foo/bar"), relative to the current volume (":foo/bar"), or relative to a
device/volume/ assign ("foo:bar").

devproc: a value returned by GetDeviceProcO before, or NULL.

Result

devproc: a pointer to a DevProc structure or NULL.

Bugs

Counter not currently active in 2.0. In 2.0 and 2.01, you HAD to check
DVPF _ASSIGN before calling it again. This defect was fixed for the 2.02
release.

GetFileSysTask

Name

GetFileSysTask: returns the default filesystem for the process

Synopsis

port = GetFileSysTask()
DO
struct MsgPort *GetFileSysTask(void)

Function

Returns the default filesystem task's port (pr_FileSystemTask) for the current
process

CALLING AMIGADOS 239

Result

port: the pr_MsgPort of the filesystem, or NULL

GetProgramDir

Name

GetProgramDir: returns a lock on the directory the program was loaded from

Synopsis

lock GetProgramDir()

DO
BPTR GetProgramDir(void)

Function

GetProgramDirO returns a shared lock on the directory the program was
loaded from. This can be used for a program to find data files, etc. that are
stored with the program, or to find the program file itself. NULL returns are
valid, and may occur, for example, when running a program from the resi
dent list. You should NOT unlock the lock.

Result

lock: a lock on the directory the current program was loaded from, or NULL
if loaded from resident list, etc.

Bugs

Should return a lock for things loaded via resident. Perhaps this routine
should return currentdir if NULL.

GetProgramName

Name

GetProgramName: returns the current program name

240 THE DEVELOPER'S MANUAL

Synopsis

success = GetProgramName(buf, len)
DO Dl D2

BOOL GetProgramName(char *, LONG)

Function

Extracts the program name from the CLI structure and puts it into the buffer.
If the buffer is too small, the name is truncated appropriately and a failure
code returned. If no CLI structure is present, a null name is returned in the
buffer and failure is indicated by IoErrO := = ERROR_OBJECT_
WRONG_TYPE.

Inputs

buf: buffer to hold extracted name.

len: number of bytes of space in buffer.

Result

success: success/failure indicator

GetPrompt

Name

GetPrompt: returns the prompt for the current process (V36)

Synopsis

success = Get Prompt (buf, len)
DO Dl D2

BOOL GetPrompt(char *, LONG)

Function

This routine extracts the prompt string from the CLI structure and puts it into
the buffer. If the buffer is too small, the string is truncated appropriately and
a failure code returned. If no CLI structure is present, a null string is returned
in the buffer and failure is indicated by IoErrO := := ERROR_OBJECT_
WRONG_TYPE.

CALLING AMIGADOS

Inputs

buf: buffer to hold extracted prompt.

len: number of bytes of space in buffer.

Result

success: success/failure indicator

GetVar

Name

GetVar: returns the value of a local or global variable

Synopsis

len = GetVar(name, buffer, size, flags)
DO Dl D2 D3 D4
LONG GetVar(UBYTE *, UBYTE *, LONG, ULONG

Function

241

This routine gets the value of a local or environment variable. It is advised to
only use ASCII strings inside variables, but this is not required. This avoids
putting characters into the destination when a \n is hit, unless GVF _BINA
RY_ VAR is specified. (The \n is not stored in the buffer.)

Inputs

name: pointer to a variable name.

buffer: a user-allocated area that will be used to store the value associated
with the variable.

size: length of the buffer region in bytes.

flags: combination of type of var to get value of (low 8 bits), and flags to
control the behavior of this routine. Currently defined flags include:

GVF _ GLOBAL_ ONLY: tries to get a global env variable.

GVF _LOCAL_ONLY: tries to get a local variable.

GVF _BINARY_ VAR: doesn't stop at \n.

242 THE DEVELOPER'S MANUAL

The default is to try to get a local variable first, then to try to get a global
environment variable.

Result

len: size of environment variable. -1 indicates that the variable was NOT
DEFINED. If the value would overflow the user buffer, the buffer is trun
cated. The buffer returned is null-terminated (even if GVF _BINARY _ V AR
is used.) The number of characters put in the buffer (not including '\0') is
returned and IoErrO will return the size of the variable.

Bugs

L V_V AR is the only type that can be global. Under V36, we documented (and
it returned) the size of the variable, not the number of characters transferred.
For V37 this was changed to the number of characters put in the buffer, and
the total size of the variable is put in IoErrO.

See also: DeleteVarO, FindVarO, SetVarO, dos/var.h

Info

Name

Info: returns information about the disk

Synopsis

success = Info(lock, parameterBlock
DO Dl D2
BOOL Info (BPTR, struct InfoData *)

Function

InfoO can be used to find information about any disk in use. 'lock' refers to
the disk, or any file on the disk. The parameter block is returned with infor
mation about the size of the disk, number of free blocks and any soft errors.

Inputs

lock: BCPL pointer to a lock

parameter Block: pointer to an InfoData structure (longword-aligned)

CALLING AMIGADOS 243

Result

success: Boolean

Special note: Note that InfoData structure must be longword-aligned.

Inhibit

Name

Inhibit: inhibits access to a filesystem (V36)

Synopsis

success = Jnhibit(filesystem, flag)

DO Dl D2

BOOL Inhibit(char *,LONG)

Function

This routine sends an ACTION_INHIBIT packet to the indicated handler.
This action stops all activity by the handler until uninhibited. When the han
dler is uninhibited, anything may have happened to the disk in the drive, or
there may no longer be one.

Inputs

filesystem: name of device to inhibit (with ":").
flag: new status. DOSTRUE == inhibited, FALSE == uninhibited.

Result

success: success / failure indicator

Input

Name

Input: identifies the program's initial input file handle

244

Synopsis

file

DO

Input ()

BPTR Input (void)

Function

THE DEVELOPER'S MANUAL

InputO is used to identify the initial input stream allocated when the program
was initiated. Never close the filehandle returned by InputO!

Result

file: BCPL pointer to a file handle

See also: OutputO, SelectlnputO

InternalLoadSeg

Name

InternalLoadSeg: low-level load routine

Synopsis

seglist = InternalLoadSeg(fh,table, functionarray, stack)

DO DO AO Al A2

BPTR InternalLoadSeg(BPTR,BPTR,LONG *,LONG *)

Function

InternalLoadSegO loads from fh. Table is used when loading an overlay, oth
erwise should be NULL. Functionarray is a pointer to an array of functions.
Note that the current Seek position after loading may be at any point after the
last hunk loaded. The filehandle will not be closed. If a stacksize is encoded
in the file, the size is stuffed in the LONG pointed to by stack. This LONG
should be initialized to your default value: InternalLoadSegO will not change
it if no stacksize is found. Clears unused portions of Code and Data hunks (as
well as BSS hunks). (This also applies to LoadSegO and NewLoadSeg(».

If the file being loaded is an overlaid file, this returns -(seglist). All other
results are positive.

CALLING AMIGAOOS 245

Note: Overlay users, InternalLoadSegO does NOT return seglist in both 00 and
01, as LoadSeg does. The current ovs.asm uses LoadSegO, and assumes returns
are in 01. We support this for LoadSegO ONLY.

Inputs

fh: filehandle to load from.

table: when loading an overlay, otherwise ignored.

functionarray: array of function to be used for read, alloc, and free.

FunCI'able[O] -> Actual = ReaclFunc(readhandle,l:uffer, length) ,IX:lSEase

DO Dl AO DO A6
FuncTable[l] -> Memory = AllocFunc(size, flags) , Execbase

DO DO Dl a6
FuncTable[2] -> FreeFunc(memory, size) , Execbase

Al DO a6

stack: pointer to storage (ULONG) for stacksize.

Result

seglist: seglist loaded or NULL. NOT returned in OI!

Bugs

Tags really should be used.

InternalUnLoadSeg

Name

InternalUnLoadSeg: unloads a seglist loaded with InternalLoadSegO

Synopsis

success = InternalUnLoadSeg(seglist, FreeFunc)
DO Dl Al

BOOL InternalUnLoadSeg(BPTR,void (*) (char *,ULONG))

246 THE DEVELOPER'S MANUAL

Function

Unloads a seglist using freefunc to free segments. FreefuncO is called as for
InternalLoadSegO. Note: This function calls CloseO for overlaid seglists.

Inputs

seglist: seglist to be unloaded.

FreeFunc: function called to free memory.

Result

success: returns whether everything went OK (since this may close files). Also
returns FALSE if seglist was NULL.

Bugs

Tags should really be used.

IoErr

Name

IoErr: returns extra information from the system

Synopsis

error = IoErr ()
DO

LONG IoErr(void)

Function

Most I/O routines return zero to indicate an error. When this happens, this
routine may be called to determine more information. It is also used in some
routines to pass back a secondary result. Note that there is no guarantee as to
what IoErrO will return after a successful operation unless it is specified in
the function.

Result

error - Integer.

CALLING AMIGADOS 247

See also: FaultO, PrintFaultO, SetIoErrO

IsFileSystem

Name

IsFileSystem: returns whether a DOS handler is a filesystem

Synopsis

result = IsFileSystem(name)

DO Dl

BOOL IsFileSystem(char *)

Function

This routine returns whether the device is a filesystem or not. A filesystem
supports separate files storing information. It may also support subdirecto
ries, but is not required to. If the filesystem doesn't support this new packet,
IsFileSystemO uses Lock(":", ...) as an indicator.

Inputs

name: name of device in question, with trailing ':'

Result

result: flag to indicate if device is a file system

IsInteractive

Name

IsInteractive: discovers whether a file is a virtual terminal

Synopsis

status = IsInteractive(file

DO Dl
BOOL IsInteractive(BPTR)

248 THE DEVELOPER'S MANUAL

Function

The return value "status" indicates whether the file associated with the file
handle "file" is connected to a virtual terminal.

Inputs

file: BCPL pointer to a file handle

Result

status: Boolean

LoadSeg

Name

LoadSeg: Scatter-load a load able file into memory.

Synopsis

seglist = LoadSeg(name

DO Dl

BPTR LoadSeg(char *)

Function

The file 'name' should be a load module produced by the linker. LoadSeg
scatter-loads the CODE, DATA, and BSS segments into memory, chaining
together the segments with BPTR's on their first words. The end of the chain
is indicated by a zero. There can be any number of segments in a file. All nec
essary relocation is handled by LoadSegO. In the event of an event, any
blocks loaded will be unloaded and a NULL result returned.

If the module is correctly loaded then the output will be a pointer at the
beginning of the list of blocks. Loaded code is unloaded via a call to
UnLoadSegO.

Inputs

name: pointer to a null-terminated string

CALLING AMIGAOOS

Result

seglist: BCPL pointer to a seglist

Lock

Name

Lock: locks a directory or file

Synopsis

lock
DO

Lock(name, accessMode
Dl D2

BPTR Lock(char *, LONG)

Function

A filing system lock on the file or directory "name" is returned if possible.

249

If the accessMode is ACCESS_READ, the lock is a shared read lock; if the
accessMode is ACCESS_WRITE then it is an exclusive write lock. Do not use
random values for mode.

If LackO fails (that is, if it cannot obtain a filing system lock on the file or
directory) it returns a zero.

Tricky assumptions about the internal format of a lock are unwise, as are
any attempts to use the fl_link or fl_Access fields.

Inputs

name: pointer to a NULL-terminated string.

accessMode: integer.

Result

lock: BCPL pointer to a lock

LockDosList

Name

LockDosList: locks the specified DOS lists for use

250 THE DEVELOPER'S MANU AL
------- --------------- -----

Synopsis

dlist

DO

LockDosList(flags)

Dl

struct DosList *LockDosList(ULONG)

Function

This routine locks the DOS device list in preparation to walk the list.

If the list is "busy" then this routine will not return until it is available. This
routine "nests": you can call it multiple times, and then must unlock it the
same number of times. The dlist returned is NOT a valid entry: it is a special
value. Note that for 1.3 compatibility, it also does a ForbidO -- this will prob
ably be removed at some future time. The 1.3 ForbidO locking of this list had
some race conditions. The pointer returned by this is NOT an actual Dos List
pointer -- you should use one of the other DosEntry calls to get actual point
ers to DosList structures (such as NextDosEntry), passing the value returned
by LockDosListO as the dlist value.

Inputs

flags: flags stating which types of nodes you want to lock

Result

dlist: pointer to the head of the list. This is NOT a valid node!

LockRecord

Name

LockRecord: locks a portion of a file

Synopsis

success LockRecord(fh,offset, length,mode, timeout)

DO Dl D2 D3 D4 D5

ULONG LockRecord(BPTR,ULONG,ULONG,ULONG,ULONG)

CALLING AMIGAOOS 251

Function

This routine locks a portion of a file for exclusive access. Timeout is how long
to wait in ticks 0/50 second) for the record to be available.

Valid modes are:

REC_EXCLUSIVE

REC_EXCLUSIVE_IMMED

REC_SHARED

REC_SHARED _IMMED

For the IMMED modes, the timeout is ignored. Record locks are tied to the
filehandle used to create them. The same filehandle can get any number of
exclusive locks on the same record, for example. These are cooperative locks,
they only affect other people calling LockRecordO.

Inputs

fh: file handle for which to lock the record.

offset: record start position.

length: length of record in bytes.

mode: type of lock requester.

timeout: timeout interval in ticks. 0 is legal.

Result

success: success or failure

Bugs

In 2.0 through 2.02 (V36), LockRecordO only worked in the ramdisk.
Attempting to lock records on the disk filesystem causes a crash. This was
fixed for V37.

LockRecords

Name

LockRecords: locks a series of records

252 THE DEVELOPER'S MANUAL

Synopsis

success = LockRecords(record_array,timeout)

DO Dl D2

BOOL LockRecords(struct RecordLock *,ULONG)

Function

This locks several records within a file for exclusive access. Timeout is how
long to wait in ticks for the records to be available. The wait is applied to each
attempt to lock each record in the list. It is recommended that you always
lock a set of records in the same order to reduce possibilities of deadlock. The
array of RecordLock structures is terminated by an entry with rec_FH of
NULL.

Inputs

record_array: list of records to be locked.

timeout: timeout interval. 0 is legal.

Result

success: success or failure.

Bugs

Also see: LockRecordO

MakeDosEntry

Name

MakeDosEntry: creates a DosList structure (V36)

Synopsis

newdlist = MakeDosEntry(name, type)

DO D1 D2

struct DosList *MakeDosEntry(UBYTE * LONG)

CALLING AMIGADOS 253

Function

Create a DosList structure, including allocating a name and correctly null-ter
minating the BSTR. It also sets the dol_Type field, and sets all other fields to
O. This routine should be eliminated and replaced by a value passed to
AllocDosObjectO.

Inputs

name: name for the device/volume/assign node.

type: type of node.

Result

newdlist: the new device entry or NULL

MakeLink

Name

MakeLink: Creates a filesystem link (v36)

Synopsis

success MakeLink(name, dest, soft

DO Dl D2 D3

BOOL MakeLink(UBYTE *, LONG, LONG)

Function

Create a filesystem link from 'name' to dest. For "soft-links", dest is a pointer
to a null-terminated path string. For "hard-links", dest is a lock (BPTR). 'soft'
is FALSE for hard-links, non-zero otherwise.

Soft-links are resolved at access time by a combination of the filesystem (by
returning ERROR_IS_SOFT_LINK to dos), and by Dos (using ReadLinkO to
resolve any links that are hit).

Hard-links are resolved by the file system in question. A series of hard-links
to a file are all equivalent to the file itself. If one of the links (or the original
entry for the file) is deleted, the data remains until there are no links left.

254 THE DEVELOPER'S MANUAL

Inputs

name: Name of the link to create
dest: CPTR to path string, or BPTR lock
soft: FALSE for hard-links, non-zero for soft-links

Result

Success - boolean

Bugs

In V36, soft-links didn't work in the ROM filesystem. This was fixed for V37.
See also: ReadLinkO, OpenO, LackO

MatchEnd

Name

MatchEnd: free storage allocated for MatchFirstO/MatchNextO

Synopsis

MatchEnd(AnchorPath)
Dl

VOID MatchEnd(struct AnchorPath *)

Function

This routine returns all storage associated with a given search.

Inputs

AnchorPath: anchor used for MatchFirstO/MatchNextO MUST be longword
aligned!

MatchFirst

Name

MatchFirst: finds file that matches pattern

CALLING AMIGAOOS 255

Synopsis

error = MatchFirst(pat, AnchorPath)
DO Dl D2
BOOL MatchFirst(UBYTE *, struct AnchorPath *)

Function

This routine locates the first file or directory that matches a given pattern.
MatchFirstO is passed your pattern (you do not pass it through
ParsePatternO; MatchFirstO does that for you), and the control structure.
MatchFirstO normally initializes your AnchorPath structure for you, and
returns the first file that matched your pattern, or an error. Note that
MatchFirstO /MatchNextO are unusual for DOS in that they return 0 for suc
cess, or the error code (see dos/ dos.h), instead of having the application get
the error code from IoErrO.

When looking at the result of MatchFirstO/MatchNextO, the ap_Info field
of your AnchorPath has the results of an ExamineO of the object. You normal
ly get the name of the object from fib_FileName, and the directory it's in from
ap_Current->an_Lock. To access this object, normally you would temporarily
CurrentDirO to the lock, do an action to the file/ dir, and then CurrentDirO
back to your original directory. This makes certain you affect the right object
even when two volumes of the same name are in the system. You can use
ap_Buf (with ap_Strlen) to get a name to report to the user.

The patterns are fairly extensive, and approximate some of the ability of
Unix/ grep regular expression patterns. Here are the available tokens:

?

(ab I cd)

[abcl
a-z
%

*

Matches a single character.
Matches the following expression 0 or more times.
Matches anyone of the items separated by' I '.
Negates the following expression. It matches all strings that do not
match the expression (aka -(foo) matches all strings that are not
exactly "foo").
Character class: matches any of the characters in the class.
Character range (only within character classes).
Matches 0 characters always (useful in "(faa I bar 1%)").
Synonym for "#?", not available by default in 2.0. Available as an
option that can be turned on.

"Expression" in the above list means either a single character (ex: "#?"), or an
alternation (ex: "#(ab I cd I ef)"), or a character class (ex: "#[a-zA-Z]").

256 THE DEVELOPER'S MANUAL

Inputs

pat: pattern to search for.

AnchorPath: place holder for search. MUST be longword aligned!

Result

error: 0 for success or error code. (Opposite of most DOS calls.)

MatchNext

Name

MatchNext: finds the next file or directory that matches pattern

Synopsis

error MatchNext(AnchorPath)

DO Dl

BOOL MatchNext(struct AnchorPath *)

Function

Locates the next file or directory that matches a given pattern. See
dos/dosasl.h for more information. Various bits in the flags allow the appli
cation to control the operation of MatchNextO.

Inputs

AnchorPath: place holder for search. MUST be longword aligned!

Result

error: 0 for success or error code. (Opposite of most DOS calls.)

CALLING AMIGADOS 257

MatchPattern

Name

MatchPattern - Checks for a pattern match with a string

Synopsis

match = MatchPattern(pat, str)
DO D1 D2

BOOL MatchPattern(UBYTE *, UBYTE *)

Function

Checks for a pattern match with a string. The pattern must be a tokenized
string output by ParsePatternO. All matching is currently case-sensitive. You
must have at least 1500 free bytes of stack to call this function since it uses
deep recursion.

Inputs

pat: special pattern string to match as returned by ParsePatternO.

str: string to match against given pattern.

Result

match: success or failure of pattern match. On failure, IoErrO will return 0 or
ERROR_TCXJ_MANY_LEVELS (V37).

MatchPatternN oCase

Name

MatchPatternNoCase: Checks for a pattern match with a string (V36)

Synopsis

match
DO

MatchPatternNoCase(pat, str)
Dl D2

BOOL MatchPatternNoCase(UBYTE *, UBYTE *)

258 THE DEVELOPER'S MANUAL

Function

Checks for a pattern match with a string. The pattern must be a tokenized
string output by ParsePatternNoCaseO. This routine is case-insensitive.

NOTE: This routine is highly recursive. You must have at least 1500 free
bytes of stack to call this (it will cut off its recursion before going any deeper
than that and return failure). That's_currently_enough for about 100 levels
deep of #, (, -, and so on.

Inputs

pat: special pattern string to match as returned by ParsePatternNoCaseO
str: String to match against given pattern

Result

match: success or failure of pattern match. On failure, IoErrO will return 0
or ERROR_TOO_MANY_LEVELS (starting with V37-before that
there was no stack checking).

See also: ParsePatternNoCaseO, MatchPatternO, MatchFirstO, MatchNextO

MaxCli

Name

MaxCli: returns the highest CLI process number possibly in use

Synopsis

number = MaxCli()

DO
LONG MaxCli(void)

Function

Returns the highest CLI number that may be in use. CLI numbers are reused,
and are usually as small as possible. To find all CLls, scan using
FindCliProcO from 1 to MaxCliO. The number returned by MaxCliO may
change as processes are created and destroyed.

CALLING AMIGADOS

Result

number: the highest eLI number that _may_be in use.

NameFromFH

Name

NameFromFH: get the name of an open filehandle (V36)

Synopsis

success = NameFromFH(fh, buffer, len)
DO D1 D2 D3
BaaL NameFromFH(BPTR, char *, LONG)

Function

259

Returns a fully qualified path for the filehandle. This routine is guaranteed
not to write more than len characters into the buffer. The name will be NULL
terminated. See NameFromLockO for more information.

Inputs

fh: lock of object to be examined.

buffer: buffer to store name.

len: length of buffer.

Result

success: success/ failure indicator

NameFromLock

Name

NameFromLock: returns the name of a locked object

Synopsis

success
DO

NameFromLock(lock, buffer, len)
D1 D2 D3

260 THE DEVELOPER'S MANUAL

BaaL NameFromLock(BPTR, char *, LONG)

Function

Returns a fully qualified path for the lock. This routine is guaranteed not to
write more than len characters into the buffer. The name will be null-termi
nated. Note: if the volume is not mounted, the system will request it (unless,
of course, you set pr_ WindowPtr to -1). If the volume is not mounted or
inserted, it will return an error. If the lock passed in is NULL, "SYS:" is
returned. If the buffer is too short, an error will be returned, and IoErrO will
return ERROR_LINE_TOO_LONG.

Inputs

lock: lock of object to be examined.

buffer: buffer to store name.

len: length of buffer.

Result

success: success/failure indicator

Bugs

This routine should return the name of the boot volume instead of SYS: for a
NULL lock

NewLoadSeg

Name

NewLoadSeg: improved version of LoadSeg for stacksizes

Synopsis

seglist = NewLoadSeg(file, tags)
DO D1 D2

BPTR NewLoadSeg(UBYTE *, struct TagItem *)
seglist = NewLoadSegTagList(file, tags)
DO Dl D2

BPTR NewLoadSegTagList (UBYTE *, struct TagItem *)

CALLING AMIGADOS 261

seglist = NewLoadSegTags(file, ...)
BPTR NewLoadSegTags(UBYTE *, ...)

Function

Does a LoadSegO on a file, and takes additional actions based on the tags
supplied. Clears unused portions of Code and Data hunks (as well as BSS
hunks). (This also applies to InternalLoadSeg and LoadSeg.) NewLoadSegO
does not return seglist in both DO and D1 as LoadSegO does. Also, there are
no tags defined for NewLoadSegO at present.

Inputs

file: filename of file to load.

tags: pointer to tagitem array.

Result

seglist: seglist loaded, or NULL

N extDosEntry

Name

NextDosEntry: get the next DOS List entry (V36)

Synopsis

newdlist = NextDosEntry(dlist,flags)
DO Dl D2
struct DosList *NextDosEntry(struct DosList *,ULONG)

Function

Find the next Dos List entry of the right type. You MUST have locked the
types you're looking for. Returns NULL if there are no more of that type in
the list.

Inputs

dlist: the current device entry.

flags: what type of entries to look for.

262 THE DEVELOPER'S MANUAL

Result

newdlist: the next device entry of the right type or NULL

Open

Name

Open: opens a file for input or output

Synopsis

file Open (name, accessMode

DO D1 D2

BPTR Open(char * LONG)

Function

The named file is opened and a filehandle returned. If the accessMode is
MODE_OLDFILE, an existing file is opened for reading or writing. If the
value is MODE_NEWFlLE, a new file is created for writing. MODE_READ
WRITE opens a file with a shared lock, but creates it if it didn't exist. Open
types are documented in the libraries/ dos.h include file and dos/ dos.h
include files.

The 'name' can be a filename (optionally prefaced by a device name), a
simple device such as NIL:, a window specification such as CON: or RAW:
followed by window parameters, or *, representing the current window. Note
that as of V36, * is obsolete, and CONSOLE: should be used instead. If the file
cannot be opened for any reason, the value returned will be zero, and a sec
ondary error code will be available by calling the routine IoErrO.

Inputs

name: pointer to a NULL-terminated string.

accessMode: integer.

Result

file: BCPL pointer to a file handle

CALLING AMIGAOOS 263

OpenFromLock

Name

OpenFromLock: opens a file you have a lock on

Synopsis

fh OpenFromLock(lock)

DO Dl

BPTR OpenFromLock(BPTR)

Function

Given a lock, this routine performs an open on that lock. If the open succeeds,
the lock is (effectively) relinquished, and should not be UnLockOed or used.
If the open fails, the lock is still usable. The lock associated with the file inter
nally is of the same access mode as the lock you gave up - shared is similar
to MODE_OLDFILE, exclusive is similar to MODE_NEWFILE.

Inputs

lock: lock on object to be opened

Result

fh: newly opened filehandle or NULL for failure

Bugs

In the original V36 autodocs, this was shown (incorrectly) as taking a Mode
parameter as well. The prototypes and pragmas were also wrong.

Output

Name

Output: identifies the program's initial output file handle

264 THE DEVELOPER'S MANUAL

Synopsis

file Output ()
DO
BPTR Output (void)

Function

OutputO is used to identify the initial output stream allocated when the pro
gram was initiated. Never close the filehandle returned by OutputO.

Result

file: BePL pointer to a filehandle

ParentDir

Name

ParentDir: obtains the parent of a directory or file

Synopsis

newlock = ParentDir(lock)
DO Dl
BPTR ParentDir(BPTR)

Function

The argument "lock" is associated with a given file or directory. ParentDirO
returns "newlock" which is associated the parent directory of "lock".

Taking the ParentDirO of the root of the current filing system returns a
NULL (0) lock. Note this 0 lock represents the root of file system that you
booted from (which is, in effect, the parent of all other file system roots.)

Inputs

lock: BePL pointer to a lock

Result

new lock: BePL pointer to a lock

CALLING AMIGAIX)S

ParentOfFH

Name

ParentOfFH: returns a lock on the parent directory of a file

Synopsis

lock
DO

ParentOfFH(fh)
D1

BPTR ParentOfFH(BPTR)

Function

Returns a shared lock on the parent directory of the filehandle

Inputs

fh: filehandle you want the parent of

Result

lock: lock on parent directory of the filehandle or NULL for failure

Parse Pattern

Name

ParsePattern: creates a tokenized string for MatchPatternO

Synopsis

Iswild = ParsePattern(Source,Dest,DestLength)
DO D1 D2 D3
LONG ParsePattern(UBYTE *, UBYTE *, LONG)

Function

265

Tokenizes a pattern, for use by MatchPatternO. Also indicates if there are any
wildcards in the pattern (that is, whether it might match more than one item).
Note that Dest must be at LEAST two times as large as Source.

266 THE DEVELOPER'S MANUAL
------- - ------------

Inputs

source: unparsed wildcard string to search for

dest: output string, gets tokenized version of input

DestLength: length available in destination (should be at least as twice as
large as source +2 bytes).

Result

IsWild: 1 means there were wildcards in the pattern, a means there were no
wildcards in the pattern, -1 means there was a buffer overflow or other
error

Bugs

This function should set IoErrO to something useful (not currently set) on an
error.

ParsePatternN oease

Name

ParsePatternNoCase: Create a tokenized string for MatchPatternNoCaseO
(V36)

Synopsis

IsWild
DO

ParsePatternNoCase(Source, Dest, DestLength)
Dl D2 D3

LONG ParsePatternNoCaae(UBYTE *, UBYTE * LONG)

Function

Tokenizes a pattern, for use by MatchPatternNoCaseO. Also indicates if there
are any wildcards in the pattern (i.e., whether it might match more than one
item). Note that Dest must be at least 2 times as large as Source plus 2 bytes.

For a description of the wildcards, see ParsePatternO.

Inputs

source: unparsed wildcard string to search for.

CALLING AMIGADOS 267

dest: output string, gets tokenized version of input.
DestLength: length available in destination (should be at least twice as large

as source + 2 bytes).

Results

IsWild: 1 means there were wildcards in the pattern,
o means there were no wildcards in the pattern,
-1 means there was a buffer overflow or other error

Bugs

Should set IoErrO to something useful (not currently set) on an error.
See also: ParsePatternO, MatchPatternNoCaseO, MatchFirstO, MatchNextO

PathPart

Name

PathPart: returns a pointer to the end of the next-to-Iast component of a path

Synopsis

fileptr = PathPart(path
DO Dl
UBYTE *PathPart(UBYTE *

Function

This routine returns a pointer to the character after the next-to-Iast compo
nent of a path specification, which is normally the directory name. If there is
only one component, it returns a pointer to the beginning of the string. The
only real difference between this and FilePartO is the handling of " /".

Inputs

path: pointer to an path string. May be relative to the current directory or the
current disk.

Result

fileptr: pointer to the end of the next-to-Iast component of the path

268 THE DEVELOPER'S MANUAL

Example

PathPart("xxx:yyy/zzz/qqq") would return a pointer to the last "/".
PathPart("xxx:yyy") would return a pointer to the first y).

See also: FilePartO, AddPartO

PrintFault

Name

PrintFault: returns the text associated with a DOS error code

Synopsis

success = PrintFault(code, header)
DO D1 D2

BOOL PrintFault(LONG, UBYTE *)

Function

This routine obtains the error message text for the given error code. This is
similar to the FaultO function, except that the output is written to the default
output channel with buffered output. The value returned by IoErrO is set to
the code passed in.

Inputs

code: error code.

header: header to output before error text.

Result

success: success/failure code

PutStr

Name

PutStr: writes a string to the default output (buffered)

CALLING AMIGADOS 269
--------- ------ --- -----

Synopsis

count = PutStr(str)
DO Dl
LONG PutStr(OBYTE *)

Function

This routine writes an unformatted string to the default output. No newline is
appended to the string and any error is returned. This routine is buffered.

Inputs

str: NULL-terminated string to be written to default output

Result

Error: 0 for success, -1 for any error. This is the opposite of most DOS func
tion returns.

Read

Name

Read: read bytes of data from a file

Synopsis

actualLength = Read (file, buffer, length
DO Dl D2 D3
LONG Read (BPTR, void *, LONG)

Function

Data can be copied using a combination of ReadO and WriteO. ReadO reads
bytes of information from an opened file (represented here by the argument
'file') into the buffer given. The argument "length" is the length of the buffer
given.

The value returned is the length of the information actually read.
So, when "actualLength" is greater than zero, the value of "actualLength"

is the the number of characters read. Usually ReadO will try to fill up your
buffer before returning. A value of zero means that end-of-file has been
reached. Errors are indicated by a value of -1. This is an unbuffered routine

270 THE DEVELOPER'S MANUAL

(the request is passed directly to the filesystem). Buffered I/O is more effi
cient for small reads and writes; see FGetCO.

Inputs

file: BCPL pointer to a file handle.

buffer: pointer to buffer.

length: integer.

Result

actualLength: integer

ReadArgs

Name

ReadArgs: parses the command line input

Synopsis

result = ReadArgs(ternplate, array, rdargs)
DO Dl D2 D3
struct RDArgs * ReadArgs(UBYTE *, LONG *, struct RDArgs *)

Function

Parses an argument string according to a template. Normally gets the argu
ments by reading buffered I/O from InputO, but also can be made to parse a
string. MUST be matched by a call to FreeArgsO.

ReadArgs parses the commandline according to a template that is passed
to it. This specifies the different command-line options and their types. A
template consists of a list of options. Options are named in "full" names
where possible (for example, "Quick" instead of "Q"). Abbreviations can also
be specified by using "abbrev=option" (for example, "Q=Quick").

Options in the template are separated by commas. To get the results of
ReadArgsO, you examine the array of longwords you passed to it (one entry
per option in the template). This array should be cleared (or initialized to
your default values) before passing to ReadArgsO. Exactly what is put in a
given entry by ReadArgsO depends on the type of option. The default is a

CALLING AMIGADOS 271

string (a sequence of non-whitespace characters, or delimited by quotes,
which will be stripped by ReadArgs), in which case the entry will be a pointer.

Options can be followed by modifiers, which specify things such as the
type of the option. Modifiers are specified by following the option with a "/"
and a single character modifier. Multiple modifiers can be specified by using
multiple "/"s. Valid modifiers are:

/5 Switch. This is considered a boolean variable, and will be set if the
option name appears in the command-line. The entry is the boolean (0
for not set, nonzero for set).

/K Keyword. This means that the option will not be filled unless the key
word appears. For example, if the template is "Name/K", then unless
"Name=<string>" or "Name <string>" appears in the command line,
Name will not be filled.

/N Number. This parameter is considered a decimal number, and will be
converted by ReadArgsO. If an invalid number is specified, an error is
returned. The entry will be a pointer to the longword number (this is
how you know if a number was specified).

/T Toggle. This modifier is similar to a switch, but when specified causes
the boolean value to toggle. Similar to IS.

/ A Required. This keyword must be given a value during command-line
processing, or an error is returned.

/ F Rest of line. If this modifier is specified, the entire rest of the line is
taken as the parameter for the option, even if other option keywords
appear in it.

/M Multiple strings. This means the argument will take any number of
strings, returning them as an array of strings. Any arguments not con
sidered to be part of another option will be added to this option. Only
one /M should be specified in a template. Example: for a template
"Dir/M,All/S" the command-line "foo bar all qwe" will set the
boolean "all", and return an array consisting of "foo", "bar", and
"qwe". The entry in the array is a pointer to an array of string pointers,
the last of which is NULL.

There is an interaction between /M parameters and / A parameters. If there
are unfilled / A parameters after parsing, strings will be grabbed from the
end of a previous /M parameter list to fill the / A's. This procedure is used
for messages like Copy ("From/ A/M,To/ A"). ReadArgsO returns a struct
RDArgs if it succeeds. This action serves as an "anchor" to allow FreeArgsO
to free the associated memory. You can also pass in a struct RDArgs to con
trol the operation of ReadArgsO (normally you pass NULL for the parameter,
and ReadArgsO allocates one for you).

272 THE DEVELOPER'S MANUAL

This mode of action allows you to provide different sources for the argu
ments, thus providing your own string buffer space for temporary storage,
and for extended help text. See dos/rdargs.h for more information on this
topic.

Note: If you pass in a struct RDArgs, you must still call FreeArgsO to release
storage that gets attached to it, but you are responsible for freeing the RDArgs
yourself.

Inputs

template: formatting string.

array: array of longwords for results, one per template entry.

rdargs: optional rdargs structure for options. AllocDosObjectO should be
used for allocating them if you pass one in.

Result

result: a struct RDArgs or NULL for failure

Bugs

Some argument combinations do not work with V36. Use only V37.

Readltem

Name

ReadItem: reads a single argument/name from command line

Synopsis

value = ReadItem(buffer, maxchars, input)
DO Dl D2 D3

LONG ReadItem(UBYTE *, LONG, struct CHSource *)

Function

Reads a "word" from either InputO (buffered), or via CHSource, if it is non
NULL (see dos/rdargs.h for more information). Handles quoting and some
"*" substitutions. See dos/ dos.h for a listing of values returned by ReadItem

CALLING AMIGADOS 273

(ITEM_XXXX). A "word" is delimited by whitespace, quotes, or EOF.
ReadItemO always unreads the last thing read (UnGetC(fh, -1» so the caller
can find out what the terminator was.

Inputs

buffer: buffer to store word in.
maxchars: size of the buffer.
input: CHSource input or NULL (uses FGetC(Input(»).

Result

value: see dos/ dos.h for return values.

ReadLink

Name

ReadLink: Reads the path for a soft filesystem link (V36)

Synopsis

success = ReadLink(port, lock, path, buffer, size)
DO DI D2 D3 D4 D5

BOOL ReadLink(struct MsgPort *, BPTR, UBYTE *, UBYTE *, ULONG)

Function

ReadLinkO takes a lock/name pair (usually from a failed attempt to use them
to access an object with packets), and asks the filesystem to find the softlink
and fill buffer with the modified path string. You then start the resolution
process again by calling GetDeviceProcO with the new string from
ReadLinkO.

Soft-links are resolved at access time by a combination of the filesystem (by
returning ERROR_IS_SOFT_LINK to dos), and by Dos (using ReadLinkO to
resolve any links that are hit).

Inputs

port: msgport of the filesystem
lock: lock this path is relative to on the filesystem

274 THE DEVELOPER'S MANUAL

path: path that caused the ERROR_IS_SOFT_LINK

buffer: pointer to buffer for new path from handler

size: size of buffer

Result

Success: boolean

Bugs

In V36, soft-links didn't work in the ROM filesystem. This was fixed for V37.

See also: MakeLinkO, OpenO, LockO, GetDeviceProcO

Relabel

Name

Relabel: change the volume name of a volume

Synopsis

success = Relabel (volumename, name)

DO Dl D2

BOOL Relabel (char *,char *)

Function

Changes the name of a volume, if supported by the filesystem

Inputs

volumename: full name of device to rename (with ":").

newname: new name to apply to device (without ":").

Result

success: success/failure indicator

CALLING AMIGAOOS 275

RemAssignList

Name

RemAssignList: Remove an entry from a multi-dir assign (V36)

Synopsis

succes RemAssignList(name, lock)
DO Dl D2

BOOL RemAssignList(char *,BPTR)

Function

Removes an entry from a multi-directory assign. The entry removed is the
first one for which Same Lock with 'lock' returns that they are on the same
object. The lock for the entry in the list is unlocked (not the entry pased in).

Inputs

name: Name of device to remove lock from (without trailing ':')
lock: Lock associated with the object to remove from the list

Result

success: Success/failure indicator.
See also: LockO, AssignLockO, AssignPathO, AssignLateO, DupLockO,
AssignAddO, UnLockO

RemDosEntry

Name

RemDosEntry: removes a DOS List entry from its list

Synopsis

success = RemDosEntry(dlist)
DO Dl
BOOL RemDosEntry(struct DosList *)

276 THE DEVELOPER'S MANUAL

Function

This routine removes an entry from the DOS Device list. The memory associ
ated with the entry is NOT freed. Note: You must have locked the OOS List
with the appropriate flags before calling this routine.

Inputs

dlist: device list entry to be removed

Result

success: success / failure indica tor

RemSegment

Name

RemSegment: removes a resident segment from the resident list

Synopsis

success = RemSegment(segment)

DO Dl

BOOL RemSegment(struct Segment *)

Function

Removes a resident segment from the DOS resident segment list, unloads it,
and does any other cleanup required. This routine will only succeed if the
seg_VC (usecount) is O.

Inputs

segment: the segment to be removed

Result

success: success or failure

CALLING AMIGADOS 277

Rename

Name

Rename: renames a directory or file

Synopsis

success = Rename (oldName, newName
DO Dl D2
BOOL Rename(char *, char *)

Function

RenameO attempts to rename the file or directory specified as "oldName"
with the name "newName". If the file or directory "newName" exists,
RenameO fails and returns an error. Both "oldName" and the "newName"
can contain a directory specification. In this case, the file will be moved from
one directory to another.

Note: It is impossible to RenameO a file from one volume to another.

Inputs

oldName: pointer to a null-terminated string.

newName: pointer to a null-terminated string.

Result

success: boolean

ReplyPkt

Name

ReplyPkt: replies a packet to the person who sent it to you

Synopsis

ReplyPkt(packet, resultl, result2)
D1 D2 D3

void ReplyPkt(struct DosPacket *, LONG, LONG)

278 THE DEVELOPER'S MANUAL

Function

This function returns a packet to the process that sent it to you. In addition, it
puts your pr_MsgPort address in dp_Port, so using ReplyPktO again will
send the message to you. (This function is used in "ping-ponging" packets
between two processes.) ReplyPktO uses results 1 and 2 to set the dp_Res1
and dp_Res2 fields of the packet.

Inputs

packet: packet to reply, assumed to set up correctly.

result1: first result.

result2: secondary result.

RunCommand

Name

RunCommand: runs a program using the current process (V36)

Synopsis

rc = RunCommand(seglist, stacksize, argptr, argsize)
DO Dl D2 D3 D4

LONG RunCommand(BPTR, ULONG, char *, ULONG)

Function

This routine runs a command on your process/CLIo Seglist may be any lan
guage, including BCPL programs. Stacksize is in bytes. argptr is a
NULLterminated string, argsize is its length. This function returns the return
code the program exited with in dO. It returns -1 if the stack couldn't be allo
cated. RunCommand also takes care of setting up the current input filehandle
in such a way that ReadArgsO can be used in the program, and restores the
state of the buffering before returning. It also sets the value returned by
GetArgStrO, and restores it before returning. NOTE: The setting of the file
handle was added in V37.

Inputs

seglist: seglist of command to run.

CALLING AMIGADOS

stacksize: number of bytes to allocate for stack space.

argptr: pointer to argument command string.

argsize: number of bytes in argument command.

Result

rc: return code from executed command. -1 indicates failure.

SameDevice

Name

SameDevice: Are two locks on a partition of the same device? (V37)

Synopsis

same = SameDevice(lockl, lock2)

DO Dl D2

BOOL SameDevice(BPTR, BPTR)

Function

279

SameDeviceO returns whether two locks refer to partitions that are on the
same physical device (if it can figure it out). This may be useful in writing
copy routines to take advantage of asynchronous multi-device copies.

Entry existed in V36 and always returned o.

Inputs

lockl, 10ck2: locks

Result

same: whether they're on the same device as far as Dos can determine.

280 THE DEVELOPER'S MANUAL

SameLock

Name

SameLock: returns whether two locks are on the same object

Synopsis

value = SameLock(lockl, lock2)
DO Dl D2
LONG SameLock(BPTR, BPTR)

Function

Compares two locks. Returns LOCK_SAME if they are on the same object,
LOCK_SAME_HANDLER if on different objects on the same handler, and
LOCK_DIFFERENT if they are on different handlers.

Inputs

lockl: first lock for comparison.

lock2: second lock for comparison.

Result

value: LOCK_SAME, LOCK_SAME_HANDLER, or LOCK_DIFFERENT

Bugs

You should do more extensive checks for NULL against a real lock, checking
to see if the real lock is a lock on the root of the boot volume.

Seek

Name

Seek: set the current position for reading and writing.

Synopsis

oldPosition
DO

Seek(file, position, mode
Dl D2 D3

CALLING AMIGAOOS 281

LONG Seek(BPTR, LONG, LONG)

Function

SeekO sets the read/write cursor for the file "file" to the position "position".
This position is used by both ReadO and WriteO as a place to start reading or
writing. The result is the current absolute position in the file, or -1 if an error
occurs, in which case IoErrO can be used to find more information. "mode"
can be OFFSET_BEGINNING, OFFSET_CURRENT, or OFFSET_END. It is
used to specify the relative start position. For example, 20 from current is a
position 20 bytes forward from current, -20 is 20 bytes back from current.

To find out where you are, seek zero from current. The end of the file is a
SeekO positioned by zero from end. You cannot SeekO beyond the end of a
file.

Inputs

file: BCPL pointer to a filehandle.

position: integer.

mode: integer.

Result

oldPosition: integer

SelectInput

Name

SelectInput: select a filehandle as the default input channel

Synopsis

old_fh = Selectlnput(fh)
DO Dl
BPTR Selectlnput(BPTR)

Function

Sets the current input as the default input for the process. This changes the
value returned by InputO. old_fh should be closed or saved as needed.

282 THE DEVELOPER'S MANUAL

Inputs

fh: newly default input handle

Result

old_fh: previous default input filehandle

SelectOutput

Name

SelectOutput: selects a filehandle as the default input channel

Synopsis

old_fh = SelectOutput(fh)

DO Dl

BPTR SelectOutput(BPTR)

Function

SelectOutputO sets the current output as the default output for the process.
This routine changes the value returned by OutputO. old_fh should be closed
or saved as needed.

Inputs

fh: newly desired output handle

Result

old_fh: previous current output

SendPkt

Name

SendPkt: sends a packet to a handler (V36)

CALLING AMIGADOS 283

Synopsis

SendPkt(packet, port, replyport)

Dl D2 D3
void SendPkt(struct DosPacket *, struct MsgPort *, struct
MsgPort *)

Function

Sends a packet to a handler and does not wait. All fields in the packet must
be initialized before calling this routine. The packet will be returned to reply
port. If you wish to use this with W aitPktO I use the address of your
pr_MsgPort for replyport.

Inputs

port: pr_MsgPort of handler process to send to.

packet: packet to send. It must be initialized and have a message.

replyport: MsgPort for the packet to come back to.

SetArgStr

Name

SetArgStr: sets the arguments for the current process

Synopsis

oldptr = SetArgStr(ptr)
DO Dl
UBYTE * void SetArgStr(UBYTE *)

Function

This routine sets the arguments for the current program. The ptr MUST be
reset to its original value before process exit.

Inputs

ptr: pointer to new argument string.

284 THE DEVELOPER'S MANUAL

Result

oldptr: the previous argument string.

SetComment

Name

SetComment: change a file's comment string

Synopsis

success = SetComment(name, comment
DO Dl D2
BOOL SetComment(char *, char *)

Function

SetCommentO sets a comment on a file or directory. The comment is a point
er to a NULL-terminated string of up to 80 characters.

Inputs

name: pointer to a NULL-terminated string.

comment: pointer to a NULL-terminated string.

Result

success: boolean

SetConsoleTask

Name

SetConsoleTask: sets the default console for the process

Synopsis

oldport = SetConsoleTask(port)
DO Dl
struct MsgPort SetConsoleTask(struct MsgPort *)

CALLING AMIGADOS 285

Function

SetConsoleTaskO sets the default console task's port (pr_ConsoleTask) for the
current process.

Inputs

port: the pr_MsgPort of the default console handler for the process.

Result

old port: The previous ConsoleTask value.

SetCurrentDirName

Name

SetCurrentDirName: sets the directory name for the process

Synopsis

success = SetCurrentDirName(name)
DO D1
BOOL SetCurrentDirName(char *)

Function

Sets the name for the current dir in the CLI structure. If the name is too long
to fit, a failure is returned, and the old value is left intact. It is advised that
you inform the user of this condition. This routine is safe to call even if there
is no CLI structure.

Inputs

name: name of directory to be set

Result

success: success/failure indicator

Bugs

This function clips to a fixed (1.3-compatible) size

286 THE DEVELOPER'S MANUAL

SetFileDate

Name

SetFileDate: sets the modification date for a file or dir (V36)

Synopsis

success = SetFileDate(name, date)

DO Dl D2

BaaL SetFileDate(char *, struct DateStamp *)

Function

Sets the file date for a file or directory. Note that for the Old File System and
the Fast File System, the date of the root directory cannot be set. Other filesys
terns may not support setting the date for all files/ directories.

Inputs

name: name of object.

date: new modification date.

Result

success: success / failure indication

SetFileSize

Name

SetFileSize: sets the size of a file

Synopsis

newsize = SetFileSize(fh, offset, mode)

DO Dl D2 D3

LONG SetFileSize(BPTR, LONG, LONG)

CALLING AMIGADOS 287

Function

Changes the file size, truncating or extending as needed. Not all handlers
support this; be careful and check the return code. If the file is extended, no
values should be assumed for the new bytes. If the new position is before the
filehandle's current position in the file, the file handle will end with a posi
tion at the end-of-file.

If there are other filehandles open onto the file, the new size will not leave
any filehandle pointing past the end-of-file. You can check for this by looking
at the new size.

Do NOT count on any specific values to be in the extended area.

Inputs

fh: file to be truncated/ extended.

offset: offset from position determined by mode.

mode: one of OFFSET_BEGINNING, OFFSET_CURRENT, or OFFSET_END.

Result

newsize: position of new end-of-file or -1 for error

SetFileSysTask

Name

SetFileSysTask: sets the default filesystem for the process

Synopsis

oldport = SetFileSysTask(port)
DO Dl
* struct MsgPort void SetFileSysTask(struct MsgPort *)

Function

Sets the default filesystem task's port (pr_FileSystemTask) for the current
process

Inputs

port: the pr_MsgPort of the default filesystem for the process.

288 THE DEVELOPER'S MANUAL

Result

old port: The previous FileSysTask value.

SetloErr

Name

SetIoErr: sets the value returned by IoErrO (V36)

Synopsis

oldcode = SetIoErr(code)
DO Dl
LONG SetIoErr(LONG);

Function

This routine sets up the secondary result (pr_Result2) return code (returned
by the IoErrO function).

Inputs

code: code to be returned by a call to IoErr

Result

oldcode: The previous error code.

SetMode

Name

SetMode: Set the current behavior of a handler (V36)

Synopsis

success
DO

SetMode(fh, mode)
Dl D2

BOOL SetMode(BPTR, LONG)

CALLING AMIGADOS 289

Function

SetModeO sends an ACTION_SCREEN_MODE packet to the handler in
question, normally for changing a CON: handler to raw mode or vice-versa.
For CON:, use 1 to go to RAW: mode, 0 for CON: mode.

Inputs

fh: filehandle
mode: The new mode you want

Result

success: Boolean

SetProgramDir

Name

SetProgramDir: sets the directory returned by GetProgramDir (V36)

Synopsis

oldlock = SetProgramDir(lock)

DO Dl

BPTR SetProgramDir(BPTR)

Function

Sets a shared lock on the directory the program was loaded from. This lock
can be used for a program to find data files, etc. that are stored with the pro
gram, or to find the program file itself. NULL is a valid input. This can be
accessed via GetProgramDirO or by using paths relative to PROGDIR:.

Inputs

lock: a lock on the directory the current program was loaded from

Result

old lock: The previous ProgramDir.

290 THE DEVELOPER'S MANUAL

SetProgramName

Name

SetProgramName: sets the name of the program being run

Synopsis

success = SetProgramName(name)
DO D1
BOOL SetProgramName(char *)

Function

Sets the name for the program in the eLI structure. If the name is too long to
fit, a failure is returned, and the old value is left intact. It is advised that you
inform the user if possible of this condition, and/or set the program name to
an empty string. This routine is safe to call even if there is no eLI structure.

Inputs

name: name of program to use

Result

success: success / failure indicator

Bugs

This function clips to a fixed (1.3-compatible) size.

SetPrompt

Name

SetPrompt: sets the eLI/Shell prompt for the current process

Synopsis

success = SetPrompt(name)
DO Dl
BOOL SetPrompt(char *)

CALLING AMIGADOS 291

Function

SetPrompt sets the text for the prompt in the CLI structure. If the prompt is
too long to fit, a failure is returned, and the old value is left intact. It is
advised that you inform the user of this condition. This routine is safe to call
even if there is no CLI structure.

Inputs

name: name of prompt to be set

Result

success: success/failure indicator

Bugs

This function clips to a fixed (l.3-compatible) size.

SetProtection

Name

SetProtection: set protection for a file or directory

Synopsis

success = Set Protection (name, mask
DO Dl D2: 4

BOOL SetProtection (char *, LONG)

Function

SetProtectionO sets the protection attributes on a file or directory. The lower
bits of the mask before V36 are as follows:

bit 4: 1 = file has not changed, 0 = file has been changed.
bit 3: 1 = reads not allowed, 0 = reads allowed.
bit 2: 1 = writes not allowed, 0 = writes allowed.
bit 1: 1 = execution not allowed, 0 = execution allowed.
bit 0: 1 = deletion not allowed, 0 = deletion allowed.

In V36 or later and in the FFS, the read and write bits are respected.

292 THE DEVELOPER'S MANUAL

The archive bit is cleared by the file system whenever the file is changed.
Backup utilities generally set the bit after backing up each file.

The Fast Filing System looks at the read and write bits, and the Shell looks
at the execute bit, and refuses to start a file as a binary executable if it is set.

Other bits may be defined in the dos/ dos.h and libraries/ dos.h include
files. Rather than referring to bits by number you should use the definitions
in dos.h.

Inputs

name: pointer to a NULL-terminated string.

mask: the protection mask required.

Result

success: Boolean

SelVar

Name

SetVar: sets a local or environment variable (V36)

Synopsis

success = SetVar(name, buffer, size,
DO Dl D2 D3

flags
D4

BOOL SetVar(UBYTE *, UBYTE *, LONG, ULONG)

Function

Sets a local or environment variable. It is advised to only use ASCII strings
inside variables, but this is not required.

Inputs

name: pointer to a variable name. Note variable names follow filesystem
syntax and semantics.

buffer: a user-allocated area which contains a string that is the value to be
associated with this variable.

CALLING AMIGAOOS

size: length of the buffer region in bytes. -1 means buffer contains a null
terminated string.

flags: combination of type of var to set (low 8 bits), and flags to control the
behavior of this routine. Currently defined flags include:

GVF _LOCAL_ ONLY - set a local (to your process) variable.

GVF _ GLOBAL_ ONLY - set a global environment variable.

The default is to set a local environment variable.

Result

293

success: if nonzero, the variable was successfully set. FALSE indicates failure.

Bugs

L V_V AR is the only type that can be global.

See also: DeleteVarO, FindVarO, GetVarO, dos/var.h

SetVBuf

Name

SetVBuf: set buffering modes and size (V36)

Synopsis

error
DO

SetVBuf(fh, buff, type, size)
Dl D2 D3 D4

LONG SetVBuf(BPTR, UBYTE *, LONG, LONG)

Function

Changes the buffering modes and buffer size for a filehandle. With buff ==

NULL, the current buffer will be deallocated and a new one of (approximately)
size will be allocated. If buffer is non-NULL, it will be used for buffering and
must be at least max (size,208) bytes long. If buff is NULL and size is -I, then
only the buffering mode will be changed.

294 THE DEVELOPER'S MANUAL

Inputs

fh: Filehandle
buff: buffer pointer for buffered I/O
type: buffering mode (see <dos/stdio.h>
size: size of buffer for buffered I/O (sizes less than 208 bytes will be ignored).

Result

error: 0 if successful. NOTE: opposite of most dos functions!

Bugs

Not implemented yet, always returns O.

See also: FputCO, FGetCO, UnGetCO, FlushO, FreadO, FWriteO, FGetsO,
FPutsO.

SplitName

Name

SplitName: splits out a component of a pathname into a buffer

Synopsis

newpos = SplitName(name, separator, buf, oldpos, size)

DO Dl D2 D3 D4 D5

WORD SplitName(UBYTE *, UBYTE, UBYTE *, WORD, LONG)

Function

This routine splits out the next piece of a name from a given file name. Each
piece is copied into the buffer, truncating at size-1 characters. The new posi
tion is then returned so that it may be passed in to the next call to
SplitNameO. If the separator is not found within 'size' characters, then size-1
characters plus a null are put into the buffer, and the position of the next sep
arator will be returned. If a a separator cannot be found, -1 is returned (but
the characters from the old position to the end of the string are copied into
the buffer, up to a maximum of size-1 characters). Both strings are null-termi
nated. This function is mainly intended to support handlers.

CALLING AMIGAOOS

Inputs

name: filename being parsed.

separator: separator character to split by.

buf: buffer to hold separated name.

oldpos: current position in the file.

size: size of buf in bytes (including NULL termination).

Result

newpos: new position for next call to SplitNameO. -1 is for the last call.

StartN otify

Name

StartNotify: starts notification on a file or directory

Synopsis

success = StartNotify(notifystructure)

DO Dl

BOOL StartNotify(struct NotifyRequest *)

Function

295

Posts a notification request. Do not modify the notify structure while it is
active. You will be notified when the file or directory changes. For files, you
will be notified after the file is closed. Not all filesystems support this: appli
cations should NOT require it. In particular, most network file systems won't
support it.

Inputs

notifystructure: a filled-in NotifyRequest structure

Result

success: success/failure of request

296 THE DEVELOPER'S MANUAL

Bugs

The V36 floppy /HD filesystem doesn't actually send notifications. The V36
ram handler (ram:) does send notifications. This has been fixed in V37.

S trToD ate

Name

StrToDate: converts a string to a DateStamp

Synopsis

success = StrToOate(datetime)
DO 01
BOOL StrToOate(struct DateTime *)

Function

StrToDateO converts a human readable ASCII string into an AmigaDOS
DateStamp.

Inputs

DateTime: a pointer to an initialized DateTime structure. The DateTime struc
ture should be initialized as follows:

dat_Stamp: ignored on input.

dat_Format: a format byte that specifies the format of the dat_StrDat. This
can be any of the following. (note: If value used is something other than
those below, the default of FORMAT_DOS is used.)

FORMAT_DOS: AmigaDOS format (dd-mmm-yy).

FORMAT_INT: International format (yy-mmm-dd).

FORMAT_USA: American format (mm-dd-yy).

FORMAT_CDN: Canadian format (dd-mm-yy).

FORMAT_DEF: Default format for locale.

dat_Flags: a flags byte. The only flags that affect this function are:

CALLING AMIGADOS

DTF _SUBST: ignored by this function.

DTF _FUTURE: if set, indicates that strings such as (stored in
dat_StrDate) "Monday" refer to "next" monday. Otherwise, if clear,
strings like "Monday" refer to "last" Monday.

dat_StrDay: Ignored by this function.

daCStrDate: Pointer to valid string representing the date.

297

This can be a "DTF _SUBST" style string such as "Today" "Tomorrow",
"Monday", or it may be a string as specified by the dat]ormat byte. This
will be converted to the ds_Days portion of the DateStamp. If this
pointer is NULL, bateStamp->ds_Days will not be affected.

dat_StrTime: pointer to a buffer that contains the time in the ASCII format
hh:mm:ss. This will be converted to the ds_Minutes andds_Ticks
portions of the DateStamp. If this pointer is NULL, ds_Minutes and
ds_Ticks will be unchanged.

Result

success: a zero return indicates that a conversion could not be performed. A
nonzero return indicates that the DateTime. The dat_ Stamp variable contains
the converted values.

See also: DateStampO, DateToStrO, dos/datetime.h

StrToLong

Name

StrToLong: string to long value (decimal)

Synopsis

characters = StrToLong(string,value)
DO D1 D2
LONG StrToLong(UBYTE *, LONG *)

Function

This routine converts decimal string into LONG value. Returns number of
characters converted. Skips over leading spaces and tabs (included in count).

298 THE DEVELOPER'S MANUAL

If no decimal digits are found (after skipping leading spaces and tabs),
StrToLongO returns -1 for characters converted, and puts 0 into value.

Inputs

string: input string.

value: pointer to long value. Set to 0 if no digits are converted.

Result

result: number of characters converted or -1

System TagList

Name

SystemTagList: Have a shell execute a command line (V36)

Synopsis

error
DO

SystemTagList(command, tags)
Dl D2

LONG SystemTagList(UBYTE *, struct TagItem *)

error
DO

System (command, tags)
Dl D2

LONG System(UBYTE *, struct TagItem *)

error = SystemTags(command, Tagl, ...)

LONG SystemTags(UBYTE *, ULONG, ...)

Function

Similar to ExecuteO, but does not read commands from the input filehandle.
Spawns a Shell process to execute the command, and returns the returncode
the command produced, or -1 if the command could not be run for any rea
son. The input and output filehandles will not be closed by System, you must

CALLING AMIGADOS 299

close them (if needed) after System returns, if you specified them via
SYS_INPUT or SYS_OUTPUT.

By default the new process will use your current InputO and OutputO file
handles. Normal Shell command-line parsing will be done including redirec
tion on 'command'. The current directory and path will be inherited from
your process. Your path will be used to find the command (if no path is speci
fied).

If used with the SYS_Asynch flag, it WILL close both its input and output
filehandles after running the command (even if these were your InputO and
OutputO!).

Normally uses the boot (ROM) Shell, but other shells can be specified via
SYS_Usershell and SYS_Customshell. Normally, you should send things
written by the user to the Usershell. The UserShell defaults to the same shell
as the boot shell.

The tags are passed through to CreateNewProcO (tags that conflict with
SystemTagListO will be filtered out). This allows setting things like priority,
etc for the new process.

Inputs

command: Program and arguments

tags: See <dos/ dostags.h>. Note that both SystemTagListO-specific tags and
tags from CreateNewProcO may be passed.

Result

error: 0 for success, result from command, or -1. Note that on error, the caller
is responsible for any filehandles or other things passed in via tags.
See also: ExecuteO, CreateNewProcO, <dos/ dostags.h>, InputO, OutputO

UnGetC

Name

UnGetC: makes a char available for reading again (buffered)

Synopsis

value = UnGetC(fh, character)
DO Dl D2

LONG UnGetC(BPTR, LONG)

300 THE DEVELOPER'S MANUAL

Function

Pushes the character specified back into the input buffer. Every time you use
a buffered read routine, you can always push back one character. You may be
able to push back more, though it is not recommended, since there is no guar
antee on how many can be pushed back at a given moment. Passing -1 for the
character will cause the last character read to be pushed back.

Note: UnGetCO can be used to make sure that a filehandle is set up as a read
filehandle. This is only of importance if you are writing a Shell, and must
manipulate the filehandle's buffer.

Inputs

fh: file handle to use for buffered I/O.

character: character to push back or -1.

Result

value: character pushed back, or FALSE if the character cannot be pushed
back.

Bugs

In V36, UnGetC(fh, -1) after an EOF would not cause the next character read
to be an EOF. This is fixed in V37.

UnLoadSeg

Name

UnLoadSeg: unloads a seglist previously loaded by LoadSegO

Synopsis

success = UnLoadSeg(seglist)

DO Dl

BOOL UnLoadSeg(BPTR)

CALUNG AMIGADOS 301

Function

Unloads a seglist loaded by LoadSegO. The seglist may be zero. Overlaid seg
ments will have all needed cleanup done, including closing files.

Inputs

seglist: BCPL pointer to a segment identifier

Result

success: returns 0 if a NULL seglist was passed or if it failed to close an over
lay file.

Note: This function returned a random value before V36!

UnLock

Name

UnLock: unlocks a directory or file

Synopsis

UnLock (lock)

Dl

void UnLock (BPTR)

Function

The filing system lock [obtained from LockO, DupLockO, or CreateDir()] is
removed and deallocated.

Inputs

lock: BCPL pointer to a lock.

Note: Passing zero to UnLockO is harmless.

302 THE DEVELOPER'S MANUAL

UnLockDosList

Name

UnLockDosList: unlocks the 005 List

Synopsis

UnLockDosList(flags)

Dl

void UnLockDosList(ULONG)

Function

Unlocks the access on the DOS Device list. You MUST pass the same flags
you used to lock the list.

Inputs

flags: MUST be the same flags passed to (Attempt)LockDosListO.

UnLockRecord

Name

UnLockRecord: unlocks a record

Synopsis

success = UnLockRecord(fh,offset,length)

DO Dl D2 D3

BOOL UnLockRecord(BPTR,ULONG,ULONG)

Function

This routine releases the specified lock on a file. Note that you must use the
same file handle you used to lock the record, and offset and length must be
the same values used to lock it. Every LockRecordO call must be balanced
with an UnLockRecordO call.

CALLING AMIGAOOS

Inputs

fh: filehandle of locked file.

offset: record start position.

length: length of record in bytes.

Result

success: success or failure

Bugs

See LockRecordO

UnLockRecords

Name

UnLockRecords: unlocks a list of records

Synopsis

success = UnLockRecords(record_array)

DO Dl

BOOL UnLockRecords(struct RecordLock *)

Function

303

This routine releases an array of record locks obtained using LockRecordsO.
You should NOT modify the record_array while you have the records locked.
Every LockRecordsO call must be balanced with an UnLockRecordsO call.

Inputs

record_array: list of records to be unlocked

Result

success: success or failure

304 THE DEVELOPER'S MANUAL

Bugs

See LockRecordO.

VFPrintf

Name

VFPrintf: formats and prints a string to a file (buffered)

Synopsis

count = VFPrintf(fh, fmt, argv)
DO Dl D2 D3
LONG VFPrintf(BPTR, char *, LONG *)
count = FPrintf(fh, fmt, ...)
LONG FPrintf(BPTR, char *, ...)

Function

VFPrintO writes the formatted string and values to the given file. This routine
is assumed to handle all internal buffering so that the formatting string and
resultant formatted values can be arbitrarily long. Any secondary error code
is returned in IoErrO. This routine is buffered.

Inputs

fh: filehandle to write to.

fmt: RawDoFmt style formatting string.

argv: pointer to array of formatting values.

Result

count: number of bytes written or -1 (EOF) for an error.

VFWritef

Name

VFWritef: writes a BCPL formatted string to a file (buffered)

CALLING AMIGAOOS 305

Synopsis

count = VFWritef(fh, frot, argv)

DO D1 D2 D3

LONG VFWritef(BPTR, char *, LONG *)

count = FWritef(fh, frot, ...)

LONG FWritef(BPTR, char *, ...)

Function

Writes the formatted string and values to the default output. This routine is
assumed to handle all internal buffering so that the formatting string and
resultant formatted values can be arbitrarily long. The formats are in BCPL
form. This routine is buffered.

Supported formats are: (Note: x is in base 36!)
%5-string (CSTR)
% Tx-writes a left-justified string in a field at least x bytes long.
%C-writes a single character
%Ox-writes a number in octal, maximum x characters wide
%Xx-writes a number in hex, maximum x characters wide
%Ix-writes a number in decimal, maximum x characters wide
%N-writes a number in decimal, any length
%Ux-writes an unsigned number, maximum x characters wide
%$-ignore parameter

Inputs

fmt: BCPL style formatting string.

argv: pointer to array of formatting values.

Result

count: number of bytes written or -1 for error.

VPrintf

Name

VPrintf: formats and prints string (buffered)

306 THE DEVELOPER'S MANUAL

Synopsis

count = VPrintf(fmt, argv)

DO Dl D2

LONG VPrintf(char *, LONG *)

count = Printf(fmt, ...)

LONG Printf(char *)

Function

Writes the formatted string and values to OutputO. This routine is assumed
to handle all internal buffering so that the formatting string and resultant for
matted values can be arbitrarily long. Any secondary error code is returned
in IoErrO. This routine is buffered.

Note: RawDoFmt assumes 16-bit ints, so you will usually need 'l's in your for
mats (example: %ld versus %d).

Inputs

fmt: exec.1ibrary RawDoFmtO style formatting string.

argv: pointer to array of formatting values.

Result

count: number of bytes written or -1 (EOF) for an error.

WaitForChar

Name

WaitForChar: determines if chars arrive within a time limit

Synopsis

status = WaitForChar(file, timeout

DO Dl D2

BOOL WaitForChar(BPTR, LONG)

CALLING AMIGAOOS 307

Function

If a character is available to be read from IIfile" within the time (in microsec
onds) indicated by "timeout", WaitForCharO returns -1 (TRUE). If a character
is available, you can use ReadO to read it. Note that WaitForCharO is only
valid when the I/O stream is connected to a virtual terminal device. If a char
acter is not available within "timeout", a 0 (FALSE) is returned.

Bugs

Due to a bug in the timer.device in V1.2/V1.3, specifying a timeout of zero
for WaitForCharO can cause unreliable timer and floppy disk operation.

Inputs

file: BCPL pointer to a file handle.

timeout: integer.

Result

status: Boolean

WaitPkt

Name

WaitPkt: waits for a packet to arrive at your pr_MsgPort

Synopsis

packet = WaitPkt()
DO
struct DosPacket *WaitPkt(void);

Function

Waits for a packet to arrive at your pr_MsgPort. If anyone has installed a
packet wait function in pr_PktWait, it will be called. The message is automat
ically GetMsgOed so that it is no longer on the port. It is assumed that the
message is a DOS packet. It is NOT guaranteed that the signal will be cleared
for the port.

308 THE DEVELOPER'S MANUAL

Result

packet: the packet that arrived at the port (from In_Name of message)

Write

Name

Write: writes bytes of data to a file

Synopsis

returnedLength = Write(file, buffer, length

DO Dl D2 D3

LONG Write (BPTR, void *, LONG)

Function

WriteO writes bytes of data to the opened file "file". "length" indicates the
length of data to be transferred; ''buffer'' is a pointer to the buffer. The value
returned is the length of information actually written. So, when "length" is
greater than zero, the value of "length" is the number of characters written.
Errors are indicated by a value of -1.

Inputs

file: BCPL pointer to a file handle.

buffer: pointer to the buffer.

length: integer.

Result

returnedLength: integer

WriteChars

Name

WriteChars: Writes bytes to the default output (buffered) (V36)

Synopsis

count
DO

CALLING AMIGADOS

WriteChars(buf, buflen)
D1

LONG PutStr(UBYTE *, LONG)

Function

309

This routine writes a number of bytes to the default output. The length is
returned. This rountine is buffered.

Inputs

buf: buffer of characters to write
buflen: number of characters to write

Result

count: Number of bytes written. -1 (EOF) indicates an error
See also: FPutsO, FPutCO, FWriteO, PutStrO

310 THE DEVELOPER'S MANUAL

AmigaDOS Function Quick Reference
AbortPkt
Add Buffers
AddDosEntry
AddPart
AddSegment
AllocDosObject
AssignAdd
AssignLate
AssignLock
AssignPath
AttemptLockDosList
ChangeMode
CheckSignal
Cli
Close
CompareDates
CreateDir
CreateNewProc
CreateProc
CurrentDir

DateStamp
DateToStr
Delay
DeleteFile
DeleteVar
DeviceProc
DoPkt
DupLock
DupLockFromFH
EndNotify
ErrorReport
ExAlI
Examine
ExamineFH
Execute
Exit
ExNext
Fault
FGetC

Aborts an asynchronous packet, if possible.
Changes the number of buffers for a filesystem.
Adds a DOS List entry to the lists.
Appends a file/ dir to the end of a path.
Adds a resident segment to the resident list.
Creates a DOS object.
Adds a lock to an assign for multi directory assigns.
Creates an assignment to a specified path later.
Creates an assignment to a locked object.
Creates an assignment to a specified path.
Attempts to lock the DOS Lists for use.
Changes the current mode of a lock or filehandle.
Checks for break signals.
Returns a pointer to the CLI structure of the process.
Closes an open file.
Compares two datestamps.
Creates a new directory.
Creates a new process.
Creates a new process.
Makes a directory associated with a lock the working

directory.
Obtains the date and time in internal format.
Converts a DateStamp to a string.
Delays a process for a specified time.
Deletes a file or directory.
Deletes a local or environment variable.
Returns the process ID of specific 10 handler.
Sends a DOS packet and wait for reply.
Duplicates a lock.
Gets a lock on an open file.
Ends a notification request.
Displays a Retry /Cancel requester for an error.
Examines an entire directory.
Examines a directory or file associated with a lock.
Gets information on an open file.
Executes a CLI command.
Exits from a program.
Examines the next entry in a directory.
Returns the text associated with a DOS error code.
Reads a character from the specified input (buffered).

FGets
FilePart
FindArg
FindCliProc
FindDosEntry
FindSegment
FindVar
Flush
Format
FPutC
FPuts
FRead
FreeArgs
FreeDeviceProc
FreeDosEntry
FreeDosObject
FWrite
GetArgStr
GetConsoleTask
GetCurrentDirN arne
GetDeviceProc
GetFileSysTask
GetProgramDir

GetProgramName
GetPrompt
GetVar
Info
Inhibit
Input
InternalLoadSeg
InternalUnLoadSeg
IoErr
IsFileSystem
IsInteractive
LoadSeg
Lock
LockDosList
LockRecord
MakeDosEntry
MakeLink
MatchEnd

CALLING AMIGAOOS

Reads a line from the specified input (buffered).
Returns the last component of a path.
Finds a keyword in a template.
Returns a pointer to the requested CLI process.
Finds a specific DOS List entry.
Finds a segment on the resident list.
Finds a local variable.
Flushes buffers for a buffered filehandle.
Causes a filesystem to initialize itself.
Writes a character to the specified output (buffered).
Writes a string to the specified output (buffered).
Reads a number of blocks from an input (buffered).
Free allocated memory after ReadArgsO.
Releases port returned by GetDeviceProc.
Frees an entry created by MakeDosEntry.
Frees an object allocated by AllocDosObject.
Writes a number of blocks to an output (buffered.)
Returns the arguments for the process.
Returns the default console for the process.
Returns the current directory name.
Finds a handler to send a message to.
Returns the default filesystem for the process.

311

Returns a lock on the directory the program was load-
ed from.

Returns the current program name.
Returns the prompt for the current process.
Returns the value of a local or global variable.
Returns information about the disk.
Inhibits access to a filesystem.
Identifies the program's initial input file handle.
Low-level load routine.
Unloads a seglist loaded with InternalLoadSeg.
Returns extra information from the system.
Returns whether a DOS handler is a filesystem.
Discovers whether a file is a virtual terminal.
Loads a load module into memory.
Locks a directory or file.
Locks the specified DOS Lists for use.
Locks a portion of a file.
Creates a DOSList structure.
Creates a filesystem link.
Frees storage allocated for MatchFirst/MatchNext.

312 THE DEVELOPER'S MANUAL

MatchFirst
MatchNext
MatchPattern
MatchPatternNoCase
MaxCli

NameFromFH
NameFromLock
NewLoadSeg
NextDosEntry
Open
OpenFromLock
Output
ParentDir
ParentOfFH
ParsePattern
ParsePatternNoCase
PathPart

PrintFault
PutStr
Read
ReadArgs
ReadItem
ReadLink
Relabel
RemAssignList
RemDosEntry
RemSegment
Rename
ReplyPkt
RunCommand
SameDevice
SameLock
Seek
SelectInput
SelectOutput
SendPkt
SetArgStr
SetComment
SetConsoleTask
SetCurrentDir Name

Finds file that matches pattern.
Finds the next file or directory that matches pattern.
Checks for a pattern match with a string.
Checks for a pattern match with a string.
Returns the highest CLI process number possibly in

use.
Gets the name of an open filehandle.
Returns the name of a locked object.
Improved version of LoadSeg for stacksizes.
Gets the next DOSList entry.
Opens a file for input or output.
Opens a file you have a lock on.
Identifies the program's initial output file handle.
Obtains the parent of a directory or file.
Returns a lock on the parent directory of a file.
Creates a tokenized string for MatchPattern.
Create a tokenized string for MatchPatternNoCaseO.
Returns a pointer to the end of the next-to-Iast compo-

nent of a path.
Returns the text associated with a DOS error code.
Writes a string to the default output (buffered).
Reads bytes of data from a file.
Parses the command line input.
Reads a single argument/name from command line.
Reads the path for a soft filesystem link.
Changes the volume name of a volume.
Remove an entry from a multi-directory assign.
Removes a DOSList entry from its list.
Removes a resident segment from the resident list.
Renames a directory or file.
Replies a packet to the person who sent it to you.
Runs a program using the current process.
Are two locks on a partition of the same device?
Returns whether two locks are on the same object.
Finds and points at the logical position ill a file.
Selects a file handle as the default input channel.
Selects a file handle as the default output channel.
Sends a packet to a handler.
Sets the arguments for the current process.
Changes a file's comment string.
Sets the default console for the process.
Sets the directory name for the process.

SetFileDate
SetFileSize
SetFileSysTask
SetIoErr
SetMode
SetProgramDir
SetProgram~ame

SetPrompt
SetProtection
SetVar
SetVBuf
Split~ame
Start~otify

StrToDate
StrToLong
System TagList
UnGetC
UnLoadSeg
UnLock
UnLockDosList
UnLockRecord
UnLockRecords
VFPrintf
VFWritef
VPrintf
WaitForChar
WaitPkt
Write
WriteChars

CALLING AMIGADOS

Sets the modification date for a file or dir.
Sets the size of a file.
Sets the default filesystem for the process.
Sets the value returned by IoErrO.
Set the current behavior of a handler.
Sets the directory returned by GetProgramDir.
Sets the name of the program being run.
Sets the CLI/Shell prompt for the current process.
Sets protection for a file or directory.
Sets a local or environment variable.
Set buffering modes and size.
Splits out a component of a pathname into a buffer.
Starts notification on a file or directory.
Converts a string to a DateStamp.
String to long value (decimal).
Have a shell execute a command line.
Makes a char available for reading again (buffered).
Unloads a seglist previously loaded by LoadSegO.
Unlocks a directory or file.
Unlocks the DOSList.
Unlocks a record.
Unlocks a list of records.
Formats and prints a string to a file (buffered).
Writes a BCPL formatted string to a file (buffered).
Formats and print string (buffered).
Determines if chars arrive within a time limit.
Waits for a packet to arrive at your pr_MsgPort.
Writes bytes of data to a file.
Writes bytes to the default output (buffered).

313

Chapter 7

The Linker

A linker is a tool used to create a single, binary load file from one or more
object files generated with C, Assembler, or other Amiga programming lan
guages. This chapter describes the AmigaOOS linker ALINK.

The ALINK linker is supplied by Commodore, however, many programming
languages come with their own linker created by the compiler manufacturer.
You should refer to your compiler manual for detailed information on the link
er used with your programming language.

Introduction
ALINK produces a single binary output file from one or more input files. These
input files, known as object files, may contain external symbol information. To
produce object files, you use your assembler or language translator. Before pro
ducing the output, or load file, the linker resolves all references to symbols.

The linker can also produce a link map and symbol cross-reference table.
Associated with the linker is an overlay supervisor. You can use the overlay

supervisor to overlay programs written in a variety of languages. The linker
produces load files suitable for overlaying in this way.

You can drive the linker in two ways:

1. As a Command line. You can specify most of the information necessary
for running the linker in the command parameters.

2. As a Parameter file. As an alternative, if a program is being linked repeti
tively, you can use a parameter file to specify all the data for the linker.

315

316 THE DEVELOPER'S MANUAL

See the description of the WITH option of ALINK below.

These two methods can take three types of input files:

1. Primary binary input. This term refers to one or more object files that
form the initial binary input to the linker. These files are always output to
the load file, and the primary input must not be empty.

2. Overlay files. If overlaying, the primary input forms the root of the over
lay tree, and the overlay files form the rest of the structure.

3. Libraries. This refers to specified code that the linker incorporates auto
matically. Libraries may be resident or scanned. A resident library is a
load file that may be resident in memory, or loaded as part of the "library
open" call in the operating system. A scanned library is an object file
within an archive format file. The linker only loads the file if there are any
outstanding external references to the library.

The linker works in two passes.

In the first pass, the linker reads all the primary, library, and overlay files,
and records the code segments and external symbol information. At the end of
the first pass, the linker outputs the map and cross-reference table, if required.

If you specify an output file, then the linker makes a second pass through the
input. First it copies the primary input files to the output, resolving symbol ref
erences in the process, and then it copies out the required library code segments
in the same way. Note that the library code segments form part of the root of
the overlay tree. Next, the linker produces data for the overlay supervisor, and
finally outputs the overlay files.

In the first pass, after reading the primary and overlay input files, the linker
inspects its table of symbols, and if there are any remaining unresolved refer
ences, it reads the files, if any, that you specified as the library input. The linker
then marks any code segments containing external definitions for these unre
solved references for subsequent inclusion in the load file. The linker only
includes those library code segments that you have referenced.

Using the Linker
To use the linker, you must know the command syntax, the type of input and
output that the linker uses, and the possible errors that may occur. This section
attempts to explain these things.

THE LINKER 317

Command Line Syntax

The ALINK command has the following parameters:

ALINK [FROM I ROOT] files [TO file] [WITH file]
[VER file] [LIBRARY I LIB files] [MAP file]
[XREF file] [WIDTH n]

The keyword template is

"FROM = ROOT,TO/K,WITH/K,VER/K,LIBRARY
MAP/K,XREF/K,WIDTH/K"

LIB/K,

In the above, "file" means a single file name, "files" means zero or more file
names, separated by a comma or plus sign, and "n" is an integer.

The following are examples of valid uses of the ALINK command:

ALINK a
ALINK ROOT a +b + c + d MAP map-file WIDTH 120
ALINK a,b,c TO output LIBRARY :flib/lib,obj/newlib

When you give a list of files, the linker reads them in the order you specify.
The parameters have the following meanings:

FROM:

TO:

WITH:

VER:

Specifies the object files that you want as the primary binary input.
The linker always copies the contents of these files to the load file
to form part of the overlay root. At least one primary binary input
file must be specified. ROOT is a synonym for FROM.

Specifies the destination for the load file. If this parameter is not
given, the linker omits the second pass.

Specifies files containing the linker parameters, for example, nor
mal command lines. Usually you only use one file here, but, for
completeness, you can give a list of files. Note that parameters on
the command line override those in WITH files. You can find a full
description of the syntax of these files in " WITH Files," below.

Specifies the destination of messages from the linker. If you do not
specify VER, the linker sends all messages to the standard output
(usually the console).

318 THE DEVELOPER'S MANUAL

LIBRARY: Specifies the files that you want to be scanned as the library. The
linker includes only reference code segments. LIB is a valid alter
native for LIBRARY.

MAP: Specifies the destination of the link map.

XREF: Specifies the destination of the cross-reference output.

WIDTH: Specifies the output width that the linker can use when producing
the link map and cross-reference table. For example, if you send
output to a printer, you may need this parameter.

WITH Files

WITH files contain parameters for the linker. You use them to save typing a
long and complex ALINK command line many times.

A WITH file consists of a series of parameters, one per line, each consisting of
a keyword followed by data. You can terminate lines with a semicolon (;),
where the linker ignores the rest of the line. You can then use the rest of the line
after the semicolon to include a comment. The linker ignores blank lines.

The keywords available are as follows:

FROM (or ROOT) files
TO file
LIBRARY files
MAP [file]
XREF [file]
OVERLAY
tree specification

WIDTH n

where "file" is a single filename, "files" is one or more filenames, "[file]" is an
optional filename, and "n" is an integer. You may use an asterisk symbol (*) to
split long lines; placing one at the end of a line tells the printer to read the next
line as a continuation line. If the filename after MAP or XREF is omitted, the
output goes to the VER file (the terminal by default).

Parameters on the command line override those in a WITH file, so that you
can make small variations on standard links by combining command line
parameters and WITH files. Similarly, if you specify a parameter more than
once in WITH files, the linker uses the first occurrence.

THE LINKER 319

Note: In the second example below, this is true even if the first value given to a
parameter is null.

Examples of WITH files and the corresponding ALINK calls:

ALINK WITH link-file

where "link-file" contains

FROM obj /main, obj / s

TO bin/test

LIBRARY

MAP

XREFxo

obj /lib

is the same as specifying

ALINK FROM obj /main, obj /s TO bin/test LIBRARY obj /lib
XREF xo

The command

ALINK WITH link LIBRARY 1111

where "link" contains

FROM bin/prog, bini subs

LIBRARY nag/fortlib

TO linklib/prog

is the same as the command line

ALINK FROM bin/prog,bin/subs TO linklib.prog

320 THE DEVELOPER'S MANUAL

Note: In the example above, the null parameter for LIBRARY on the command
line overrides the value "nag/ fortlib" in the WITH file, and so the linker does
not read any libraries.

Errors and Other Exceptions

Various errors can occur while the linker is running. Most of the messages are
self-explanatory and refer to the failure to open files, or to errors in command
or binary file format. After an error, the linker terminates at once.

There are a few messages that are warnings only. The most important ones
refer to undefined or multiply defined symbols. The linker should not terminate
after receiving a warning.

If any undefined symbols remain at the end of the first pass, the linker pro
duces a warning, and outputs a table of such symbols. During the second pass,
references to these symbols become references to location zero.

If the linker finds more than one definition of a symbol during the first pass,
it puts out a warning, and ignores the later definition. The linker does not pro
duce this message if the second definition occurs in a library file, so that you
can replace library routines without it producing spurious messages. A serious
error follows if the linker finds inconsistent symbol references, and linking then
terminates at once.

Since the linker only uses the first definition of any symbol, it is important
that you understand the following order in which files are read.

1. Primary (FROM or ROOT) input.

2. Overlay files.

3. LIBRARY files.

Within each group, the linker reads the files in the order that you specify in
the file list. Thus definitions in the primary input override those in the overlay
files, and those in the libraries have lowest priority.

MAP and XREF Output

The link map, which the linker produces after the first pass, lists all the code
segments that the linker outputs to the load file in the second pass, in the order
that they must be written.

For each code segment, the linker outputs a header, starting with the name of
the file (truncated to eight letters), the code segment reference number, the type
(that is, DATA, CODE, BSS, or COMMON), and size. If the code segment was
in an overlay file, the linker also gives the overlay level and overlay ordinate.

THE LINKER 321

After the header, the linker prints each symbol defined in the code segment,
together with its value. It prints the symbols in ascending order of their values,
appending an asterisk (*) to absolute values.

The value of the WIDTH parameter determines the number of symbols print
ed per line. If this is too small, then the linker prints one symbol on each line.

The cross-reference output also lists each code segment, with the same header
as in the map.

The header is followed by a list of the symbols with their references. Each ref
erence consists of a pair of integers, giving the offset of the reference and the
number of the code segment in which it occurs. The code segment number
refers to the number given in each header.

Overlays
The automatic overlay system provided by the linker and the overlay supervi
sor allows programs to occupy less memory when running, without any alter
ations to the program structure.

When using overlaying, you should consider the program as a tree structure.
That is, with the root of the tree as the primary binary input, together with
library code segments and COMMON blocks. This root is always resident in
memory. The overlay files then form the other nodes of the tree, according to
specifications in the OVERLAY directive.

The output from the linker when overlaying, as in the usual case, is a single
binary file, which consists of all the code segments, together with information
giving the location within the file of each node of the overlay tree. When you
load the program only the root is brought into memory. An overlay supervisor
takes care of loading and unloading the overlay segments automatically. The
linker includes this overlay supervisor in the output file produced from a link
using overlays. The overlay supervisor is invisible to the program running.

OVERLAY Directive

To specify the tree structure of a program to the linker, you use the OVERLAY
directive. This directive is exceptional in that you can only use it in WITH files.
As with other parameters, the linker uses the first OVERLAY directive you give
it.

The format of the directive is:

322 THE DEVELOPER'S MANUAL

OVERLAY

Xfiles

Note: The overlay directive can span many lines. The linker recognizes a hash
sign (#) or the end-of-file as a terminator for the directive.

Each line after OVERLAY specifies one node of the tree, and consists of a
count "X" and a file list.

The level of a node specifies its "depth" in the tree, starting at zero, which is
the level of the root. The count "X", given in the directive, consists of zero or
more asterisks, and the overlay level of the node is given by X + 1.

As well as the level, each node other than the root has an ordinate value. This
refers to the order in which the linker should read the descendents of each
node, and starts at 1, for the first "offspring" of a parent node.

Note: There may be nodes with the same level and ordinate, but with different
parents.

While reading the OVERLAY directive, the linker remembers the current
level, and, for each new node, compares the level specified with this value. If
less, then the new node is a descendent of a previous one. If equal, the new
node has the same parent as the current one. If greater, the new node is a direct
descendent of the current one, and so the new level must be one greater than
the current value.

A number of examples may help to clarify this:

THE LINKER 323

Directive Level Ordinate Tree

OVERLAY ROOT
a I~\
b 2 abc
c 3

OVERLAY ROOT
a 1\
b 2 a b
*c 2 1 1+
*d 2 2 cd

OVERLAY ROOT
a 1
b 1 2 III \\
*c 2 abe f 1
*d 2 2 II 11\
e 1 3 cd 9 h k
f 4 I~
*9 2 i j
*h 2 2
**i 3 1
**j 3 2
*k 2 3
1 1 5

Figure 7-A.

The level and ordinate values given above refer to the node specified on the
same line. Note that all the files given in the examples above could have been
file lists. Single letters are for clarity. For example, Figure 7-B:

Figure 7-B.

ROOT bin/mainaaa
OVERLAY
bin/mainbbb,bin/mainccc,bin/mainddd
*bin/makereal
*bin/trbblock,bin/transint,bin/transr
*bin/transcri
bin/outcode

324 THE DEVELOPER'S MANUAL

specifies the tree in the following figure:

bin/mainaaa

/\
bin/mainbbb bin/outcode
bin/mainccc
bin/mainddd

/j~
bin/makereal bin/trbblock bin/transri

bin/transint
bin/transr

Figure 7-C.

During linking, the linker reads the overlay files in the order you specified in
the directive, line by line. The linker preserves this order in the map and cross
reference output, and so you can deduce the exact tree structure from the over
lay level and ordinate the linker prints with each code segment.

References to Symbols

While linking an overlaid program, the linker checks each symbol reference for
validity.

Suppose that the reference is in a tree node OR", and the symbol in a node
"S". Then the reference is legal if one of the following statements is true:

1. Rand S are the same node.

2. R is a descendent of S.

3. R is the parent of S.

References of the third type above are known as overlay references. In this
case, the linker enters the overlay supervisor when the program is run. The
overlay supervisor then checks to see if the code segment containing the symbol
is already in memory. If not, first the code segment, if any, at this level, and all
its descendents are unloaded, and then the node containing the symbol is
brought into memory. An overlaid code segment returns directly to its caller,
and so is not unloaded from memory until another node is loaded on top of it.

THE LINKER 325

For example, suppose that the tree is:

A

~
Be

!l\
D E F

Figure 7-D.

When the linker first loads the program, only A is in memory. When the link
er finds a reference in A to a symbol in B, it loads and enters B. If B in turn calls
D then again a new node is loaded. When B returns to A, both Band D are left
in memory, and the linker does not reload them if the program requires them
later. Now suppose that A calls C. First the linker unloads the code segments
that it does not require, and which it may overwrite. In this case, these are B
and D. Once it has reclaimed the memory for these, the linker can load C.

Thus, when the linker executes a given node, all the node's "ancestors" up to
the root are in memory, and possibly some of its descendents.

Cautionary Points

The linker assumes that all overlay references are jumps or subroutine calls, and
routes them through the overlay supervisor. Thus, you should not use overlay
symbols as data labels.

Try to avoid impure code when overlaying because the linker does not
always load a node that is fresh from the load file.

The linker gives each symbol that has an overlay reference an overlay num
ber. It uses this value, which is zero or more, to construct the overlay supervi
sor entry label associated with that symbol. This label is of the form
"OVLYnnnn", where nnnn is the overlay number. You should not use symbols
with this format elsewhere.

The linker gathers together all program sections with the same section name.
It does this so that it can then load them continuously in memory.

Error Codes and Messages
These errors should be rare. If they do occur, the error is probably in the com
piler and not in your program. However, you should first check to see that you

326 THE DEVELOPER'S MANUAL

sent the linker a proper program (for example, an input program must have an
introductory program unit that tells the linker to expect a program).

Invalid Object Modules

2 Invalid use of overlay symbol
3 Invalid use of symbol
4 Invalid use of common
5 Invalid use of overlay reference
6 Nonzero overlay reference
7 Invalid external block relocation
8 Invalid bss relocation
9 Invalid program unit relocation
10 Bad offset during 32-bit relocation
11 Bad offset during 6/8-bit relocation
12 Bad offset with 32-bit reference
13 Bad offset with 6/8-bit reference
14 Unexpected end of file
15 Hunk.end missing
16 Invalid termination of file
17 Premature termination of file
18 Premature termination of file

Internal Errors

19 Invalid type in hunk list
20 Internal error during library scan
21 Invalid argument freevector
22 Symbol not defined in second pass

Chapter 8

AllligaDOS Device Input
and Output

AmigaDOS uses handlers and file systems to provide a standard method of
interaction with physical I/O devices. Handlers and filesystems are similar;
handlers are a subset of a filesystem, supporting only a few I/O operations
while filesystems include additional support for file operations as well as direc
tory-type operations. Handlers and filesystems reside either in ROM or in the L:
directory.

Handlers and fiIesystems are often referred to as II AmigaDOS devices" but
keep in mind that an AmigaDOS device is different from an Exec device.
AmigaDOS devices appear as names within the DOS name space, for example,
SER:, RAM: or DFO: (rather than Exec's serial.device or trackdisk.device).
AmigaDOS devices are often built on top of Exec devices using the Exec device
to perform the low-level functions.

Examples of this type include:

The Port handler (SER:, PAR:, and PRT:) which is built on top of the
serial.device, parallel.device, and printer. device.
The filesystem, DFO:, DFl: which is built on top of the trackdisk.device.
CON: (console handler) which is built on top of the console. device.

It is not required for a handler or file system to be built on top of an Exec
device. In some cases the handler manages its own resources. For example, for
the RAM-handler the resource being maintained is RAM. While the memory

327

328 THE DEVELOPER'S MANUAL

used by the RAM-handler is still allocated by Exec, there is really no underlying
Exec device.

Note that, unlike an Exec device, each handler and filesystem executing must
have its own process.

AmigaDOS Devices
Here is a list of AmigaDOS devices implemented as handlers. Note that some
handlers have more than one name (RAW: and CON: are the same handler with
different names. The port handlers SER:, PAR:, and PRT: are also implemented
as a single handler with more than one name).

AUX: The AUX: handler provides unbuffered serial I/O. It is basically a
console handler that uses the serial port rather than the Amiga screen
or keyboard. For instance, the command NEWSHELL AUX: allows
you to run a SHELL over the serial port.

CON: Provides buffered keyboard and screen I/O and allows definition of a
new window for the output. With CON:, keystrokes are buffered and
held back from the application until the user presses the return key.
The keyboard input is filtered: function keys and cursor keys are not
transmitted. Other keys are automatically echoed in the CON:
window.

The window is specified using x/y/width/height/title where x and yare the
distance from the top and left edge of the screen the window should open. For
instance, the command TYPE >CON:5/5/100/100/0utput DEVS:mountlist
shows the mountlist file in a new window named Output which is 100 X 100
pixels and is positioned 5 pixels down and to the right of the upper left corner
of the screen.

Instead of using a new window for the output, you can send it to the current
ly selected window by using * instead of CON:x/y /width/height/title.

Under V2.0 and later. versions of AmigaOOS, there are new keywords which
allow further customizing of the CON: window. These new keywords may
appear in any order after the title string in the CON: specifier (use a slash to
separa te them). The new keywords are:

AUTO Don't open window until or unless I/O occurs

CLOSE

WAIT

AMIGADOS DEVICE INPUT AND OUTPUT 329

Put a close gadget on the window. If the user closes the win
dow, a read from CON: will return -IL; a read from RAW:
(or a CON: in raw mode) will return the Raw Event escape
string for a Close gadget.
Hold off close until user clicks the Close gadget or types
control- \.

WINDOW
Oxaddr

SCREEN name

Use window pointed to by addr (may be a custom screen).

Open on the public screen specified by name.

The additional CON: keywords BACKDROP, NODRAG, NOBORDER,
NOSIZE, SIMPLE, and SMART control the same window attributes as their
similarly named Intuition window flags.

Other new features have been added to the CON: handler with V2.0 and later
versions of AmigaDOS. The command line can be edited with cursor keys,
backspace, and delete. The V2.0 CON: handler supports a 2K line history buffer
which allows a line previously typed to be recalled by pressing cursor up. Shift
cursor up (or control R) searches back through the line history buffer for the last
line entered that matches a partially typed string. Shift cursor down (or control
B) brings you to the bottom of the history buffer. Additional edit operations are:

Control K
Control U
Control X
Control W
Control A

Control Z

Deletes everything from the cursor to the end of the line.
Deletes everything from the cursor to the start of the line.
Deletes the entire line.
Moves the cursor to the next tab stop.
Moves the cursor to the start of the line (Shift cursor left also
does this).
Moves the cursor to the end of the line (Shift cursor right also
does this).

In addition to the line editing features, some text copy and paste features have
also been added to the console handler in V2.0. The user can drag-select a text
block in a console window with the mouse and then copy the selected text to an
internal buffer with Right-Amiga-C. (Extended drag-select is also supported
with the Shift keys.) The text may then be pasted into another console window
with Right-Amiga-V. Pasted text is inserted into the read stream as if the text
had been typed manually.

A special utility called Conclip (part of the standard Startup-sequence in
V2.0) provides clipboard support for copy and paste operations. When Conclip
is running, console text copied with Right-Amiga-C is placed in the
clipboard.device; console paste operations with Right-Amiga-V cause a special

330 THE DEVELOPER'S MANUAL

code «CSI>O v) to be inserted into the read stream instead of the text. The
CON: handler reads from the clipboard when this code is received so applica
tions that use CON: get clipboard support automatically. Applications that use
the RAW: handler (see below) must provide their own support for clipboard
reads.

Note that with the CON: and RAW: handlers, if the SMART flag is used in
the window specification then only text paste operations are supported. Text
cut operations do not work with the SMART flag.

RAW: Provides unbuffered screen and keyboard I/O and allows defini
tion of a new window for the output just like CON:. (In fact,
RAW: and CON: are implemented as a single handler with two
names and corresponding modes of operation.) With RAW:, key
presses are unbuffered and can be read by an application imme
diately. The keyboard I/O is unfiltered allowing processing of
all key combinations. Keystrokes are not automatically echoed in
the RAW: window.

NEWCON: (Obsolete) This handler was included only in V1.3 of the Amiga
operating system as an alternative to the original CON: handler.
The original CON: handler had no line editing functions but
these have been incorporated into CON: in V2.0 and later ver
sions of AmigaDOS .

SER: The SER: handler provides a stream-oriented interface to the
serial port (a stream-oriented interface allows you to treat the
physical device as a file).

PAR: The PAR: handler provides a stream-oriented interface to the
parallel port (a stream-oriented interface allows you to treat the
physical device as a file).

PRT: The PRT: handler provides a stream-oriented interface to the
printer and also accepts standard printer codes, translating them
into the command sequence used for the currently selected print
er driver.

NIL: The NIL: handler provides a convenient place to send command
output that you are not interested in. For instance,
MOUNT>NIL: AUX: mount the AUX: device without printing
any diagnostic messages on the screen. Note that the NIL: han
dler is really a fake handler maintained within AmigaDOS. It is
not a separate process.

PIPE: The PIPE: handler is a mechanism meant to provide convenient
buffered I/O communication between programs. When the
PIPE: is written to, up to 4K bytes of data are buffered before the
writing process is blocked. After one process writes to PIPE: any

SPEAK:

AMIGAOOS DEVICE INPUT AND OUTPUT 331

other can read from it. This is useful, for instance, when you're
Jsing two application programs and want to transfer a large
amount of data from one (write) to the other (read) without cre
ating a temporary file in RAM: or on disk.
The SPEAK: handler provides speech output for the Amiga.
With SPEAK you can have the Amiga literally read the contents
of a file out loud. For instance, COPY DEVS:mountlist
SPEAK:OPT/f/sI60 will say the contents of the mountlist in a
female voice at a moderate speed. SPEAK accepts all the options
of the SAY command and also 00 and 01 (enables or disables
processing of options in the input stream), aO and al (toggles
direct phoneme mode), and dO and dl (enables sentence pause
on LForCR).

Communicating with AmigaDOS Devices
The usual method of communicating with handlers and filesystems is through
the AmigaOOS file I/O functions such as OpenO, ReadO, and WrlteO. A lower
level method is through the DOS packet interface, the basic communication
method between different processes. Built on top of the Exec message passing
system, the packet interface provides a standard means of interprocess commu
nication.

This communication may take place either synchronously or asynchronously
(usually through a routine called DoPktO, which does the work of finding the
task address, sending the message via PutMsgO, and Waiting on the reserved
DOS packet signal). The DOS library calls that talk to handlers-ReadO, WrlteO,
OpenO-use the packet interface.

The dos.library translates these calls into packets, sends them to the appropri
ate handler process, and returns the results to the calling routine. There is very
little extra overhead associated with using the library calls over the using pack
et interface directly. What is lost, though, is the ability to easily perform asyn
chronous I/O, so you may want to use the packet interface directly for this
instead of using the function interface. For more information on packets, see the
section entitled II AmigaOOS Packets" in Chapter 11.

Part III

THE
TECHNICAL
REFERENCE

MANUAL

Chapter 9

The Filing System

This chapter describes the AmigaOOS filing system. It includes information on
how to patch a disk corrupted by hardware errors.

AmigaDOS File Structure

The AmigaOOS file handler uses a disk that is formatted with blocks of equal
size. It provides an indefinitely deep hierarchy of directories, where each direc
tory may contain other directories and files, or just files. The structure is a pure
tree-that is, loops are not allowed.

There is sufficient redundancy in the mechanism to allow you to patch
together most, if not all, of the contents of a disk after a serious hardware error.
Before you can patch together the contents of a disk, you must understand the
layout. The subsections below describe the layout of disk blocks.

There are two basic kinds of disk blocks on the Amiga because AmigaDOS
has two different filing systems, OFS and FFS. OFS stands for old filing system
and is the filing system used in V1.2 and earlier versions of AmigaDOS. FFS
stands for fast filing system and is the newer, faster filing system used in V1.3
and all later versions of AmigaDOS. FFS is backward-compatible, which means
that it can read and write disks created under the old filing system. For each
kind of AmigaOOS disk block both the OFS and FFS structure of the block is
listed.

335

336 THE TECHNICAL REFERENCE MANUAL

Root Block
The root of the tree is the root block, which is at a fixed place on the disk. The
root is like any other directory, except that it has no parent, and its secondary
type is different. AmigaOOS stores the name of the disk volume in the name
field of the root block.

Each filing system block contains a checksum, where the sum (ignoring over
flow) of all the words in the block is zero.

The figures below describe the layout of the root block for the Old Filing
System (OFS) and Fast Filing System (FFS).

0

1

2

3

4

5

6

E-51 SIZ

SIZ

SIZE

E-50

SIZE

SIZE

SIZE

SIZE

SIZE

-49

-24

-23

-22

-21

-20

E-7 SIZ

SIZ

SIZ

SIZ

SIZ

SIZE

SIZ

E-6

E-5

E-4

E-3

-2

E-1

Figure 9-A.
OFS root block.

T.SHORT

0

0

HTSIZE

0

CHECKSUM

Hash
Table

BMFLAG

Bitmap
Pages

DAYS

MINS

TICKS

DISK
NAME

CREATEDAYS

CREATEMINS

THE FILING SYSTEM

Type

Header key (always 0)

Highest seq number (always 0)

Hash table size (= blocksize -56)

TRUE if Bitmap on disk is valid

Used to indicate the blocks
containing the bitmap

} Volume last altered
date and time

Volume name as a BCPL
string of < = 30 characters

} Volume creation
date and time

CREATETICKS

0

0

0

ST. ROOT

Next entry on this hash chain (always 0)

Parent directory (always 0)

Extension (always 0)

Secondary type indicates root block

337

338

FFS Root Block

0

1

2

3

4

5

6

SIZE-51

SIZE-50

SIZE-49

SIZE-25

SIZE-24

SIZE-23

SIZE-21

SIZE-20
SIZE-11

SIZE-10

SIZE-8

SIZE-7

SIZE-5

SIZE-4

SIZE-3

SIZE-2

SIZE-1

Figure 9-B.
FFS root block.

THE TECHNICAL REFERENCE MANUAL

T.SHORT Type

0 Header key (always 0 in root block)

0 Highest seq. number (always 0 in root block)

HTSIZE Hash table size (block size -56)

0 Reserved for DOS (must be set to 0)

CHECKSUM Balance to 0 checksum

Hash Hash table containing block numbers
Table of files and directories in the root

BMFLAG True if bitmap on disk is valid

BITMAP Used to indicate the blocks containing
KEYS the bitmap

BITMAP o or pointer to block containing
EXTEND more bitmap keys

DIR Dos datestamp of time root was last
ALTERED modified or a file in the root was last

DATESTAMP modified

DISK
Name of this volume as a BCPL string

NAME

DISK
DOS datestamp of time any file or partition

ALTERED
DATESTAMP

section was last modified

DISK DOS datestamp of time partition
MADE was first formatted

DATESTAMP

0 Reserved for future revisions (must be 0)

0 Reserved for future revisions (must be 0)

0 Reserved for future revisions (must be 0)

ST.ROOT Secondary type indicates root block (1)

THE FILING SYSTEM 339

Shown below is a C language example of how to calculate the location of the
root block for an Amiga disk. This program also shows how to extract other
useful information from the intemallists maintained by AmigaOOS.

;/* rootblock.c - Execute me to compile me with SAS C 5.10
LC -b1 -cfistq -v -y -j73 rootblock.c
Blink FROM LIB:c.o,rootblock.o TO rootblock LIBRARY
LIB:LC.lib,LIB:Amiga.lib
quit
*/

/* Code to find the root block, Exec device name, unit number, and
* other information for a DOS drive or partition name

*
* REQUIRES V36 or a later version of the dos.library
*/

#include <exec/types.h>
#include <exec/memory.h>
#include <dos/dos.h>
#include <dos/dosextens.h>
#include <dos/filehandler.h>

#include <clib/exec-protos.h>
#include <clib/dos-protos.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#ifdef LATTICE
int CXBRK(void) { return(O);} /* Disable Lattice CTRL/C handling */
int chkabort(void) (return(O);} /* really */
#endif

#define MINARGS 2

UBYTE *vers = "\O$VER: rootblock 37.1";
UBYTE *Copyright =

"rootblock v37.1\nCopyright (c) 1990 Commodore-Amiga, Inc. All Rights
Reserved" ;
UBYTE *usage = "Usage: rootblock drive:";

void bye(UBYTE *s, int e);
void cleanup(void);

#define BTOCSTR(bstr) «UBYTE *) «UBYTE *) (BADDR(bstr» + 1»

340 THE TECHNICAL REFERENCE MANUAL

void main(int argc, char **argv)

extern struct Library *DOSBase;
struct DosList *doslist;
struct DeviceNode *dosdev;
struct FileSysStartupMsg *fss;
struct DosEnvec *de;
ULONG root, blocksPerCyl, blocksPerDisk, bytesPerBlock, bytesPerCyl;
UBYTE dosdevnarne [32] ;
int 1;

if(((argc)&&(argc<MINARGS)) I I (argv[argc-1] [O]=='?'))
{

printf("%s\n%s\n",Copyright,usage);
bye ("" ,RETURN_OK) ;
}

if(DOSBase->lib_Version < 36)
bye ("This example requires at least V36 dos .library\n" ,RETURN_FAIL) ;

/* get rid of colon, if any */
strcpy(dosdevnarne,argv[l]) ;
1 = strlen(dosdevnarne);
if(dosdevnarne[l-l]==' :') dosdevnarne[l-l]='\O';

if(! (doslist = AttemptLockDosList(LDF_DEVICESILDF_READ)))
bye("Can't lock dos list\n" ,RETURN_FAIL);

if(! (dosdev=(struct DeviceNode *)
FindDosEntry(doslist,dosdevnarne,LDF_DEVICES)))

{

UnLockDosList(LDF_DEVICESILDF_READ);
bye ("Can't find device\n" ,RETURN_FAIL) ;
}

/* dosdev is initialized to point to a DOS DeviceNode */
fss (struct FileSysStartupMsg *)BADDR(dosdev->dn_Startup);
de = (struct DosEnvec *)BADDR(fss->fssffi_Environ);

blocksPerCyl = de->de_BlocksPerTrack * de->de_Surfaces;
blocksPerDisk = blocksPerCyl * (de->de_HighCyl - de->de_LoWCyl + 1);
root = (blocksPerDisk - 1 + de->de_Reserved) » 1;

/* de_SizeB1ock is in longwords */
bytesPerBlock = de->de_SizeBlock « 2;
bytesPerCyl = bytesPerBlock * blocksPerCy1;

printf ("Dos Device:
printf("root block:
printf("LoWCyl=%ld

%s\n" ,dosdevnarne);
%ld\n" ,root);

HighCyl=%ld Reserved=%ld\n",

THE FILING SYSTEM

de->de_LowCyl, de->de_HighCyl, de->de_Reserved);

printf ("Surfaces=%ld BlockSize=%ld (longs) BlocksPerTrack=%ld \n" ,

de->de_Surfaces, de->de_SizeBlock, de->de_BlocksPerTrack);

printf ("Exec device name: %s\n" ,BTOCSTR (fss->fssm_Device)) ;

printf ("Exec device unit: %ld\n", fss->fssm_Unit);

printf ("Exec device flags: %ld\n", fss->fssm_Flags) ;

/* Unlock doslist it as soon as we are done with it */

UnLockDosList(LDF_DEVICESILDF_READ);

bye ("" ,RETURN_OK) ;

}

void bye(UBYTE *s, int e)

if(*s) printf(s);

cleanup() ;

exit(e) ;

void cleanup ()

/* nothing */

User Directory Blocks

341

User directory blocks have type T.SHORT and secondary type ST.USERDIR.
The six information words at the start of the block also indicate the block's own
key (that is, the block number) as a consistency check and the size of the hash
table. The 50 information words at the end of the block contain the date and
time of creation, the name of the directory, a pointer to the next file or directory
on the hash chain, and a pointer to the directory above.

To find a file or subdirectory, you must first apply a hash function to its
name. This hash function yields an offset in the hash table, which is the key of
the first block on a chain linking those with the same hash value (or zero, if
there are none). AmigaOOS reads the block with this key and compares the
name of the block with the required name. If the names do not match, it reads
the next block on the chain, and so on.

342 THE TECHNICAL REFERENCE MANUAL

Hashing Algorithm

The hashing algorithm, which is used to determine where a file header goes in
the hash table of a directory, is the same for both FFS and the old filing system.
The easiest way to describe it is with a small C function. Given a CPTR to a
BCPL string, this routine will return the array index into the hash table. This
value is used to insert the file header with that name into the appropriate hash
table entry in the owning directory.

Hash (name)
unsigned char *name;
{

int val,len,i;

val = len = (int)*name++;
for(i=O; i<len; i++) val = ((val*13) + (int)toupper(*name++ »&Ox7ff;
return(val % 72);

One major difference between FFS and the old filing system is that hash
chains must be sorted for FFS. When a hashing collision occurs, files are linked
together using the HashChain entry in the FileHeaderBlock or
UserDirectoryBlock. The old filing system sticks the new header at the head of
the list, while FFS merges the new header into the list in ascending block order.

The figures below show the layout of a user directory block for both the Old
Filing System (OFS) and the Fast Filing System (FFS).

Figure9-C.

SIZ

SIZ

SIZ

SIZ

SIZ

SIZ

SIZ

SIZ

SIZ

SIZ

SIZ

SIZ

SIZ

SIZ

0

1

2

3

4

5·

6

E-51

E-50

E-48

E-47

E-46

E-24

E-23

E-22

E-21

E-20

E-4

E-3

E-2

E-1

THE FILING SYSTEM

T.SHORT

OWN KEY

0

0

0

CHECKSUM

Hash
Table

Spare

PROTECT

0

COMMENT

DAYS

MINS

TICKS

DIRECTORY
NAME

HASHCHAIN

PARENT

0

ST.USERDIR

Type

Header key (pointer to self)

Highest seq. number (always 0)

Protection bits

Unused (always 0)

Stored as a BCPL string

Creation date and time

Stored as a BCPL string
of < = 30 characters

Next entry with same hash value

Back pointer to parent directory

Extension (always 0)

Secondary type

OFS user directory block.

343

344 THE TECHNICAL REFERENCE MANUAL

FFS User Directory Blocks

0 T.SHORT Type

1 OWN KEY Header key (pointer to self)

2 0 Not used (must be set to 0)

3 0 Not used (must be set to 0)

4 0 Not used (must be set to 0)

5 CHECKSUM Balance to 0 checksum

6

Hash
Hash table containing block

Table
numbers of files and directories
in this directory

SIZE-51

SIZE-50 0 Not used (must be set to 0)

SIZE-49 0 Not used (must be set to 0)

SIZE-48 PROTECT
BITS

Protection bits for this directory

SIZE-47 0 Not used (must be set to 0)

SIZE-46
COMMENT

Directory comment as a BCPL string,
SIZE-24 only 80 characters can be used

SIZE-23 DIR DOS datestamp showing when this directory
CREATED was created or last modified

SIZE-21 DATESTAMP

SIZE-20 DIR Name of this directory as a BCPL string
SIZE-12 NAME (only 30 characters used)

SIZE-11
SIZE-5 0 Not used (must be set to all zeros)

SIZE-4 HASH o or block number of the next file on the

CHAIN hashchain if there is a hashing collision

SIZE-3 PARENT Block number of parent in this directory

SIZE-2 0 Not used (must be 0)

SIZE-1 ST.USERDIR Secondary type indicates user dir (2)

Figure 9-D.
FFS user directory block.

THE FILING SYSTEM 345

File Header Block
Each terminal file starts with a file header block, which has type T.SHORT and
secondary type ST.FILE. The start and end of the block contain name, time, and
redundancy information similar to that in a directory block. The body of the file
consists of data blocks with sequence numbers from 1 upward. AmigaDOS
stores the addresses of these blocks in consecutive words downward from off
set size-51 in the block. In general, AmigaDOS does not use all the space for this
list and the last data block is not full.

346 THE TECHNICAL REFERENCE MANUAL

OFS and FFS File Header Block

The following figure describes the layout of the file header block.

0 T.SHORT

1 OWN KEY

2 HIGHEST SEQ

Figure 9-E.

SIZ

SIZ

SIZ

SIZ

SIZ

SIZ

SIZ

SIZ

SIZ

SIZ

SIZ

SIZ

SIZ

SIZ

3

4

5

6

E-51

E-50

E-48

E-47

E-46

E-24

E-23

E-22

E-21

E-20

E-4

E-3

E-2

E-1

DATA SIZE

FIRST DATA

CHECKSUM

DATA BLK 3
DATABLK2
DATABLK 1

Spare

PROTECT

BYTE SIZE

COMMENT

DAYS

MINS

TICKS

FILE
NAME

HASHCHAIN

PARENT

EXTENSION

ST.FILE

OFS and FFS file header block.

Hard and Soft Links

Type

Header key

Total number of data blocks in file

Number of data block slots used

First data block

List of data block keys

Protection bits

Total size of file in bytes

Comment as BCPL string

Creation date and time

Stored as a BCPL string
of < = 30 characters

Next entry with same hash value

Back-pointer to parent directory

Zero or pOinter to first extension block

Secondary type

Hard and soft links are a new feature added to AmigaDOS in V2.0. Hard and
soft links allow an AmigaDOS user to refer to a single file or directory by more
than one name. A hard link associates a new name with a file or directory by

THE FILING SYSTEM 347

linking to its physical location on disk. A soft link associates a new name with a
file or directory by linking to its path name. Hard and soft links are implement
ed in the filesystem as modified file header blocks. A new file header block is
added for each link created.

The header block for a hard link has a type of T.5HORT (2) and a secondary
type of ST_LINKFILE (-4) or ST_LINKDIR (4) depending on whether it is linked
to a file or a directory. Hard links point to their object via a block number point
er stored at size-Il.

Any AmigaDOS object which has a hard link pointing at it will get a new
field at size-IO that is a pointer back to the hard link. In addition, the hard link
header block has this new field at size-IO which is used to chain together multi
ple hard links pointing at the same object.

If a hard link is deleted, it is first removed from the chain of hard links and
then its file header block is freed. If the object a hard link points to is deleted,
then the first hard link in the chain is altered so that it becomes the new file
header block. The original file header block is then freed.

Soft links have type T.SHORT and secondary type of ST_SOFTLINK (3). In
this kind of link, the hash table area is used to store a BePL string representing
the path and name of the object being linked to, for example, work:foo/
bar/cap. The filesystem does not attempt to access work:foo/bar/cap but tells
the caller that the file they are trying to access is a soft link. The caller must then
execute the correct OOS call, ReadLinkO, to find out what file should really be
opened.

If a soft link is deleted then its file header block is freed. If the object a soft
link points to is deleted then the soft link is left pointing at a nonexistent file.
Subsequent references to the soft link will return the "object not found" error
from AmigaOOS. Note that, although soft links are implemented in the filesys
tern, they are not supported by the MAKELINK command at the time of this
writing.

File List Block
If there are more blocks in the file than can be specified in the block list, then
the EXTENSION field is nonzero and points to another disk block which con
tains a further data block list.

OFS and FFS File List Block

The following figure explains the structure of the file list block.

348 THE TECHNICAL REFERENCE MANUAL

0 T.LlST

1 OWN KEY

2 BLOCK COUNT

Figure 9-F.

SIZE

SIZE

SIZE

SIZE

SIZE

SIZE

3

4

5

6

-51

-50

-4

-3

-2

-1

OFS and FFS file list block.

DATA SIZE

FIRST DATA

CHECKSUM

BLOCKN +3
BLOCKN +2
BLOCK N + 1

Info

0

PARENT

EXTENSION

ST.FILE

Type

Header key

= Number of data blocks in block list

Same as above

First data block

Extended list of data block keys

(Unused)

Next in hash list (always zero)

File header block of this file

Next extension block

Secondary type

There are as many file extension blocks as required to list the data blocks that
make up the file. The layout of the block is very similar to that of a file header
block, except that the type is different and the date and filename fields are not
used.

Data Block
Data blocks contain only six words of filing system information. These six
words refer to the following:

· Type (TDATA)
· Pointer to the file header block
· Sequence number of the data block
· Number of words of data

THE FILING SYSTEM

. Pointer to the next data block

. Checksum

349

Normally, all data blocks except the last are full (that is, they have a size
=blocksize-6). The last data block has a forward pointer of zero.

FFS data blocks contain only data.

OFS Data Block

The following figure explains the layout of a data block for the Old Filing
System (OFS).

Size-1

Figure 9-G.

OFS data block.

o

2

3

4

5

6

FFS Data Block

T.DATA

HEADER

SEQNUM

DATA SIZE

NEXT DATA

CHECKSUM

Data

Type

Header key

Sequence number

Next data block

The data block used by the Fast Filing System (FFS) contains only data.

350

Figure 9-H.
FFS data block.

THE TECHNICAL REFERENCE MANUAL

o

DATA

Size-1

Chapter 10

Allliga Binary File
Structure

Introduction
This chapter details the structure of binary object files for the Amiga, as pro
duced by assemblers and compilers. It also describes the format of binary load
files, which are produced by the linker and read into memory by the loader.
The format of load files supports overlaying. Apart from describing the format
of load files, this chapter explains the use of common symbols, absolute external
references, and program units.

Terminology

Some of the technical terms used in this chapter are explained below.

External References

You can use a name to specify a reference between separate program units.
The data structure lets you have a name longer than 16M bytes, although the
linker restricts names to 255 characters. When you link the object files into a sin
gle load file, you must ensure that all external references match corresponding
external definitions. The external reference may be of byte size, word, or long
word; external definitions refer to relocatable values, absolute values, or resi
dent libraries. Relocatable byte and word references refer to PC-relative address
modes and these are entirely handled by the linker. However, if you have a pro-

351

352 THE TECHNICAL REFERENCE MANUAL

gram containing longword relocatable references, relocation may take place
when you load the program.

Note that these sizes only refer to the length of the relocation field; it is possi
ble to load a word from a long external address, for example, and the linker
makes no attempt to check that you are consistent in your use of externals.

Object File

An assembler or compiler produces a binary image, called an object file. An
object file contains one or more program units. It may also contain external ref
erences to other object files.

Load File

The linker produces a binary image from a number of object files. This binary
image is called a load file. A load file does not contain any unresolved external
references.

Program Unit

A program unit is the smallest element the linker can handle. A program unit
can contain one or more hunks; object files can contain one or more program
units. If the linker finds a suitable external reference within a program unit
when it inspects the scanned libraries, it includes the entire program unit in the
load file. An assembler usually produces a single program unit from one assem
bly (containing one or more hunks); a compiler such as FORTRAN produces a
program unit for each subroutine, main program, or data block. Hunk number
ing starts from zero within each program unit; the only way you can reference
other program units is through external references.

Hunks

A hunk consists of a block of code or data, relocation information, and a list
of defined or referenced external symbols. Data hunks may specify initialized
data or uninitialized data (bss). A bss hunk may contain external definitions but
no external references nor any values requiring relocation. If you place initial
ized data blocks in overlays, the linker should not normally alter these data
blocks, since it reloads them from disk during the overlay process. Hunks may
be named or unnamed, and they may contain a symbol table to provide sym
bolic debugging information. They may also contain further debugging infor
mation for the use of high-level language debugging tools. Each hunk within a
program unit has a number, starting from zero.

AMIGA BINARY FILE STRUCTURE 353

Resident Library

Load files are also known as resident libraries. Load files may be resident in
memory; alternatively, the operating system may load them as part of the
"library open" call. You can reference resident libraries through external refer
ences; the definitions are in a hunk containing no code, just a list of resident
library definitions. Usually, to produce these hunks, you assemble a file con
taining nothing but absolute external definitions and then pass it through a spe
cial software tool to convert the absolute definitions to resident library defini
tions. The linker uses the hunk name as the name of the resident library, and it
passes this through into the load file so that the loader can open the resident
library before use.

Scanned Library

A scanned library consists of object files that contain program units which are
only loaded if there are any outstanding external references to them. You may
use object files as libraries and provide them as primary input to the linker, in
which case the input includes all the program units the object files contain. Note
that you may concatenate object files.

Node

A node consists of at least one hunk. An overlaid load file contains a root
node, which is resident in memory all the time that the program is running, and
a number of overlay nodes that are brought into memory as required.

Object File Structure

An object file is the output of the assembler or a language translator. To use an
object file, you must first resolve all the external references. To do this, you pass
the object file through the linker. An object file consists of one or more program
units. Each program unit starts with a header and is followed by a series of
hunks joined end to end, each of which contains a number of "blocks" of vari
ous types. Each block starts with a longword which defines its type, and this is
followed by zero or more additionallongwords. Note that each block is always
rounded up to the nearest longword boundary. The program unit header is also
a block with this format.

354 THE TECHNICAL REFERENCE MANUAL

The format of a program unit is as follows:

· Program unit header block.
· Hunks.

The basic format of a hunk is as follows:

· Hunk name block.
· Relocatable block.
· Relocation information block.
· External symbol information block.
· Symbol table block.
· Debug block.
· End block.

You may omit all these block types, except the end block.
The following subsections describe the format of each of these blocks. The

value of the type word appears in decimal and hex after the type name, for
example, hunk_unit has the value 999 in decimal and 3E7 in hex.

hunk_unit (999/3E7)

This block specifies the start of a program unit. It consists of a type word, fol
lowed by the length of the unit name in longwords, followed by the name itself
padded to a longword boundary with zeros, if required. In diagrammatic form,
the format is as follows:

Figure IO-A.
hunk_unit (999/3E7).

N

N
longwords

of
name

AMIGA BINARY FILE STRUCTURE 355

hunk_name (1000/3E8)

This block defines the name of a hunk. Names are optional; if the linker finds
two or more named hunks with the same name, it combines the hunks into a
single hunk. Note that 8- or 16-bit program counter relative external references
can only be resolved between hunks with the same name. Any external refer
ences in a load format file are between different hunks and require 32-bit relo
eatable references; although, as the loader scatter loads the hunks into memory,
you cannot assume that they are within 32K of each other. Note that the length
is in longwords and the name block, like all blocks, is rounded up to a long
word boundary by padding with zeros. The format is as follows:

Figure lO-B.
hunk_name (1000/3E8).

hunk_code (1001/3E9)

N

N
longwords

of
name

This block defines a block of code that is to be loaded into memory and possibly
relocated. Its format is as follows:

356 THE TECHNICAL REFERENCE MANUAL

Figure IO-C.

hunk_code (lOO1l3E9).

hunk_data (l002/3EA)

N

N
Longwords

of
Code

This block defines a block of initialized data that is to be loaded into memory
and possibly relocated. The linker should not alter these blocks if they are part
of an overlay node, as it may need to reread them from disk during overlay
handling. The format is as follows:

Figure IO-D.

hunk_data (l002/3EA).

N

N
Longwords

of
Data

AMIGA BINARY FILE STRUCTURE 357

hunk_bss (l003/3EB)

This block specifies a block of uninitialized workspace that is allocated by the
loader. The hunk_bss blocks are used for such things as stacks and for FOR
TRAN COMMON blocks. It is not possible to relocate inside a bss block, but
symbols can be defined within one. Its format is as follows:

N

Figure IO-E.
hunk_bss (l003/3EB).

where N is the size of block you require in longwords. The memory used for
bss blocks is zeroed by the loader when it is allocated.

The relocatable block within a hunk must be one of hunk_code, hunk_data,
or hunk_bss. A hunk_code contains executable machine language. A hunk_data
contains initialized data (constants, etc.) and a hunk_bss contains un initialized
data (arrays, variables, etc.).

For these three hunk types, the size long word of the hunk is interpreted in a
special way based on the two most significant bits:

+---------- -Bit 31 MEMF_FAST
1 +----------Bit 30 MEMF_CHIP

o 0

1 0
o 1
1 1

If neither bit is set, then the loader gets whatever memory is available
(this is backward compatible). Preference is given to Fast memory.
Loader must use Fast memory or fail.
Loader must use Chip memory or fail.
If bit 31 and bit 30 are both set then there is extra information available
in the next longword. The lower 24 bits of the next longword are passed
as a type to AllocMem 0, the upper 8 bits are reserved for future expan
sion (not used currently).

hunk_reloc32 (l004/3EC)

A hunk_reloc32 block specifies 32-bit relocation that the linker is to perform
within the current relocatable block. The relocation information is a reference to
a location within the current hunk or any other within the program unit. Each
hunk within the unit is numbered, starting from zero. The linker adds the

358 THE TECHNICAL REFERENCE MANUAL

address of the base of the specified hunk to each of the longwords in the pre
ceding relocatable block that the list of offsets indicates. The offset list only
includes referenced hunks and a count of zero indicates the end of the list. Its
format is as follows:

Figure 10-F.
hunk_reloc32 (1004/3EC).

N1

Hunk Number 1

N1
Offsets

N2

Hunk Number 2

N2
Offsets

Nn

Hunk Number n

Nn
Offsets

o

hunk reloc32short (1020/3FC)

A hunk_reloc32short specifies 32-bit relocation that the linker is to perform
within the current relocatable block using 16-bit quantities. It has the same for
mat as a hunk_reloc32 (that is, the fields to be modified are 32 bits long), but the
actual offsets and hunk numbers are 16 bits wide to save space, and make load
ing faster.

This is a more efficient way of encoding the relocation information in a file
(hunk_reloc32's mostly consist of a's, since almost all hunks are less than 64K
long) and serves as an alternative to hunk_reloc32 for the final output of a link
er. This is a new hunk available in V2.0 and later versions of AmigaDOS only.

AMIGA BINARY FILE STRUCTURE 359

hunk reloc16 (1005/3ED)

A hunk_reloc16 block specifies 16-bit relocation that the linker should perform
within the current relocatable block. The relocation information refers to 16-bit
program counter relative references to other hunks in the program unit. The
format is the same as hunk_reloc32 blocks. These references must be to hunks
with the same name, so that the linker can perform the relocation while it coag
ulates (that is, gathers together) similarly named hunks.

hunk_reloc8 (1006/3EE)

A hunk_reloc8 block specifies 8-bit relocation that the linker should perform
within the current relocatable block. The relocation information refers to 8-bit
program counter relative references to other hunks in the program unit. The
format is the same as hunkJeloc32 blocks. These references must be to hunks
with the same name, so that the linker can perform the relocation while it coag
ulates similarly named hunks.

hunk_dreloc32 (1015/3F7)

A hunk_dreloc32 block specifies 32-bit data section relative relocation that the
linker is to perform within the current block. This hunk type is used to imple
ment base-relative addressing on the Amiga. The linker adds the offset of the
base of the specified hunk (that is, the number of bytes from the base of hunk
"_MERGED" to the base of the specified hunk) to each of the longwords in the
preceding relocatable block that the list of offsets indicates. The specified hunk
must be merged with the data hunk named "_MERGED". The hunk format is
identical to "hunkJeloc32".

hunk_dreloc16 (1016/3F8)

A hunk_dreloc16 block specifies 16-bit data section relative relocation that the
linker is to perform within the current block. Exept for relocation size, this block
is identical to "hunk_dreloc32".

hunk dreloc8 (1017/3F9)

A hunk_dreloc8 block specifies 8-bit data section relative relocation that the
linker is to perform within the current block. Except for relocation size, this
block is identical to "hunk_dreloc32".

360 THE TECHNICAL REFERENCE MANUAL

hunk_ext (1007/3EF)

This block contains external symbol information. It contains entries both defin
ing symbols and listing references to them. Its format is as follows:

Figure IO-G.
hunk_ext (l007/3EF).

hunk_ext

Symbol
Data
Unit

Symbol
Data
Unit

o

where there is one "symbol data unit" for each symbol used, and the block ends
with a zero word.

Each symbol data unit consists of a type byte, the symbol name length (3
bytes), the symbol name itself, and further data. You specify the symbol name
length in long words, and pad the name field to the next longword boundary
with zeros.

The type byte specifies whether the symbol is a definition or a reference, and
so forth. AmigaOOS uses values 0-127 for symbol definitions, and 128-255 for
references.

At the time of writing, the values are as follows:

AMIGA BINARY FILE STRUCTURE

Name
ext_symb
ext def
ext_abs
ext res
ext_ref32
ext_common
ext_refl6
ext_ref8
ext_dref32
ext_dref16
ext_dref8

Table lO-A.
External Symbols

Value
0
1
2
3
129
130
131
132
133
134
135

Meaning
Symbol table-see symbol block below
Relocatable definition
Absolute definition
Resident library definition
32-bit reference to symbol
32-bit reference to COMMON
16-bit reference to symbol
8-bit reference to symbol
32-bit base relative reference to symbol
16-bit base relative reference to symbol
8-bit base relative reference to symbol

361

The linker faults all other values. For ext_def there is one data word, the
value of the symbol. This is merely the offset of the symbol from the start of the
hunk. For ext_abs there is also one data value, which is the absolute value to be
added into the code. The linker treats the value for ext_res in the same way as
ext_def, except that it assumes the hunk name is the library name and it copies
this name through to the load file. The type bytes extJef32, extJefl6, and
ext_ref8 are followed by a count and a list of references, again specified as off
sets from the start of the hunk.

The type ext_common has the same structure except that it has a COMMON
block size before the count. The linker treats symbols specified as common in
the following way: if it encounters a definition for a symbol referenced as com
mon, then it uses this value (the only time a definition should arise is in the
FORTRAN Block Data case). Otherwise, it allocates suitable bss space using the
maximum size you specified for each common symbol reference.

The linker handles external references differently according to the type of the
corresponding definition. It adds absolute values to the longword, or byte field
and gives an error if the signed value does not fit. Relocatable 32-bit references
have the symbol value added to the field and a relocation record is produced
for the loader. 16- and 8-bit references are handled as PC-relative references and
may only be made to hunks with the same name so that the hunks are coagulat
ed by the linker before they are loaded. It is also possible for PC-relative refer
ences to fail if the reference and the definition are too far apart. The linker may
only access resident library definitions with 32-bit references, which it then han
dles as relocatable 32-bit references. The symbol data unit formats are as
follows:

362 THE TECHNICAL REFERENCE MANUAL

ext_def/abs/res

Figure to-H.
Symbol data unit.

hunk_symbol (l008/3FO)

typ I Name Length NL

NL Longwords
of Symbol Name

Symbol Value

typ I Name Length NL

NL Longwords
of Symbol Name

Count of references NR

NR Longwords
of Symbol References

130 I Name Length NL

NL Longwords
of Symbol Name

Size of Common Block

Count of References NR

NR Longwords
of Symbol References

You use this block to attach a symbol table to a hunk so that you can use a sym
bolic debugger on the code. The linker passes symbol table blocks through
attached to the hunk and, if the hunks are coagulated, coagulates the symbol
tables. The loader does not load symbol table blocks into memory; when this is
required, the debugger is expected to read the load file. The format of the sym-

AMIGA BINARY FILE STRUCTURE 363

bol table block is the same as the external symbol information block with sym
bol table units for each name you use. The type code of zero is used within the
symbol data units. The value of the symbol is the offset of the symbol from the
start of the hunk. Thus the format is as follows:

Figure 10-1.
hunk_symbol (l00S/3FO).

Symbol
Data
Unit

o

where each symbol data unit has the following format:

Figure 10-J.
Symbol data unit.

hunk_debug (1009/3Fl)

OIName Length NL

NL Longwords
of Symbol

Name

Symbol Value

AmigaDOS provides the debug block so that an object file can carry further
debugging information. For example, high-level language compilers may need
to maintain descriptions of data structures for use by high-level debuggers. The
debug block may hold this information. AmigaDOS does not impose a format
on the debug block except that it must start with the hunk_debug longword
and be followed by a longword that indicates the size of the block in long
words. Thus the format is as follows:

364 THE TECHNICAL REFERENCE MANUAL

Figure lO-K.

hunk_debug (l009/3Fl).

hunk_end (lOlO/3F2)

N

N
Longwords

of
Debug Data

This block specifies the end of a hunk. It consists of a single longword,
hunk_end.

Load Files

The format of a load file (that is, the output from the linker) is similar to that of
an object file. In particular, it consists of a number of hunks with a similar for
mat to those in an object file. The main difference is that the hunks never con
tain an external symbol information block, as all external symbols have been
resolved, and the program unit information is not included. In a simple load file
that is not overlaid, the file contains a header block which indicates the total
number of hunks in the load file and any resident libraries the program refer
enced. This block is followed by the hunks, which may be the result of coagulat
ing a number of input hunks if they had the same name. This complete struc
ture is referred to as a node. Load files may also contain overlay information. In
this case, an overlay table follows the primary node, and a special break block
separates the overlay nodes. Thus the load file structure can be summarized as
follows, where the items marked with an asterisk (*) are optional.

AMIGA BINARY FILE STRUCTURE 365

· Primary node.
· Overlay table block (*).

· Overlay nodes separated by break blocks (*).

The relocation blocks within the hunks are always of type hunkJeloc32, and
indicate the relocation to be performed at load time. This includes both the 32-
bit relocation specified with hunk_reloc32 blocks in the object file and extra
relocation required for the resolution of external symbols.

Each external reference in the object files is handled as follows. The linker
searches the primary input for a matching external definition. If it does not find
one, it searches the scanned library and includes in the load file the entire pro
gram unit where the definition was defined. This may make further external
references become outstanding. At the end of the first pass, the linker knows all
the external definitions and the total number of hunks that it is going to use.
These include the hunks within the load file and the hunks associated with the
resident libraries. On the second pass, the linker patches the longword external
references so that they refer to the required offset within the hunk which
defines the symbol. It produces an extra entry in the relocation block so that,
when the hunks are loaded, it adds to each external reference the base address
of the hunk defining the symbol. This mechanism also works for resident
libraries.

Before the loader can make these cross-hunk references, it needs to know the
number and size of the hunks in the nodes. The header block provides this
information, as described below. The load file may also contain overlay infor
mation in an overlay table block. Break blocks separate the overlay nodes.

hunk_header (1011/3F3)

This block gives information about the number of hunks that are to be loaded,
and the size of each one. It also contains the names of any resident libraries
which must be opened when the node is loaded.

The format of the hunk_header is described in Figure 1O-L. The first part of
the header block contains the names of resident libraries that the loader must
open when this node is loaded. Each name consists of a longword indicating
the length of the name in longwords and the text name padded to a longword
boundary with zeros. The name list ends with a longword of zero. The names
are in the order in which the loader is to open them.

When it loads a primary node, the loader allocates a table in memory which it
uses to keep track of all the hunks it has loaded. This table must be large
enough for all the hunks in the load file, including the hunks in overlays. The
loader also uses this table to keep a copy of the hunk tables associated with any

366 THE TECHNICAL REFERENCE MANUAL

resident libraries. The next longword in the header block is therefore this table
size, which is equal to the maximum hunk number referenced plus one.

The next longword F refers to the first slot in the hunk table the loader should
use when loading. For a primary node that does not reference a resident library,
this value is zero; otherwise, it is the number of hunks in the resident libraries.
The loader copies these entries from the hunk table associated with the library
following a library open call. For an overlay node, this value is the number of
hunks in any resident libraries plus the number of hunks already loaded in
ancestor nodes.

The next longword L refers to the last hunk slot the loader is to load as part of
this loader call. The total number of hunks loaded is therefore L - F + 1.

Figure lO-L.

hunk_header (lOll/3F3).

N1

N 1 Longwords
of Name

N2

N2 Longwords
of Name

0

Table Size

First Hunk F

Last Hunk L

L- F + 1
Sizes

The header block continues with L - F + 1 longwords that indicate the size of
each hunk that is to be loaded as part of this call. This enables the loader to pre-

AMTGA BINARY FILE STRUCTURE 367

allocate the space for the hunks and hence perform the relocation between
hunks that is required as they are loaded.

hunk_overlay (1013/3F5)

The overlay table block indicates to the loader that it is loading an overlaid pro
gram, and contains all the data for the overlay table. On encountering it, the
loader sets up the table, and returns, leaving the input channel to the load file
still open. Its format is as follows:

Figure lO-M.

hunk_overlay (1013/3FS).

Table Size

M + 1
Zeros

Overlay
Data
Table

The first longword is the upper bound of the complete overlay table (in long
words).

M is the maximum level of the overlay tree uses with the root level being
zero. The next M + 1 words form the ordinate table section of the overlay table.

The rest of the block is the overlay data table, a series of eight-word entries,
one for each overlay symbol. If 0 is the maximum overlay number used, then
the size of the overlay data table is (0 + 1)*8, since the first overlay number is
zero. So, the overlay table size is equal to (0 + 1) * 8 + M + 1.

hunk_break (1014/3F6)

A break block indicates the end of an overlay node. It consists of a single long
word, hunk_break.

368 THE TECHNICAL REFERENCE MANUAL

Examples
The following simple sections of code show how the linker and loader handle
external symbols. For example,

IDNT A
XREF BILLY,
XDEF MARY

* The next longword requires relocation
0000'0000 0008 DC.L FRED
0004'123C OOFF MOVE.B #$FF,Dl
0008'7001 FRED MOVEQ #1,DO
*External entry point
OOOA' 4E71 MARY NOP
OOOC'4EB90000 0000 JSR BILLY
0012' 2239 0000 0000 MOVE.L JOHN,DI

END

produces the following object file:

hunk_unit
00000001 Size in longwords
41000000 Name, padded to longword
hunk_code
00000006
00000008

Size in longwords
123COOFF 70014E71 4EB90000

hunk_reloc32
00000001 Number In hunk 0
00000000 hunk 0
00000000
00000000
hunk_ext
01000001
4D415259
OOOOOOOA
81000001
4A4F484E
00000001
00000014
81000002

Offset to be relocated
Zero to mark end

XDEF, Size 1 longword
MARY
Offset of definition
XREF, Size 1 longword
JOHN
Number of references
Offset of reference
XREF, Size 2 longwords

JOHN

Call external
Reference external

00002239 00000000

AMIGA BINARY FILE STRUCTURE

42494C4C BILLY
59000000 (zeros to pad)
00000001 Number of references
OOOOOOOE Offset of reference
00000000 End of external block
hunk_end

The matching program to this is as follows:

IDNT
XDEF
XREF

0000' 2A3C AAAA AAAA MOVE.L
* External entry point
0006' 4E71 BILLY NOP
* External entry point
0008' 7201 JOHN MOVEQ
*Call external reference
OOOA' 4EF9 0000 0000 JMP

END

and the corresponding output code would be:

hunk_unit
00000001 Size in longwords
42000000 Unit name
hunk_code

B
BILLY, JOHN
MARY
#$AAAAAA,D5

#1, Dl

MARY

00000004 Size in longwords
2A3CAAAA AAAA4E71 72014EF9 00000000
hunk_ext
01000001
4A4F484E
00000008
01000002
42494C4C
59000000
00000006
81000001
4D415259
00000001
OOOOOOOC

XDEF, Size 1 longword
JOHN
Offset of definition
XDEF, Size 2 longwords
BILLY
(zeros to pad)
Offset of definition
XREF, Size 1 longword
MARY
Number of references
Offset of reference

369

370 THE TECHNICAL REFERENCE MANUAL

00000000 End of external block
hunk_end

Once you passed this through the linker, the load file would have the follow
ing format:

hunk_header
00000000 No hunk name
00000002 Size of hunk table
00000000 First hunk
00000001 Last hunk
00000006 Size of hunk 0
00000004 Size of hunk 1
hunk_code
00000006 Size of code in longwords
00000008 123COOFF 70014E71 4EB90000 00062239 00000008
hunk_reloc32
00000001 Number In hunk 0
00000000 hunk 0
00000000
00000002
00000001
00000014
OOOOOOOE
00000000
hunk_end
hunk_code

Offset to be relocated
Number in hunk 1
hunk 1
Offset to be relocated
Offset to be relocated
Zero to mark end

00000004 Size of code in longwords
2A3CAAAA AAAA4E71 72014EF9 OOOOOOOA
hunk_reloc32
00000001 Number In hunk 0
00000000 hunk 0
OOOOOOOC Offset to be relocated
00000000 Zero to mark end
hunk_end

When the loader loads this code into memory, it reads the header block and
allocates a hunk table of two longwords. It then allocates space by calling an
operating system routine and requesting two areas of sizes 6 and 4 longwords,
respectively. Assuming the two areas it returned were at locations 3000 and
7000, the hunk table would contain 3000 and 7000.

AMIGA BINARY FILE STRUCTURE 371

The loader reads the first hunk and places the code at 3000; it then handles
relocation. The first item specifies relocation with respect to hunk 0, so it adds
3000 to the longword at offset 0 converting the value stored there from
00000008 to 00003008. The second item specifies relocation with respect to hunk
1. Although this is not loaded, we know that it will be loaded at location 7000,
so this is added to the values stored at 300E and 3014. Note that the linker has
already inserted the offsets 00000006 and 00000008 into the references in hunk 0
so that they refer to the correct offset in hunk 1 for the definition. Thus the long
words specifying the external references end up containing the values 00007006
and 00007008, which is the correct place once the second hunk is loaded.

In the same way, the loader loads the second hunk into memory at location
7000 and the relocation information specified alters the long word at 700C from
OOOOOOOA (the offset of MARY in the first hunk) to 0000300A (the address of
MARY in memory).

The loader handles references to resident libraries in the same way, except
that, after it has opened the library, it copies the locations of the hunks compris
ing the library into the start of the hunk table. It then patches references to the
resident library to refer to the correct place by adding the base of the library
hunks.

Amiga Library File Structure

There are two kinds of Amiga library file structures: the original format used
with both ALINK and BLink, and the new indexed format used with BLink ver
sions 7.2 and later.

The original Amiga library file structure is essentially one or more object
modules concatenated together into one file. This structure has the appeal of
simplicity. More object modules can be added to a library by appending them
to the end of the library file.

In this format, the initial pass performed by a linker must process the library
file sequentially to find the program units that it needs to link in.

372 THE TECHNICAL REFERENCE MANUAL

Example Library File

Thus, a typical library might look as follows:

HUNK_UNIT 2, "First PU"
HUNK_NAME, 3 , "First Hunk"
HUNK_CODE, 20, 20 longwords of code ...
HUNK_RELOC32, 3, 3, 12, 22, 48

HUNK_DEBUG,
HUNK END

2, 2, 4, 34
0

EXT_DEF 12, "FirstDef", 0
EXT_DEFI3, "SecondDef", 38

EXT_REF32 12, "ThirdDef" , 2, 12, 48
EXT_REF32 13, "FourthDef", 1, 4

o
7, 7 longwords of debugging inforrration ...

HUNK_NAME, 3, "Second Hunk"
HUNK_DATA, 30, 30 longwords of data ...
HUNK_EXT, EXT_DEF 1 3, "FirstConst", 0

EXT_DEFI3,
EXT_DEFI3,

o

40

"FourthDef" , 4
"LongString", 8

HUNK_BSS,
HUNK_EXT, EXT_DEF 12, "workStr", 0

o
HUNK END

HUNK_UNIT, 3 ,
HUNK_NAME, 3 ,
HUNK_CODE, 64,
HUNK_RELOC32, 2,

4,
3,
0

HUNK_EXT, EXT_REF32 12,
EXT_REF32 13,

EXT_DEFI2,
o

"Second PU"
"Third Hunk"
64 longwords of code ...
0, 14, 54
1, 4, 22, 28, 44
2, 10, 38, 100

"FirstDef", 2, 14, 54
"LongString", 3, 22, 28, 44
"ThirdDef" , 0

AMIGA BINARY FILE STRUCTURE 373

The New Library File Structure

The new library file format is very much like the old, except that there is an
extra level of encapsulation, through the use of two new hunk types. Users may
still merge libraries by simply concatenating files and old or new format
libraries can be appended together.

The new format is more compact and faster for the linker to process. It
achieves its performance and flexibility by adding two additional hunk types:
hunk_lib and hunk_index. Like all basic Amiga hunk types, these consist of a
longword type value, followed by a 32-bit value for the number of subsequent
longwords in the hunk. Further, they always occur in pairs, hunk_lib first,
hunk_index following. Nothing comes between.

hunk_lib (1019/3FB)

The format of hunk_lib is shown in Figure 10-N.

N

N Longwords
of

Contained Hunks

Figure to-No
hunk_lib (lOt9/3FB).

The size field (N) of the hunk_lib structure must be a count of ALL of the
longwords belonging to the structure, excluding the type and size field. Thus,
the longword count given in the size field can be greater than 65,535, however,
note that the offset, in longwords, to the last code, data, or bss hunk be no
greater than 65,535 (see hunk_index, below). If the contained hunk (or its con
stituent hunks) extend beyond that point, the hunk_lib size field MUST still
include them in the count.

hunk_index (1020/3FC)

The hunk_index provides an index to all the hunks concatenated in hunk_lib.
hunk_index format is shown in Figure 10-0.

374

hunk_index

N

Size of
String Block

in Bytes

String Block
(Up to 64K
of Strings)

Program
Unit

1

Program
Unit

2

Program
Unit
N1

Figure 10-0.
hunk_index format.

THE TECHNICAL REFERENCE MANUAL

16-Bit Byte
Offset Into
String Block
for Program

Unit N1 Name 16-Bit Byte
Offset Into

16-Bit Long- String Block

word Offset to to hunk name N2

First Hunk of

Prog. Unit N1 hunk N2 Size

Hunk Count hunk N2 Type

for Program
hunkRef Count Unit N1
(EXT _REF32s

Hunk Entry 1 r
and EXT _REF16s)

Hunk Entry 2 hunkRef 1

Hunk Entry N2 hunkRef 2

\ hunkRef N3

DefEntry Count
(

(EXT _DEFS,etc.)

DefEntry 1

DefEntry 2

DefEntry N4 (

16-Bit Byte
Offset Into

String Block for
Symbol N3 Name

16-Bit Byte Offset

Into String Block fo
Symbol N4 Name

16-Bit Byte Offset
from Base of Hunk

for Symbol N4

16-Bit Type of

Symbol N4

AMIGA BINARY FILE STRUCTURE 375
~~- -~ --------------~

Example of hunk_lib

Here's an example of a new format library, based on the previous example
given in "Example Library File," above. The library is formed by pairing of
hunk_lib and a hunk_index. Here's the hunk_lib:

HUNK_LIB, 191
HUNK_CODE, 20, 20 longwords of code ...
HUNK_RELOC32, 3, 3, 12, 22, 48

2, 2, 4, 34
0

HUNK _EXT, EXT_REF32 12, "ThirdDef" , 2, 12, 48
EXT_REF32 12, "FourthDef", 1 , 4

0
HUNK_DEBUG, 7 , 7 longwords of

debugging information ...
HUNK_END
HUNK_DATA, 30, 30 longwords of data ...
HUNK_END
HUNK_BSS, 40
HUNK_END
HUNK_CODE, 64, 64 longwords of code ...
HUNK_RELOC32, 2, 0, 14, 54

4, 1, 4, 22, 28, 44
3, 2, 10, 38, 100
0

HUNK _EXT, EXT_REF32 12, "FirstDef" , 2, 14, 54

EXT_REF32 13, "LongString" , 3 , 22, 28, 44
0

Example of hunk_index

The hunk_index for the library is more complicated. It follows the general for
mat:

· hunk_index.
· Size.
· 16-bit word aligned string block.
· one or more punit structures.

376 THE TECHNICAL REFERENCE MANUAL

where the string block consists of a 16-bit word value, representing the size
of the rest of the block, in bytes, and the rest of the block consists of null
terminated (C-style) strings, where the first string must be the null string.
Strings are NOT word-boundary aligned. If necessary, the block is padded on
the end with a single 0 byte, to align to a word boundary. Thus the string block
for the above example would resemble the following:

122
at offset 0

"First PU" at offset 1
"First Hunk" at offset 10
"FirstDef" at offset 21

"SecondDef" at offset 30
"ThirdDef" at offset 40

"FourthDef" at offset 49
"Second Hunk" at offset 59
"FirstConst" at offset 71
"LongString" at offset 82
"workStr" at offset 93
"Second PU" at offset 101
"Third Hunk" at offset 111

This block needed no trailing 0 byte for alignment to a 16-bit word boundary.
Note that this block, excluding its length field, can be no larger than 65,534
bytes (64K -2 bytes). The trailing pad byte, if present, is included in the size
field for the block.

What follows the string block is one or more punit structures with the follow
ing format:

· Punit header.
· One or more hunk entries.
· If necessary, a padding 16-bit 0 value, to realign the hunk_index hunk to a

longword boundary.

where a punit header consists of:
1. A 16-bit offset of a program unit name string in preceding string block (0 is

the offset to the first string; -2 is the offset to the length of the block). This
offset is in bytes, and is signed. Thus, the total string space available for
anyone hunk_lib's symbol names is 65,534 bytes.

2. A 16-bit offset of first hunk (code, data, or bss) to a program unit within
the preceding hunk_lib structure. This offset is in longwords, meaning that

AMIGA BINARY FILE STRUCTURE 377

no hunk in the corresponding hunk_lib can begin beyond a byte offset of
262,140).

3. A 6-bit count of the number of hunks in the preceding hunk_lib structure
(code, data, and bss).

and a hunk entry consists of:

1. A 16-bit offset to hunk name string in string block (or a-the null string).

2. The 16-bit size of the hunk, in longwords.

3. A 16-bit type of the hunk (hunk_code, hunk_data, hunk_bss), with any
Fast or Chip flag settings moved into the upper 2 bits of the type word.

4. A16-bit count of the number of references. This information is duplicated
from the EXT_REFs of any hunk_ext associated with the hunk. This partic
ular field is followed by the 16-bit string offsets of the symbols being refer
enced in the string block (the string itself if a 32-bit reference).

5. The 16-bit count of the number of definitions. This information is moved
completely out of the hunk_exts of the hunk (which is why they are so
much shorter in the example of the hunk_lib above). This field is followed
by a or more entries of three words:

a.) A 16-bit offset to defined symbol name string in string block (most sig
nificant bit always clear).

b.) A 16-bit offset (in bytes) of symbol from base of hunk.

c.) A 16-bit type of the symbol definition. Note that type has been extend
ed. In some instances of EXT_ABS values, most notably the _CIA refer
ences in amiga.lib, the ABS value has significant bits which take up to 25
bits to store.

Since the type field value will fit comfortably into 1 byte, the upper byte is
reserved for bits 16-23 of EXT_ABS values, and bit 6 in the type byte is used to
note the state of the uppermost 8 bits of the original 32-bit value of the
EXT_ABS (that is, all l's, or all a's). This permits 25 bits' worth of EXT_ABS
information to be stored in the existing structures. Thus, for EXT_ABS data, the
following is the format:

original EXT_ABS values: abs1 $c709d3
abs2 -14872941 ($ffldOe93)

resultant EXT_ABS values: abs1 $09d3 (word)
$c7 (byte)
EXT_ABS (byte)

378 THE TECHNICAL REFERENCE MANUAL

abs2 = $Oe93
$ld
EXT_ABS I 64

(word)
(byte)
(byte)

Note that in all hunk_index structures, a 16-bit value of 0 for the count of array
elements of a given type means that NO array elements of that type are present
in the structure.

Thus, the hunk_index for the above given hunk_lib is:

hunk_index, 57
122

at offset °
"First PU" 1
"First Hunk" 10
"FirstDef" 21
"SecondDef" 30
"ThirdDef" 40
"FourthDef" 49
"Second Hunk" 5 9
"FirstConst" 71
"LongString" 82
"workStr" 93
"Second PUff 101
"Third Hunk" J11
1, 0, 3 program unit w/3 hunks ...

hunk info 10, 20, HUNK_CODE
2, 40, 49
2, 21, ° , EXT_DEF
3O, 38, EXT_DEF

59, 30, HUNK_DATA

° 3, 71, ° , EXT DEF
49, 4, EXT_DEF
82, 4, EXT_DEF

0, 40, HUNK_BSS

°

2 refs .. .
2 defs .. .

hunk info
no refs
3 defs ...

hunk info
no refs

1, 93, 0, EXT _DEF 1 de f ...
101, 92,1 program unit wll hunk ...

111, 64, HUNK_CODE hunk info
2, 21, 82 2 refs .. .
1, 40, 0, EXT DEF 1 def .. .

o

AMIGA BINARY FILE STRUCTURE 379

16-bit pad for longword alignment
of hunk

Note from the examples that the hunk_lib structure still contained the
hunk_ends, the hunk_reloc32's, the hunk_debug, and part of some of the
hunk_exts; if a hunk_symbol had been present, it would also have to be in the
hunk_lib with its corresponding code, data, or bss hunk.

These hunks-hunk_code, hunk_data, hunk_bss, hunk_reloc32,
hunkJeloc16, hunkJelocB, hunk_symbol, hunk_debug, and hunk_end-must
be present exactly as if they weren't in a hunk_lib. A hunk_unit, hunk_name
must be removed entirely, replaced by program unit entries in the hunk_index
associated with the hunk_lib. The hunk_ext must lose any EXT_DEFs, the infor
mation for which is instead found in the hunk entries in the hunk_index.
EXT_REF32s and/or EXT_REF16s must be present in a hunk_ext in order for
the hunk_ext to remain at all in the hunk_lib, and EXT _REF32s and
EXT_REF16s must be noted as well in the reference list in the hunk entry found
in the hunk_index for the hunk. EXT_REFBs are not supported.

Chapter 11

AllligaDOS Data
Structures

This chapter describes AmigaOOS data structures in memory and in files. The
layout of a disk is described in Chapter 9.

Introduction
AmigaOOS provides device independent input and output. It achieves this by
creating a handler process for each device you use. The handler process accepts
a standard set of I/O requests and converts these to device specific requests
where required. All AmigaOOS clients refer to the handler process rather than
the device directly, although it is possible to use a device without a handler if
this is required. This chapter describes the data structure within AmigaOOS,
including the format of a process, central shared data structures, and structure
of handler requests.

In addition to normal Amiga value such as LONG and APTR, AmigaOOS
uses BPTRs. A BPTR is a BCPL pointer, which is a pointer to longword-aligned
memory block divided by 4. So, to read a BPTR in C, you simply shift the left by
2. To create a BPTR, you should use memory obtained via a call to ALLOC
Mem. You could also use stack memory, but you must ensure that the starting
address is on a longword boundary.

AmigaOOS also has a BSTR, which is a BCPL string. BSTR consists of a BPTR
to memory that contains the length of the string in the first byte, and the bytes
within the string following.

381

382 THE TECHNICAL REFERENCE MANUAL

A number of references to the Global Vector appear within this chapter. The
Global Vector is a jump table used by BCPL and is a pointer to a standard
shared Global Vector. Some processes, such as the file handler, use a private
global vector. In either case, you should never access the Global Vector from
your code since it is for the private use of AmigaDOS only. Under 2.0 and
later versions of AmigaDOS, the Global Vector is used only for backwards
compatibility with old BCPL programs. The new AmigaDOS is written in C and
Assembler and does ont use the Global Vector.

Process Data Structures
These values are created as part of an AmigaDOS process; there is a complete
set for each process.

A process is an Exec task with a number of extra data structures appended.
The process structure consists of:

· Exec task structure
· Exec message port
· AmigaDOS process value

The process identifier AmigaDOS uses internally is a pointer to the Exec mes
sage port (pr_MessagePort) from which the Exec task may be obtained.

AmigaOOS process values are as follows:

Value Name Description
BPTR pr_SegList Array of seg lists used by this

process
LONG pr_ StackSize Size of process stack in bytes
APTR pr_ GlobVec Global vector for this process

(BCPL)
LONG pr_ TaskNum CLI task number of zero if not

a CLI
BPTR pr_ StackBase Ptr to high memory end of pro-

cess stack
LONG pr_ Result2 Value of secondary result from

last call
BPTR pr_ CurrentDir Lock associated with current

directory
BPTR pr_ CTS Current CLI Input Stream
BPTR pr_ COS Current CLI Output Stream

AMIGADOS DATA STRUCTURES 383
-- --- ---------

APTR pr_ Console Task Console handler process for
current window

APTR pr_FileSystemTask File handler process for cur-
rent drive

BPTR pr_ CLI Pointer to CLI
APTR pr_ ReturnAdd Pointer to previous stack frame
APTR pr_ PktWait Function to be called when

awaiting msg
APTR pr_ Windowptr Window for error printing

These new definitions have been appended to the process data structure with
release V2.0 and later versions of AmigaDOS.

Value

BPTR

LONG

LONG

LONG

UBYTE *

Name

pr_HomeDir

(*pr_Exi tCode)

Description

Home directory of execut
ing program
Flags telling DOS about
process

(LONG returncode, Code to calIon exit of
LONG pr_ExitData) program or NULL

Passed as an argument to
pr_ExitCode
Arguments passed to the
process at start

struct MinList pr_LocalVars Local environment vari
ables

ULONG pr_ShellPrivate

BPTR

For the use of the cur
rent Shell
Error stream-if NULL, use
pr_COS

To identify the segments that a particular process uses, you must use
pr_SegList. pr_SegList is an array of longwords with its size in Seg_List[O].
Other elements are either zero or a BPTR to a SegList. CreateProcO and
CreateNewProcO create this array with the first two elements of the array point
ing to resident code and the third element, being the SegList, passed an argu
ment. When a process terminates, FreeMemO is used to return the space for the
pr_SegList.

The pr_StackSize field indicates the size of the process stack, as supplied by
the user when calling CreateProcO or CreateNewProcO. Note that the process
stack is not the same as the command stack a CLI uses when it calls a program.

384 THE TECHNICAL REFERENCE MANUAL

The CLI obtains its command stack just before it runs a program and you may
alter the size of this stack with the STACK command. When you create a pro
cess, AmigaOOS obtains the process stack and stores the size in pr_StackSize.
The pointer to the space for the process control block and the stack is also
stored in the MemEntry field of the task structure. When the process terminates
this space is returned via a call to FreeVec. You can also chain any memory you
obtain into this list structure so that it, too, gets put back when the task termi
nates. But be careful, this method won't work for a program run from the CLI
since memory is not freed until the process goes away.

If a call to CreateProcO or CreateNewProcO creates the process, GlobVec is a
pointer to the Shared Global Vector. However, some internal handler processes
use a private global vector.

The value of pr_TaskNum is normally zero; a CLI process stores the small
integer that identifies the invocation of the CLI here.

The pointer pr_StackBase points to the high-memory end of the process stack.
This is the end of the stack when using languages such as C or assembler; it is
the base of the stack for languages such as BCPL. Note that pr_StackBase may
not be the same as the one your application uses (e.g., if your program is started
from the CLI).

The pr_Result2 and pr_CurrentDir fields are handled by the AmigaDOS
functions IoErrO and CurrentDirO, respectively. pr_CIS and pr_COS are the
values Input and Output return and refer to the filehandles you should use
when running a program under the CLI. Never access pr_CIS and pr_COS
directly. Instead use the AmigaDOS functions provided for this purpose.

The pr_ConsoleTask field refers to the console handler for the current win
dow. The pr_FileSysytemTask field refers to the file handler for the boot device.
You use these values when attempting to open the * device or a file by a relative
path name when pr_CurrentDir is null.

The pr_CLI pointer is nonzero only for CLI processes. In this case it refers to a
further structure the CLI uses with the following format:

Value Name

LONG cli Result2 -

BSTR cli SetName
BPTR eli CommandDir -
LONG cli ReturnCode
BSTR cli CommandName -
LONG eli FailLevel
BSTR eli _Prompt
BPTR cli _Standardlnput

Description

Value of IoErr from last com
mand
Name of current directory
BPTR to CLI path
Return code from last command
Name of current command
Fail level (set by FAILAT)
Current prompt (set by PROMPT)
Default (terminal) CLI input

AMIGAOOS DATA STRUCTURES 385
-------------------------- ----------------------

BPTl{
BSTR
LONG

LONG

BPTR
LONG

BPTR
BPTR

cli_Currentlnput
cli_CommandFile
eli Interactive

eli_Background

cli_CurrentOutput
eli DefaultStack

Current CLI input
Name of EXECUTE command file
Boolean; True if prompts
required
Boolean; True if CLI created
by RUN
Current CLI output
Stack size to be obtained in
longwords

cli_StandardOutput Default (terminal) CLI output
eli_Module SegList of currently loaded

command

The exit function uses the value of pr_ReturnAddr which points to just above
the return address on the currently active stack. If a program exists by perform
ing an RTS on an empty stack, the control passes to the code address pushed
onto the stack by CreateProcO or by the CLI. If a program terminates with a call
to Exit, then AmigaDOS uses this pointer to extract the same return address.
Note that the AmigaOOS function ExitO is inappropriate for most programs
which should use the exit function provided by the compiler manufacturer
instead.

The value of pr_PktWait is normally zero. If it is nonzero, then AmigaOOS
calls pr_PktWait whenever a process is about to go to sleep to await a signal
indicating that a message has arrived. In the same way as GetMsgO, the func
tion should return a message when one is available. Usually you use this func
tion to filter out any private messages arriving at the standard process message
port that are not intended for AmigaDOS.

The value of pr_ WindowPtr is used when AmigaOOS detects an error that
normally requires the user to take some action. Examples of these errors are
attempting to write to a write-protected disk, or when the disk is full. If the
value of pr_ WindowPtr is -I, then the error is returned to the calling program
as an error code from the AmigaOOS call of OpenO, WriteO, or whatever. If the
value is zero, then AmigaOOS places a request box on the Workbench screen
informing the user of the error and providing the opportunity to retry the oper
ation or to cancel it. If the user selects to cancel, then AmigaOOS returns the
error code to the calling program. If the user selects retry, or insert a disk, then
AmigaOOS attempts the operation once more. Under V2.0 and later versions of
AmigaOOS, if a pr_WindowPtr is zero then AmigaOOS will put requesters on
the default public screen.

If you put a positive value into the pr_WindowPtr field, then AmigaOOS
takes this to be a ponter to a window structure. Normally you would place the
Window structure of the window you are currently using here. In this case,

386 THE TECHNICAL REFERENCE MANUAL

AmigaDOS displays the error message within the window you have specified,
rather than using the Workbench screen. You can always leave the
pr_WindowPtr field as zero, but if you are using another screen, then the mes
sages AmigaDOS displays appear on the Workbench screen, possibly obscured
by your own screen.

The initial value of pr_ WindowPtr is inherited from the process that created
the current one. If you decide to alter pr_WindowPtr from within a program
that runs under the CLI, then you must save the original value and restore it
when you finish; otherwise, the CLI process contains a pr_ WindowPtr that
refers to a window that is no longer present.

The rest of the fields in the process structure are brand new and appear only
in V2.0 and later versions of AmigaDOS. The pr_HomeDir field is the directory
from which the program associated with this process was loaded. This field is
referenced when the progdir: feature of V2.0 is used. The pr_Flags field is a pri
vate field containing flags for AmigaDOS.

The field named (*pr_ExitCode)O is a LONG pointing to the cleanup code to
be called after the program exits. It takes as a parameter the return code of the
program and may return a modified return code when the process terminates.
The pr_ExitData is provided as a convenience and allows you to pass additional
information to your pr_ExitCode automatically.

Another new field is pr_Arguments. This is a null terminated string of the
register level arguments passed to the process when the program was started.
You can modify this field using the SetArgumentsO function but if you do, you
must restore it to its original value before exiting.

pr_LocalVars is used to implement process local variables. Do not access
these directly. Use the new calls GetVarO, SetVarO, and DeleteVarO instead.

The pr_ShellPrivate field is for the private use of the Shell associated with
this process. Never access it.

The value in pr_CES points to an error stream to use for this process separate
from pr_CIS and pr_COS. This field is not fully implemented in AmigaDOS at
the time of this writing.

Redirecting System Requesters

On the Amiga, when a user or a program requests a file on a volume that is not
currently mounted, AmigaDOS brings up a System Request on the Workbench
screen asking the user to insert the disk.

The pr_ WindowPtr field of the Process structure determines where most
process-related system requesters appear. The normal value is OL which causes
the requesters to come up on the Workbench screen (the default public screen).

If your application has its own custom screen, and you perform any actions
that might cause a System Request (such as loading of files or printing) you

AMIGADOS DATA STRUCTURES 387

should redirect such requesters for your Process so that the requesters related to
your Process are brought up on your application screen.

To do this, first find your Process:

proc = (struct Process *)FindTask(NULL);

Save the old value of proc->pr_WindowPtr, and replace it with a pointer to one
of the Intuition Windows on your custom screen. The requesters will come up
on the same screen (and with the same title as) that Window. Be sure to replace
the original pr_ WindowPtr value before closing your window or exiting your
program.

Other applications may wish to temporarily disable such requesters so that
attempts to OpenO or LockO unmounted volumes simply return an error with
out bringing up a requester. To do this, save the old value of pr_ WindowPtr
and store -IL there instead. Before exiting your program, replace the original
value of pr_WindowPtr.

DOS Library Structure
This data structure only exists once; however, all AmigaDOS processes use it. If
you make a call to OpenLibraryO, you can obtain the library base pointer. The
base of the data structure is a positive offset from the library base pointer. The
library base pointer points to the following structure:

Library Node structure

APTR to DOS RootNode

APTR to DOS Shared Global Vector

DOS private register dump

Many internal AmigaDOS calls use the Shared Global Vector, which is a
jump table. You should not normally use it, except through the supplied inter
face calls, as it is liable to change without warning.

The RootNode structure is as follows:

Value

BPTR
BPTR

Name Description

rn_TaskArray Array of CLI processes
rn_ConsoleSegment SegList for the CLI

struct DateStamp rn_Time Current time

388 THE TECHNICAL REFERENCE MANUAL

LONG rn_RestartSeg SegList for the disk
validator

process
BPTR rn Info Pointer to the Info -

structure

These fields have been appended to the RootNode structure in V2.0 and later
versions of AmigaDOS.

BPTR rn_FileHandlerSegment Segment for a file
handler

struct MinList rn_CliList

struct MsgPort *rn_BootProc

BPTR rn_Shel I Segment

LONG

New list of all CLI
processes the first
cpl_Array is also
rn_TaskArray
Private pointer to
msgport of boot
filesystem
SegList for Shell
(for NewShell)
DOS Flags

The rn_TaskArray is an array with its size stored in rn_TaskArray [01. The
process ID (in other words the MsgPort associated with the process) for each
CLI is stored in the array. The process ID for CLI n is stored in rn_TaskArray
[n1. An empty slot is filled with zero. Under AmigaOOS 2.0, TaskArray is dupli
cated and extended with the rn_ CliList structure. The commands RUN and
NEWCLI scan the rn_TaskArray table for the next free slot and use this for the
CLI created. You should not access the TaskArray table directly from your
code. Instead use the AmigaOOS functions provided for this purpose.

The rn_ConsoleSegment is the SegList for the code of the CLI. RUN and
NEWCLI use this value to create a new instance of a CLI.

The RootNode stores the current date and time; normally you should use the
AmigaOOS function DateStampO to return a consistent set of values. The val
ues Days, Mins, and Ticks specify the date and time. The value of Days is the
number of days since January 1st, 1978. The value of Mins is the number of
minutes since midnight. A tick is one-fiftieth of a second, but the time is only
updated anytime DateStamp is called.

The RestartSeg is the SegList for the code of the disk valida tor, which is a pro
cess that AmigaDOS creates whenever you insert a new disk into a drive. In
V2.0 and later versions of AmigaOOS this field is null since the disk validator
process is no longer separate.

AMIGADOS DATA STRUCTURES 389

The rest of the fields in the RootNode structure are brand new and appear
only in V2.0 and later versions of AmigaDOS.

The field named rn_FileHandlerSegment is a seglist of the ROM filesystem.
The rn_ CliList field is a list of tables of CLI pointers. This supplants

rn_TaskArray method used in previous versions of AmigaDOS and eliminates
the limit on the number of CLls that can run at the same time. Note that the first
table in the rn _ CliList is also stored in TaskArray for the sake of backward com
patibility. This list should be accessed using FindCliO and MaxCliO only. Do
not directly access it from your code.

The rn_ BootProc field is a private pointer to the filesystem process that the
system was booted off of. This is not necessarily the same as the ROM file
system.

The rn_ShellSegment field is the SegList for the boot Shell and rn_Flags con
tains new flags used by AmigaDOS for future expansion. Currently it contains
only one flag which determines whether * or #? is used as the AmigaDOS wild
card.

Info Substructure

To access the Info substructure with the following format, you use the rn_Info
pointer.

Value Name Description

BPTR di _McName Pointer to the resident list
BPTR di Devlnfo Device list
BPTR di - Devices Currently zero
BPTR di - Handlers Currently zero
APTR di _NetHand Currently zero

Most of the fields in the Info substructure are empty at this time, and
Commodore-Amiga will use them for expanding the system.

The DevInfo structure is a linked list. You use it to identify all the device
names that AmigaDOS knows about; this includes ASSIGN names and disk
volume names. To access the information in the DevInfo structure under V1.3
and earlier versions of AmigaDOS, you must first call ForbidO. This means no
WaitO calls or message passing are allowed while you access the structure (and
you must also call PermitO when you are finished).

In V2.0 and later versions of AmigaDOS you must call LockDosListO before
accessing the DevInfo structure. This allows you to call WaitO and do message
passing in the code that accesses DevInfo. You must call UnLockDosListO when
you are finished. For compatibility with Vl.3 programs, LockDosListO calls

390 THE TECHNICAL REFERENCE MANUAL
---- - ------ -------- -------

ForbidO and UnLockDosListO calls PermitO. However, this will be removed in
a future release of AmigaDOS.

There are three possible formats for the linked list entries in DevInfo depend
ing on whether the entry refers to a disk volume, an assign, or a device or direc
tory. For an entry describing a device or directory (via ASSIGN) the entry is as
follows:

Value Name Description

BPTR dvi Next Pointer to next list entry or
zero

LONG dvi _Type List entry type (device or dir)
APTR dvi - Task Handler process or zero
BPTR dvi - Lock Filesystem lock or zero
BSTR dvi Handler Filename of handler or zero
LONG dvi StackSize Stack size for handler process
LONG dvi_Priority Priority for handler process
LONG dvi _Startup Startup value to be passed to

handler process
BPTR dvi_SegList SegList for handler process or

zero
BPTR dvi GlobVec Global vector for handler process

or zero
BSTR dvi Name Name of device or ASSIGNed name -

The dvi_Next field links all the list entries together and the name of the logi
cal device is held in the dvi_Name field. Although the dvi_Name field is a
BSTR, note that it must end with a zero byte and this extra byte should not be
included in the length count.

The dvi_Type field is 0 (dt_device) or 1 (dt_dir). You can make a directory
entry with the ASSIGN command. This command allocates a name to a directo
ry that you can then use as a device name. If the list entry refers to a directory,
then the Task field refers to the file system process handling that disk, and the
dvi_Lock field contains a pointer to a lock on that directory.

If the list entry refers to a device, then the device mayor may not be resident.
If it is resident, the dvi_Task identifies the handler process, and the dvi_Lock is
normally zero. If the device is not resident, then dvi_ Task is zero and
AmigaOOS uses the rest of the list structure.

If the dvi_SegList is zero, then the code for the device is not in memory. The
Handler field is a string specifying the file containing the code (for example,
SYS:L/ram-handler). A call to LoadSegO loads the code from the file and inserts
the result into the SegList field.

AMIGAOOS OAT A STRUCTURES 391
----- ----------

AmigaOOS now creates a new handler process with the dvi_SegList,
dvi_StackSize, and dvi_Priority values. The new process is a BCPL process and
requires a Global Vector; this is either the value you specified in dvi_GlobVec
or a new private global vector if dvi_GlobVec is zero. If dvi_GlobVec is -1 then
the process is not a BCPL process but is one created by CreateProcO.

The new process is passed a message containing the name originally speci
fied, the value stored in Startup and the base of the list entry. The new handler
process may then decide to patch into the Task slot the process 10 or not as
required. If the dvi_Task slot is patched, then subsequent references to the
device name use the same handler task; this is what the RAM: device does. If
the dvi_Task slot is not patched, then further references to the device result in
new process invocations; this is what the CON: device does.

If the dvi_Type field within the list entry is equal to 2 (dt_yolume), then the
format of the list structure is slightly different.

Value Name Description

BPTR dvi _Next Pointer to next list
entry or zero

LONG dvi _Type List entry type (vol-
ume)

APTR dvi - Task Handler process or zero
BPTR dvi - Lock File system lock
struct DateStamp dol_VolumeDate Volume creation date
BPTR dol LockList List of active locks

for this volume
LONG dol_DiskType Type of disk
LONG Spare Not used
BSTR dvi _Name Volume name

In this case, the dvi_Name field is the name of the volume, and the Task field
refers to the handler process if the volume is currently inserted; or to zero if the
volume is not inserted. To distinguish disks with the same name, AmigaOOS
timestamps the volume on creation and then saves the timestamp in the list
structure. AmigaOOS can therefore compare the timestamps of different vol
umes whenever necessary.

If a volume is not currently inserted, then AmigaOOS saves the list of cur
rently active locks in the dol_LockList field. Note that doCLockList is private
and should never be accessed directly. Not all filesystems support the
doCLockList field. AmigaOOS uses the dol_OiskType field to identify the type
of disk. The disk type is up to four characters packed into a longword and
padded on the right with nulls.

392 THE TECHNICAL REFERENCE MANUAL

If the dvi_Type field within the list entry is equal to 3 or 4 (dt_nonbinding or
dt_late) then the format of the list structure is as follows:

Value Name Description

BPTR dvi Next Pointer to the next -

list entry or zero

LONG dvi _Type List entry type
(late- or nonbinding
assign)

APTR dvi Task Handler process or
zero

BPTR dvi - Lock Filesystem lock

UBYTE* dol _AssignName Name for late- or
nonbinding assigns

struct AssignList * dol List For multidirectory
assigns (regular)

LONG Spare Not used

LONG Spare Not used

LONG Spare Not used

LONG Spare Not used

BSTR dvi _Name Volume name

For multidirectory assigns, the additional locks are strung off of dol_Llist. For
late and nonbinding assigns, dol_AssignName has the string for the assign
(path). Late-binding assigns turn into regular assigns once they bind. Also note
that any normal assign can have more locks strung off of the doCList.

Memory Allocation
AmigaOOS obtains all the memory it allocates by calling the AllocMemO func
tion provided by Exec. In this way, AmigaOOS obtains structures such as locks
and file handles; it usually places them back in the free pool by calling
FreeMem. Under V2.0 and later versions of AmigaOOS AllocVecO and
FreeVecO are available to do this. In either case, each memory segment allocat
ed by AmigaOOS is identified by a BPTR to the second longword in the struc
ture. The first longword always contains the length of the entire segment in
bytes. Thus the structure of allocated memory is as follows:

AMIGADOS DATA STRUCTURES 393

Value

LONG
LONG

Name

BlockSize
FirstData

Segment Lists

Description

Size of memory block
First data segment, BPTR to block
points here

To obtain a segment list, you call LoadSeg. The result is a BPTR to allocated
memory, so that the length of the memory block containing each list entry is
stored at -4 from the BPTR. This length is 8 more than the size of the segment
list entry, allowing for the link field and the size field itself.

The SegList is a list linked together by BPTRs and terminated by zero. The
remainder of each segment list entry contains the code loaded. Thus the format
is:

Value

LONG
LONG

Name

NextSeg
FirstCode

File Handles

Description

BPTR to next segment or zero
First value from binary file

File handles are created by the AmigaDOS function OpenO, and you use them
as arguments to other functions such as ReadO and WriteO. AmigaDOS returns
them as a BPTR to the following structure:

Value

struct Message *
struct Message *
struct Message *
LONG
LONG

LONG

LONG

LONG

Name

fh_Link
fh_Key
fh_Port
fh_Buf
fh_Pos

Description

Reserved for AmigaDOS
Reply port for the packet
Process ID of handler
Buffer for internal use
Character position for
internal use
End position for internal
use
Function called
buffer exhausted
Function called
buffer is full

when

when

394

LONG

LONG

LONG

THE TECHNICAL REFERENCE MANUAL

Function called when han
dle is closed
Argument depends on file
handle type
Argument depends on file
handle type

Most of the fields are only used by AmigaOOS internally; normally ReadO or
WriteO uses the file handle to indicate the handler process and any arguments
to be passed. Values should not be altered within the file handle by user pro
grams. In general, you should not read the values either (except fh_Argl which
is used for direct packet I/O).

Locks
The filing system extensively uses a data structure called a lock. This structure
serves two purposes. First, it serves as the mechanism to open files for multiple
reads or a single write. Note that obtaining a shared read lock on a directory
does not stop that directory being updated.

Second, the lock provides a unique identification for a file. Although a partic
ular file may be specified in many ways, the lock is a simple handle on that file.
The lock contains the actual disk block location of the directory or file header
and is thus a shorthand way of specifying a particular filesystem object. The
structure of a lock is as follows:

Value

BPTR

LONG

LONG

struct MsgPort *
BPTR

Name

fl Link -

fl _Key

fl Access -

fl Task
fl _Volume

Description

BPTR to next lock in
chain, else zero
Block number of directory
or file header
Shared or exclusive
access
Process ID of handler
BPTR to dl t volume DOS
list entry

Because AmigaOOS uses the £I_Link field to chain locks together, you should
not alter it. The filing system fills in £I_Key field to represent the location on
disk of the directory block or the file header block. The £I_Access serves to indi
cate whether this is a shared read lock, when it has the value -2, or an exclusive

AMIGAOOS OAT A STRUCTURES 395

write lock when it has the value -1. The fl_Task field contains a pointer to the
handler process for the device containing the file to which this lock refers.
Finally the fl_ Volume field points to the node in the Devlnfo structure that
identifies the volume to which this lock refers. Volume entries in the Devlnfo
structure remain there if a disk is inserted or if there are any locks open on that
volume.

Note that a lock can also be a zero. The special case of lock zero indicates that
the lock refers to the root of the initial filing system, and the pr_FileSystemTask
field within the process data structure gives the handler process. None of the
fields in the Lock structure should be changed by your code. The Lock struc
tures is strictly handler-private and read-only.

AmigaDOS Packets

Packet passing handles all communication performed by AmigaOOS between
processes. The functional diagram below shows how packets fit in with the
other components of the Amiga operating system.

Function Calls

~

I Packets l
FFS/OFS FFS/OFS
DHO: DFO:
Handler Handler
Process Process

Hddisk.Device I

Figure 11-1.

FFS/OFS
DF1:
Handler
Process

paretSj

CON: CON:
Window1
Handler
Process

Window2
Handler
Process

396 THE TECHNICAL REFERENCE MANUAL

A Standard Packet (defined in dos/ dosextens.h) is used to send packet com
mands to a process's MsgPort. The StandardPacket structure contains an Exec
Message structure and an AmigaDOS DOSPacket structure:

struct StandardPacket {
struct Message
struct DOSPacket
} ;

sp_Msg;
sp_Pkt;

This structure must be longword-aligned, and initialized to link the Message
and DOSPacket sections to each other:

packet->sp_Msg.mn_Node.ln_Name
packet->sp_Pkt.dp_Link

(char *)&(packet->sp_Pkt);
&(packet->sp_Msg);

Packets must also be initialized with a ReplyPort which can be created with the
amiga.lib function CreatePortO:

if(replyport = (struct MsgPort *) CreatePort(NULL,O))
{

= replyport;

The DOSPacket portion of the StandardPacket structure is used to pass the
packet type and arguments, and to receive the results of the packet. The argu
ments types, number of arguments, and results vary for different packet types
and are documented with each packet description. A DOSPacket must be long
word-aligned and has the following general structure.

Value

struct Message *

struct MsgPort *

LONG
LONG

Name

dp_Link

dp_Port

dp_Type
dp_Resl

Description

Pointer back to Exec mes
sage structure
Reply port for the packet.
Must be filled in each
send
Packet type
For filesystem calls this
is the result that would
have been returned by the
function, e.g., Write (HW H)
returns actual length writ
ten.

AMIGADOS DATA STRUCTURES 397

LONG dp_Res2 For filesystem calls this
lS what would have been
returned by IoErr ()

LONG dp_Argl Argument (depends on packet
type)

LONG dp_Arg2 Argument 2 (depends on
packet type) ...

LONG dp_Arg7 Argument 7 (depends on
packet type)

The format of a specific packet depends on its type; but in all cases it contains a
back-pointer to the Message structure, the MsgPort for the reply, and two result
fields. When AmigaOOS sends a packet, the reply port is overwritten with the
process 10 of the sender so that the packet can be returned. Thus, when sending
a packet to an AmigaOOS handler process, you must fill in the reply MsgPort
each time; otherwise when the packet returns, AmigaOOS has overwritten the
original port. AmigaOOS maintains all other fields except the result fields.

All AmigaOOS packets are sent to the message port created as part of a pro
cess; this message port is initialized so that arriving messages cause signal bit 8
to be set. An AmigaOOS process that is waiting for a message waits for signal 8
to be set. When the process wakes up because this event has occurred, GetMsgO
takes the message from the message port and extracts the packet address. If the
process is an AmigaOOS handler process, then the packet contains a value in
the PktType field that indicates an action to be performed, such as reading
some data. The argument fields contain specific information such as the size of
the buffer where the characters go.

When the handler process has completed the work required to satisfy this
request, the packet returns to the sender, using the same message structure.
Both the message structure and the packet structure must be allocated by the
client and not deallocated before the reply has been received. Normally
AmigaOOS is called by the client to send the packet, such as when a call to
ReadO is made. However, there are cases where asynchronous I/O is required,
and in this case the client may send packets to the handler process as required.
The packet and message structures must be allocated, and the process 10 field
filled in with the message port where this packet must return. A call to
PutMsgO then sends the message to the destination. Note that many packets
may be sent out, returning to either the same or different message ports.

Packet Types
Packets sent to a filesystem or handler can be divided into several basic cate
gories:

398 THE TECHNICAL REFERENCE MANUAL

· Basic Input/Output. These actions deal with transferring data to and from
objects controlled by the handler.

· File/Directory Manipulation/Information. These actions are used to gain
access to and manipulate the high-level structures of the filesystem.

· Volume Manipulation/Information. These actions allow access to the specif
ic volume controlled by the filesystem.

· Handler Maintenance and Control. These actions allow control over the
handler / filesystem itself, independent of the actual volume or structure
underneath.

· Handler Internal. These actions are never sent to the handler directly.
Instead they are generally responses to I/O requests made by the handler.
The handler makes these responses look like packets to simplify processing.

· Obsolete Packets. These packets are no longer valid for use by handlers and
filesystems.

· Console Only Packets. These packets are specific to console handlers.
Filesystems can ignore these packets.

Each packet type documented in this section is listed with its action name, its
corresponding number, any AmigaDOS routines that use this packet, and the
list of parameters that the packets uses. The C variable types for the packet
parameters are one of the following types:

BPTR This is BCPL pointer (the address of the given object shifted right
by 2). Note: This means that the object must be aligned on a long
word boundary.

LOCK This is a BPTR to a FileLock structure returned by a previous
ACTION_LOCA TE_ OBJECT. A lock of a is legal, indicating the
root of the volume for the handler.

BSTR This is a BPTR to a string where the first byte indicates the number
of characters in the string. A byte of this length is unsigned but
because the information is stored in a byte, the strings are limited to
255 characters in length.

BOOL A 32-bit Boolean value either containing DOSTRUE (-1) or DOS
FALSE (0). Note: Equality comparisons with DOSTRUE should be
avoided.

CODE A 32-bit error code as defined in the dos/ dos.h include file.
Handlers should not return error codes besides those defined in
dos/dos.h.

ARG1 The FileHandle->fh_Arg1 field.
LONG A 32-bit integer value.

AMIGADOS DATA STRUCTURES 399
- -- -------------- ---- ----

Basic Input/Output

The Basic Input/Output actions are supported by both handlers and filesys
terns. In this way, the application can get a stream level access to both devices
and files. One difference that arises between the two is that a handler does not
necessarily support an ACTION_SEEK while it is generally expected for a
file system to do so.

These actions work based on a FileHandle which is filled in by one of the
three forms of opens:

ACTION_FIND INPUT
ACTION_FINDOUTPUT
ACT I ON_F INDUPDATE

1005
1006
1004

ARG1: BPTR FileHandle

Open(... , MODE_OLDFILE)
Open(... , MODE_NEWFILE)
Open(... , MODE_READWRITE)

to fill in
ARG2: LOCK Lock on directory that ARG3 is relative

to
ARG3: BSTR Name of file to be opened (relative to

ARG1)

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RESl is DOSFALSE

All three actions use the lock (ARG2) as a base directory location from which to
open the file. If this lock is NULL, then the filename (ARG3) is relative to the
root of the current volume. Because of this, filenames are not limited to a single
filename but instead can include a volume name (followed by a colon) and mul
tiple slashes allowing the file system to fully resolve the name. This eliminates
the need for AmigaDOS or the application to parse names before sending them
to the filesystem. Note that the lock in ARG2 must be associated with the
filesystem in question. It is illegal to use a lock from another filesystem.

The calling program owns the file handle (ARG1). The program must initial
ize the filehandle before trying to open anything (in the case of a call to OpenO,
AmigaDOS allocates the file handle automatically and then frees it in CloseO).
All fields must be zero except the fh_Pos and fh_End fields which should be set
to -1. On a successful open, the handler is responsible for filling in the fh_Type
field with a pointer to the MsgPort of the handler process. Lastly, the handler
must initialize fh_Argl with something that allows the handler to uniquely
locate the object being opened (normally a file). This value is implementation
specific. This field is passed to the READ/WRITE/ SEEK/END/TRUNCATE
operations and not the file handle itself.

FINDINPUT and FlNDUPDATE are similar in that they only succeed if the
file already exists. FlNDINPUT opens with a shared lock while FINDUPDATE

400 THE TECHNICAL REFERENCE MANUAL
- --------------

opens it with a shared lock but if the file doesn't exist, FINDUPDATE will cre
ate the file. FINDOUTPUT always opens the file (deleting any existing one)
with an exclusive lock.

ACTION_READ 'R' Read(...)
ARG1: ARGl fh_Argl field of the opened FileHandle
ARG2: APTR Buffer to put data into
ARG3: LONG Number of bytes to read

RES1: LONG Number of bytes read. 0 indicates EOF. -1
indicates ERROR

RES2: CODE Failure code if RESl is -1

This action extracts data from the file (or input channel) at the current position.
If fewer bytes remain in the file than requested, only those bytes remaining will
be returned with the number of bytes stored in RESl. The handler indicates an
error by placing a -1 in RES1 and the error code in RES2. If the read fails, the
current file position remains unchanged. Note that a handler may return a
smaller number of bytes than requested, even if not at the end of a file. This
happens with interactive-type file handles which may return one line at a time
as the user hits return, for example, the console handler, CON:.

ACTION_WRITE 'w' Wri te (...)
ARG1: ARGl fh_Argl field of the opened file handle
ARG2: APTR Buffer to write to the file handle
ARG3 : LONG Number of bytes to write

RESl: LONG Number of bytes written.
RES2: CODE Failure code if RESl not the same as ARG3

This action copies data into the file (or output channel) at the current position.
The file is automatically extended if the write passes the end of the file. The
handler indicates failure by returning a byte count in RES1 that differs from the
number of bytes requested in ARG3. In the case of a failure, the handler does
not update the current file position (although the file may have been extended
and some data overwritten) so that an application can safely retry the opera
tion.

ACTION_SEEK
ARG1: ARGl
ARG2: LONG

1008 Seek(...)
fh_Argl field of the opened FileHandle
New position

ARG3:

RES1:
RES2:

AMIGADOS DATA STRUCTURES

LONG Mode: OFFSET_BEGINNING,OFFSET_END, or
OFFSET_CURRENT

LONG Old position. -1 indicates an error
CODE Failure code if RES1 = -1

401

This packet sets the current file position. The new position (ARG2) is relative to
either the beginning of the file (OFFSET_BEGINNING), the end of the file (OFF
SET_END), or the current file position (OFFSET_CURRENT), depending on the
mode set in ARG3. Note that ARG2 can be negative. The handler returns the
previous file position in RES1. Any attempt to seek past the end of the file caus
es an error and leaves the current file position in an unknown location.

ACTION_END 1007 Close(...)
ARG1: ARG1 fh_Arg1 field of the opened FileHandle

RES1: LONG DOSTRUE

This packet closes an open file handle. This function generally returns a
DOSTRUE as there is little the application can do to recover from a file closing
failure. If an error is returned under 2.0, DOS does not deallocate the file han
dle. Under 1.3, it does not check the result.

ACTION_SET_FILE_SIZE 1022 SetFileSize(file,off,mode)
ARG1:
ARG2:
ARG3:

RES1:
RES2:

BPTR
LONG
LONG

FileHandle of opened file to modify
New end of file location based on mode
Mode. One of OFFSET_CURRENT, OFFSET_BEGIN,

or OFFSET_END

BOOL Success/Failure (DOSTRUE/DOSFALSE)
CODE Failure code if RES1 is DOSFALSE

This function is used to change the physical size of an opened file. ARG2, the
new end-of-file position, is relative to either the current file position
(OFFSET_CURRENT), the beginning of the file (OFFSET_BEGIN), or the end of
the file (OFFSET_END), depending on the mode set in ARG3. The current file
position will not change unless the current file position is past the new end-of
file position. In this case, the new file position will move to the new end of the
file. If there are other open file handles on this file, ACTION_SET_FILE_SIZE
sets the end-of-file for these alternate file handles to either their respective cur
rent file position or to the new end-of-file position of the file handle in ARGl,
whichever makes the file appear longest.

402 THE TECHNICAL REFERENCE MANUAL

2.0 only
ACTION_LOCK_RECORD 2008 LockRecord(fh,pos,len,mod,tim)
ARG1:
ARG2:

ARG3:
ARG4:

ARG5:

RES1:
RES2:

BPTR FileHandle to lock record in
LONG Start position (in bytes) of record in the

file
LONG Length (in bytes) of record to be locked
LONG Mode

o = Exclusive
1 Immediate Exclusive (timeout is

ignored)
2 = Shared
3 = Immediate Shared (timeout is ignored)

LONG Timeout period in AmigaDOS ticks (0 lS

legal)

BOOL Success/Failure (DOSTRUE/DOSFALSE)
CODE Failure code if RESl is DOSFALSE

This function locks an area of a file in either a shareable (indicating read-only)
or exclusive (indicating read/write) mode. Several shareable record locks from
different file handles can exist simultaneously on a particular file area but only
one file handle can have exclusive record locks on a particular area at a time.
The" exclusivity" of an exclusive file lock only applies to record locks from
other file handles, not to record locks within the file handle. One file handle can
have any number of overlapping exclusive record locks. In the event of overlap
ping lock ranges, the entire range must be lockable before the request can suc
ceed. The timeout period (ARCS) is the number of AmigaDOS ticks 0/50 sec
ond) to wait for success before failing the operation.

2.0 only
ACTION FREE_RECORD 2009 FreeRecord(file,pos,len)
ARG1: BPTR FileHandle to unlock record in
ARG2: LONG Start position (in bytes) of record in the

ARG3:

RES1:
RES2:

file
LONG Length of record (in bytes) to be unlocked

BOOL Success/Failure (DOSTRUE/DOSFALSE)
CODE Failure code if RESl is DOSFALSE

This function unlocks any previous record lock. If the given range does not rep
resent one that is currently locked in the file, ACTION_FREE_RECORD returns
an error. In the event of multiple locks on a given area, only one lock is freed.

AMIGADOS DATA STRUCTURES 403

Directory/File Manipulation/Information

The directory/file actions permits an application to make queries about and
modifications to handler objects. These packets perform functions such as creat
ing subdirectories, resolving links, and filling in FileInfoBlock structures for
specific files.

ACTION LOCATE_OBJECT 8 Lock(...)

ARG1:

ARG2:

ARG3 :

RES1:

RES2:

LOCK Lock on directory to which ARG2 is relative

BSTR Name (possibly with a path) of object to

lock

LONG Mode: ACCESS_READ/SHARED_LOCK,

ACCESS_WRITE/EXCLUSIVE_LOCK

LOCK Lock on requested object or 0 to indicate

failure

CODE Failure code if RESl = 0

The AmigaDOS function LockO uses this action to create its locks. Given a
name for the object, which may include a path, (ARG2) and a lock on a directo
ry from which to look for the name (and path), ACTION_LOCATE_OBJECT
will locate the object within the filesystem and create a File Lock structure asso
ciated with the object. If the directory lock in ARGl is NULL, the name is rela
tive to the root of the file handler's volume (a.k.a. ":"). The memory for the
FileLock structure returned in RESl is maintained by the handler and freed by
an ACTION_FREE_LOCK. Although it's not a requirement, if a handler expects
to support the pre-1.3 FORMAT command, it must accept any illegal mode as
ACCESS_READ.

A handler can create an exclusive lock only if there are no other outstanding
locks on the given object. Once created, an exclusive lock prevents any other
locks from being created for that object. In general, a handler uses the FileLock
>£1_Key field to uniquely identify an object. Note that some applications rely on
this (although it is not required to be implemented by the handler).

The £1_ Volume field of the returned FileLock structure should point to the
DOS device list's volume entry for the volume on which the lock exists. In addi
tion, there are several diagnostic programs that expect all locks for a volume to
be chained together off the dl_LockList field in the volume entry. Note that
relying on this chaining is not safe, and can cause serious problems including a
system crash. No application should use it.

404

ARGI :

RESl:
RES2:

THE TECHNICAL REFERENCE MANUAL

DupLock(...)
LOCK Lock to duplicate

LOCK Duplicated Lock or 0 to indicate failure
CODE Failure code if RESI = 0

This action's name is misleading as it does not manipulate directories. Instead,
it creates a copy of a shared lock. The copy is subsequently freed with an
ACTION_FREE_LOCK. Note that it is valid to pass a NULL lock. Currently, the
DupLockO call always returns 0 if passed a 0, although a handler is not
required to return a O.

ACTION_FREE LOCK 15 UnLock(...)
ARG1: LOCK Lock to free

RES1: BOOL TRUE

This action frees the lock passed to it. The AmigaDOS function UnlockO uses
this packet. If passed a NULL lock, the handler should ignore the packet and
return success.

ACTION_EXAMINE_OBJECT 23 Examine(...)
ARG1: LOCK Lock of object to examine
ARG2: BPTR FilelnfoBlock to fill in

RES1:
RES2:

BOOL Success/failure (DOSTRUE/DOSFALSE)
CODE Failure code if RESI = DOSFALSE

This action fills in the FileInfoBlock with information about the locked object.
The ExamineO function uses this packet. This packet is actually used for two
different types of operations. It is called to obtain information about a given
object while in other cases, it is called to prepare for a sequence of
EXAMINE_NEXT operations to traverse a directory.

This seemingly simple operation is not without its quirks. One in particular is
the FileInfoBlock->fib_Comment field. This field used to be 116 bytes long, but
was changed to 80 bytes in release 1.2. The extra 36 bytes lie in the fib_Reserved
field. Another quirk of this packet is that both the fib_EntryType and the
fib_DirEntryType fields must be set to the same value, as some programs look
at one field while other programs look at the other.

Filesystems should use the same values for fib_DirEntryType as the ROM
filesystem and RAM-handler do. These are as follows:

AMIGADOS DATA STRUCTURES 405

5T_ROOT 1
5T_U5ERDIR 2
5T _50FfLINK 3 Note: This shows up as a directory unless

checked for explicitly
5T_LINKDIR 4
5T_FILE -3
5T_LINKFILE -4

Also note that for directories, handlers must use numbers greater than 0,
since some programs test to see if fib_DirEntryType is greater than 0, ignoring
the case where fib_DirEntryType equals O. Handlers should avoid using 0
because it is not interpreted consistently.

ACT I ON_EXAMI NE_NEXT 24 ExNext(...)
ARG1: LOCK Lock on directory being examined
ARG2: BPTR BPTR FileInfoBlock

RES1:
RES2:

BOOL
CODE

Success/failure (DOSTRUE/DOSFALSE)
Failure code if RESl = DOSFALSE

The ExNextO function uses this packet to obtain information on all the objects
in a directory. ACTION_EXAMINE fills in a FileInfoBlock structure describing
the first file or directory stored in the directory referred to in the lock in ARCl.
ACTION_EXAMINE_NEXT is used to find out about the rest of the files and
directories stored in the ARCl directory. ARC2 contains a pointer to a valid
FileInfoBlock field that was filled in by either an ACTION_EXAMINE or a pre
vious ACTION_EXAMINE_NEXT call. It uses this structure to find the next
entry in the directory. This packet writes over the old FileInfoBlock with infor
mation on the next file or directory in the ARC2 directory. ACTION_EXAM
INE_NEXT returns a failure code of ERROR_NO_MORE_ENTRIE5 when there
are no more files or directories left to be examined. Unfortunately, like
ACTION_EXAMINE, this packet has its own peculiarities. Among the quirks
that ACTION_EXAMINE_NEXT must account for are:

. The situation where an application calls ACTION_ EXAMINE_NEXT one or
more times and then stops invoking it before encountering the end of the
directory .

. The situation where a FileInfoBlock passed to ACTION_ EXAMINE_NEXT
is not the same as the one passed to ACTION_EXAMINE or even the previ
ous EXAMINE_NEXT operation. Instead, it is a copy of the FileInfoBlock
with only the fib_DiskKey and the first 30 bytes of the fib_FileName fields

406 THE TECHNICAL REFERENCE MANUAL

copied over. This is now considered to be illegal and will not work in the
future. Any new code should not be written in this manner .

. Because a handler can receive other packet types between ACTION_EXAM
INE_NEXT operations, the ACTION_EXAMINE_NEXT function must han
dle any special cases that may result .

. The LOCK passed to ACTION_EXAMINE_NEXT is not always the same
lock used in previous operations. It is, however, a lock on the same object.

Because of these problems, ACTION_EXAMINE_NEXT is probably the trickiest
action to write in any handler. Failure to handle any of the above cases can be
quite disastrous.

ACTION_CREATE_DIR 22 CreateDir(...)
ARG1: LOCK Lock to which ARG2 is relative
ARG2: BSTR Name of new directory (relative to ARG1)

RES1: LOCK Lock on new directory
RES2: CODE Failure code if RES1 = DOSFALSE

ACTION_DELETE OBJECT 16 DeleteFile(...)
ARG1: LOCK Lock to which ARG2 is relative
ARG2: BSTR Name of object to delete (relative to

RES1:
RES2:

ARG1:
ARG2:

ARG3 :
ARG4:

RES1:
RES2:

BOOL
CODE

LOCK
BSTR

LOCK
BSTR

BOOL
CODE

ARG1)

Success/failure (DOSTRUE/DOSFALS~)

Failure code if RESl = DOSFALSE

Rename (...)
Lock to which ARG2 is relative
Name of object to rename (relative to
ARG1)
Lock associated with target directory
Requested new name for the object

Success/failure (DOSTRUE/DOSFALSE)
Failure code if RES1 = DOSFALSE

These three actions perform most of the work behind the AmigaDOS com
mands MAKEDIR, DELETE, and RENAME (for single files). These packets take
as their parameters a lock describing where the file is and a name relative to
that lock. It is the responsibility of the filesystem to ensure that the operation is
not going to cause adverse effects. In particular, the RENAME_OBJECT action

AMIGADOS DATA STRUCTURES 407

allows moving files across directory bounds and as such must ensure that it
doesn't create hidden directory loops by renaming a directory into a child of
itself.

For Directory objects, the DELETE_OBJECT action must ensure that the direc
tory is empty before allowing the operation.

ARG1:

RES1:
RES2:

LOCK

LOCK
CODE

29 Parent (...)
Lock on object to get the parent of

Parent Lock
Failure code if RES1 = 0

This action receives a lock on an object and creates a shared lock on the object's
parent. If the original object has no parent, then a lock of 0 is returned. Note
that this operation is typically used in the process of constructing the absolute
path name of a given object.

ACTION_SET_PROTECT 21 SetProtection(...)
ARG1: Unused
ARG2: LOCK Lock to which ARG3 is relative
ARG3: BSTR Name of object (relative to ARG2)
ARG4: LONG Mask of new protection bits

RES1: BOOL Success/failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 = DOSFALSE

This action allows an application to modify the protection bits of an object. The
4 lowest-order bits [read, write, execute, delete (RWED)] are a bit peculiar. If
their respective bit is set, that operation is not allowed (that is, if a file's delete
bit is set the file is not deleteable). By default, files are created with the RWED
bits set and all others cleared. Additionally, any action that modifies a file is
required to clear the A (archive) bit. See the dos/ dos.h include file for the defini
tions of the bit fields.

ACTION_SET_COMMENT 28 SetComment(...)
ARG1: Unused
ARG2: LOCK
ARG3: BSTR
ARG4:

RES1:
RES2:

BSTR

BOOL
CODE

Lock to which ARG3 is relative
Name of object (relative to ARG2)
New Comment string

Success/failure (DOSTRUE/DOSFALSE)
Failure code if RES1 = DOSFALSE

408 THE TECHNICAL REFERENCE MANUAL

This action allows an application to set the comment string of an object. If the
object does not exist then DOSFALSE is returned in RES1 with the failure code
in RES2. The comment string is limited to 79 characters.

ACTION_SET_DATE 34 SetFileDate(...) In 2.0
ARG1: LOCK Object
ARG2:

RES1:
RES2:

BPTR

BOOL
CODE

DateStamp

Success/failure (DOSTRUE/DOSFALSE)
Failure code if RES1 = DOSFALSE

This action allows an application to set an object's creation date.

2.0 only
ACTION_FH_FROM LOCK 1026 OpenFromLock(lock)
ARG1: BPTR BPTR to filehandle
ARG2: BPTR Lock on file to open.

RES1:
RES2:

BOOL
CODE

Success/failure (DOSTRUE/DOSFALSE).
Failure code if RES1 = NULL

This action opens a file from a given lock. If this action is successful, the filesys
tern essentially steals the lock so a program should not use it anymore. If
ACTION_FH_FROM_LOCK fails, the lock is still usable by an application.

2.0 only
ACTION_SAME_LOCK
ARG1: BPTR
ARG2: BPTR

RES1: LONG

RES2: CODE

40 SameLock(lock1,lock2)
Lock 1 to compare
Lock 2 to compare

Result of comparison, one of LOCK SAME
(0) if locks are for the same object
LOCK SAME HANDLER (1) if locks are on
different objects of the same handler
LOCK_DIFFERENT (-1) otherwise
Failure code if RES1 is LOCK_DIFFERENT

This action compares the targets of two locks. If they point to the same object,
ACTION_SAME_LOCK should return LOCK_SAME.

2.0 only
ACTION_MAKE LINK 1021 MakeLink(name,targ,mode)

ARG1:

ARG2:

ARG3:

ARG4:

RES1:
RES2:

BPTR

BSTR

BPTR

LONG

BOOL
CODE

AMIGAOOS OAT A STRUCTURES 409

Lock on directory ARG2 is relative to

Name of the link to be created (relative
to ARG1)
Lock on target obj ect or name (for soft
links)
Mode of link, either LINK SOFT or
LINK_HARD

Success/Failure (DOSTRUE/DOSFALSE)
Failure code if RESl is DOSFALSE

This packet causes the filesystem to create a link to an already existing file or
directory. There are two kinds of links, hard links and soft links. The basic dif
ference between them is that a filesystem resolves a hard link itself, while the
filesystem passes a string back to DOS telling it where to find a soft-linked file
or directory. To the packet level programmer, there is essentially no difference
between referencing a file by its original name or by its hard link name. In the
case of a hard link, ARG3 is a lock on the file or directory that the link is
"linked" to, while in a soft link, ARG3 is a pointer to a C-style string.

In an oversimplified model of the ROM filesystem, when it is asked to locate
a file, the system scans a disk looking for a file header with a specific (file)
name. That file header points to the actual file data somewhere on the disk.
With hard links, more than one file header can point to the same file data, so
data can be referenced by more than one name. When the user tries to delete a
hard link to a file, the system first checks to see if there are any other hard links
to the file. If there are, only the hard link is deleted, the actual file data the hard
link used to reference remains, so the existing hard links can still use it. In the
case where the original link (not a hard or soft link) to a file is deleted, the
filesystem will make one of its hard links the new "real" link to the file. Hard
links can exist on directories as well. Because hard links "link" directly to the
underlying media, hard links in one filesystem cannot reference objects in
another filesystem.

Soft links are resolved through DOS calls. When the filesystem scans a disk
for a file or directory name and finds that the name is a soft link, it returns an
error code (ERROR_IS_SOFT_LINK). If this happens, the application must ask
the filesystem to tell it what the link refers to by calling ACTION_READ _LINK.
Soft links are stored on the media, but instead of pointing directly to data on the
disk, a soft link contains a path to its object. This path can be relative to the lock
in ARG1, relative to the volume (where the string will be prepended by a colon
":"), or an absolute path. An absolute path contains the name of another vol
ume, so a soft link can reference files and directories on other disks.

410 THE TECHNICAL REFERENCE MANUAL

2.0 only
ACT ION_READ_L INK 1024 ReadLink (port, lck, nam, buf, len)

Lock on directory that ARG2 is relative
to

ARG1 : BPTR

ARG2: CPTR

ARG3: }\PTR
ARG4: LONG

RES1: LONG

RES2: CODE

Path and name of link (relative to ARG1) .
Note: This is a C string not a BSTR
Buffer for new path string
Size of buffer in bytes

Actual length of returned string, -2 if
there isn't enough space in buffer, or
-1 for other errors
Failure code

This action reads a link and returns a path name to the link's object. The link's
name (plus any necessary path) is passed as a CPTR (ARG2) which points to a
C-style string, rather than a BSTR. This is an exceptional case; only the
ACTION_READ_LINK packet uses a CPTR instead of a BSTR.
ACTION_READ _LINK returns the path name in ARG3. The length of the target
string is returned in RES1 (or a -1 indicating an error).

ACTION_CHANGE_MODE 1028 ChangeMode(type,obj,mode)
ARG1: LONG

ARG2: BPTR
ARG3: LONG

RES1: BOOL
RES2: CODE

Type of object to change-either CHANGE FH
or CHANGE_LOCK
object to be changed
New mode for object-see ACTION_FINDINPUT,
and ACTION_LOCATE OBJECT

Success/Failure (DOSTRUE/DOSFALSE)
Failure code if RES1 is DOSFALSE

This action requests that the handler change the mode of the given file handle
or lock to the mode in ARG3. This request should fail if the handler can't
change the mode as requested (for example, an exclusive request for an object
that has multiple users).

2.0 only
ACTION COPY_DIR FH 1030 DupLockFromFH(fh)
ARG1:

RES1:
RES2:

BPTR

BPTR
CODE

filehandle

Lock associated with file handle or NULL
Failure code if RES1 = NULL

AMIGADOS DATA STRUCTURES 411

This action requests that the handler return a lock associated with the currently
opened file handle. The request may fail for any restriction imposed by the
file system (for example, when the file handle is not opened in a shared mode).
The file handle is still usable after this call, unlike the lock in
ACTION_FH_FROM_LOCK.

2.0 only

ACTION_PARENT_FH 1031 ParentOfFH(fh)
ARG1: BPTR File handle is fh_Arg1.

RES1:
RES2:

BPTR
CODE

Lock on parent of a file handle
Failure code if RES1 = NULL

This action obtains a lock on the parent directory (or root of the volume if at the
top level) for a currently opened file handle. The lock is returned as a shared
lock and must be freed. Note that unlike ACTION_COPY_DIR_FH, the mode of
the file handle is unimportant. For an open file, ACTION]ARENT_FH should
return a lock under all circumstances.

2.0 only

ACTION_EXAMlNE_ALL 1033 ExA11 (lock,buff,size,type,ctl)
ARG1: BPTR Lock on directory to examine
ARG2: APTR Buffer to store results
ARG3: LONG Length (in bytes) of buffer (ARG2)
ARG4: LONG

ARG5: BPTR

RES1: LONG

RES2: CODE

Type of request-one of the following:
ED_NAME Return only file names
ED_TYPE Return above plus file type
ED_SIZE Return above plus file size
ED PROTECTION Return above plus file

protection
ED_DATE Return above plus 3 longwords of

date
ED_COMMENT Return above plus comment or

NULL
Control structure to store state
information. The control structure must
be allocated with AllocDOSObject()!

Continuation flag-DOSFALSE indicates
termination
Failure code if RES1 is DOSFALSE

412 THE TECHNICAL REFERENCE MANUAL

This action allows an application to obtain information on multiple directory
entries. It is particularly useful for applications that need to obtain information
on a large number of files and directories.

This action fills the buffer (ARG2) with partial or whole ExAllData structures.
The size of the ExAllData structure depends on the type of request. If the
request type field (ARG4) is set to ED_NAME, only the ed_Name field is filled
in. Instead of copying the unused fields of the ExAllData structure into the
buffer, ACTION_EXAMINE_ALL truncates the unused fields. This effect is
cumulative, so requests to fill in other fields in the ExAllData structure cause all
fields that appear in the structure before the requested field will be filled in as
well. Like the ED_NAME case mentioned above, any field that appears after the
requested field will be truncated (see the ExAllData structure below).

For example, if the request field is set to ED_COMMENT, ACTION_EXAM
INE_ALL fills in all the fields of the ExAllData structure, because the
ed_Comment field is last. This is the only case where the packet returns entire
ExAllData structures.

struct ExAllData

} ;

struct ExAllData *ed_Next;

UBYTE *ed_Name;

LONG ed_Type;

ULONG ed_Size;

ULONG ed_Prot;
ULONG ed_Days;
ULONG ed_Mins;

ULONG ed_Ticks;

UBYTE *ed_Comment;

/* strings will be after last used field */

Each ExAllData structure entry has an ead_Next field which points to the
next ExAllData structure. Using these links, a program can easily chain through
the ExAllData structures without having to worry about how large the struc
ture is. Do not examine the fields beyond those requested as they certainly will
not be initialized (and will probably overlay the next entry).

The most important part of this action is the ExAllControl structure. It must
be allocated and freed through AllocDOSObjectO/FreeDOSObjectO. This allows
the structure to grow if necessary with future revisions of the operating and
filesystems. Currently, ExAllControl contains four fields:

AMIGADOS DATA STRUCTURES 413

Entries: This field is maintained by the filesystem and indicates the actual
number of entries present in the buffer after the action is complete.
Note that a value of zero is possible here as no entries may match the
match string.

LastKey: This field must be initialized to 0 by the calling application before
using this packet for the first time. This field is maintained by the
filesystem as a state indicator of the current place in the list of
entries to be examined. The filesystem may test this field to deter
mine if this is the first or a subsequent call to this action.

MatchString: This field points to a pattern matching string to control which
directory entries are returned. If this field is NULL, then all entries
are returned. Otherwise, this string is used to pattern match the
names of all directory entries before putting them into the buffer.
The default AmigaDOS pattern match routine is used unless
MatchFunc is not NULL (see below). Note that it is not acceptable
for the application to change this field between subsequent calls to
this action for the same directory.

MatchFunc: This field contains a pointer to an alternate pattern matching
routine to validate entries. If it is NULL then the standard
AmigaDOS wildcard routines will be used. Otherwise,
MatchFunc points to a hook function that is called in the follow
ing manner:

BOOL = MatchFunc(hookptr, data,typeptr)

hookptr
data

typeptr

AO A1 A2
Pointer to the hook being called
Pointer to the (part i ally) filled in ExAll
data for the item being checked
Pointer to the longword indicating the type
of the ExAIl request (ARG4)

This function is expected to return DOSTRUE if the entry is accepted and
DOSFALSE if it is to be discarded.

2.0 only
ACTION~EXAMINE~FH 1034 ExamineFH(fh,fib)
ARG1: BPTR File handle on open file
ARG2: BPTR FileInfoBlock to fill in

RES1:
RES2:

BOOL
CODE

Success/Failure (DOSTRUE/DOSFALSE)
Failure code if RES1 is DOSFALSE

414 THE TECHNICAL REFERENCE MANUAL

This function examines a filehandle and fills in the FileInfoBlock (found in
ARG2) with information about the current state of the file. This routine is analo
gous to the ACTION_EXAMINE_OBJECT action for locks. Because it is not
always possible to provide an accurate file size (for example, when buffers have
not been flushed or two processes are writing to a file), the fib_Size field (see
dos/ dos.h) may be inaccurate.

2.0 only

ACTION ADD_NOTIFY 4097 StartNotify(NotifyRequest)
ARG1:

RES1:
RES2:

BPTR

BOOL
CODE

NotifyRequest structure

Success/Failure (DOSTRUE/DOSFALSE)
Failure code if RESl is DOSFALSE

This action asks a filesystem to notify the calling program if a particular file is
altered. A filesystem notifies a program either by sending a message or by sig
naling a task.

struct NotifyRequest
UBYTE *nr_Name;

UBYTE *nr_FullName; /* set by DOS - don't touch */
ULONG nr_UserData; /* for applications use */
ULONG nr_Flags;

union
struct

struct MsgPort *nr_Porti /* for SEND_MESSAGE */
} nr_Msg;

struct {
struct Task *nr_Task; /* for SEND_SIGNAL */
UBYTE nr_SignalNum; /* for SEND_SIGNAL */
UBYTE nr-pad[3];
nr_Signal;

nr_stuff;

ULONG nr_Reserved[4] i /* leave 0 for now */

/* inte:r:nli use l:y h3n:llers * /

} ;

AMIGADOS DATA STRUCTURES 415

UIDNG nY_MsgCOllilt; /* # of outstanding msgs * /

struct MsgPort * nr_Handler ; / * handler sent to (for
EndNotify) */

To use this packet, an application needs to allocate and initialize a
NotifyRequest structure (see above). As of this writing, NotifyRequest struc
tures are not allocated by AllocDOSObjectO, but this may change in the future.
The handler gets the watched file's name from the nr_FullName field. The cur
rent filesystem does not currently support wildcards in this field, although
there is nothing to prevent other handlers from doing so.

The string in nr_FullName must be an absolute path, including the name of
the root volume (no assigns). The absolute path is necessary because the file or
its parent directories do not have to exist when the notification is set up. This
allows notification on files in directories that do not yet exist. Notification will
not occur until the directories and file are created.

An application that uses the StartNotifyO DOS call does not fill in the
NotifyRequest's nr_FullName field, but instead fills in the nr_Name field.
StartNotifyO takes the name from the nr_Name field and uses GetDeviceProcO
and NameFromLockO to expand any assigns (such as ENV:), storing the result
in nr_FullName. Any application utilizing the packet level interface instead of
StartNotifyO must expand their own assigns. Handlers must not count on
nr_Name being correct.

The notification type depends on which bit is set in the
NotifyRequest.nr_Flags field. If the NRF _SEND _MESSAGE bit is set, an appli
cation receives notification of changes to the file through a message (see
NotifyMessage from dos/notify.h). In this case, the nr_Port field must point to
the message port that will receive the notifying message. If the nr_Flags
NRF _SEND _SIGNAL bit is set, the filesystem signals a task instead of sending a
message. In this case, nr_Task points to the task and nr_SignalNum is the signal
number. Only one of these 2 bits should be set!

If a program sets the NRF_WAIT_REPLY bit, the handler must wait to send
pending notifications until previous ones are returned. When a handler receives
a notification request with the NRF _NOTIFY_INITIAL bit set, the handler
sends an initial message or gives an initial signal if the watched file already
exists.

Handlers should only perform a notification when the actual contents of the
file have been changed. This includes ACTION_WRITE, ACTION_TRUN
CATE, ACTION_SET_DATE, ACTION_DELETE, ACTION_RENAME,
ACTION_FINDUPDATE, ACTION_FIN DIN PUT, and ACTION_FINDOUT
PUT. It may also include other actions such as ACTION_SET_COMMENT or

416 THE TECHNICAL REFERENCE MANUAL

ACTION_SET_PROTECT, but this is not required (and may not be expected by
the application as there is no need to reread the data).

2.0 only
ACTION_REMOVE_NOTIFY 4098 EndNotify(NotifyRequest)
ARGl:

RESl:
RES2:

BPTR

BOOL
CODE

Pointer to previously added notify request

Success/Failure (DOSTRUE/DOSFALSE)
Failure code if RESI is DOSFALSE

This action cancels a notification (see ACTION_ADO_NOTIFY). ARG1 is the
NotifyRequest structure used to initiate the notification. The handler should
abandon any pending notification messages. Note that it is possible for a file
system to receive a reply from a previously sent notification message even after
the notification has been terminated. It should accept these messages silently
and throw them away.

Volume Manipulation/Information

The Volume Manipulation and Information actions are used to allow access to
the underlying volume currently being manipulated by the file system.

<sendpkt only>
RESl: BPTR Pointer to volume node of current volume

This action returns a pointer to the volume node (from the DOS device list)
associated with the file system. As the volume node may be removed from the
device list when the file system mounts a different volume (such as when
directed to by an ACTION_INHIBIT) there is no guarantee that this pointer will
remain valid for any amount of time. This action is generally used by
AmigaDOS to provide the volume line of a requester.

ACTION_DISK_INFO
ARGl: BPTR

RESl:

ARGl:
ARG2:

RESl:

BOOL

LOCK
BPTR

BOOL

25 Info(...)
Pointer to an InfoData structure to fill in

Success/Failure (DOSTRUE/DOSFALSE)

26 <sendpkt only>
Lock
Pointer to a InfoData Structure to fill in

Success/Failure (DOSTRUE/DOSFALSE)

AMIGAOOS DATA STRUCTURES 417

These actions are used to get information about the device and status of the file
handler. ACTION_DISK_INFO is used by the info command to report the sta
tus of the volume currently in the drive. It fills in an InfoData structure about
the volume the file system currently controls. ACTION_INFO fills in an
InfoData structure for the volume the lock (ARC1) is on instead of the volume
currently in the drive. These actions are generally expected to return
DOSTRUE.

The ACTION_DISK_INFO packet has a special meaning for console style
handlers. When presented with this packet, a console style handler should
return a pointer to the window associated with the open handle.

9 Relabel(...) in 2.0

ARG1: BSTR New disk name

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)

This action allows an application to change the name of the current volume. A
filesystem implementing this function must also change the name stored in the
volume node of the DOS device list.

2.0 only

ACTION_FORMAT

ARG1:

ARG2:

ARG3:

RES1:

RES2:

BSTR

BSTR

LONG

BOOL

CODE

1020 Format(fs,vol,type)

Name of device (with trailing ': ')

Name for volume (if supported)

Type of format (file system specific)

Success/Failure (DOSTRUE/DOSFALSE)
Failure code if RES1 is DOSFALSE

This packet tells a file system to perform any device or file system specific for
matting on any newly initialized media. On receiving this action, a file system
can assume that the media has already been low-level formatted and should
proceed to write out any high-level disk structure necessary to create an empty
volume.

Handler Maintenance and Control

A number of packets are defined to give an application some control over a
filesystem:

418

RESl: BOOL

THE TECHNICAL REFERENCE MANUAL

5
DOSTRUE

<sendpkt only>

As its name implies, the ACTION_DIE packet tells a handler to quit. All new
handlers are expected to implement this packet. Because of outstanding locks
and the fact that the handler address is returned by the DeviceProcO routine, it
is unlikely that the handler can disappear completely, but instead will have to
release as many resources as possible and simply return an error on all packets
sent to it.

In the future, the system may be able to determine if there are any outstand
ing DeviceProcO references to a handler, and therefore make it safe to shut
down completely.

RESl: BOOL
27

DOSTRUE

<sendpkt only>

This action causes the file system to flush out all buffers to disk before returning
this packet. If any writes are pending, they must be processed before respond
ing to this packet. This packet allows an application to make sure that the data
that is supposed to be on the disk is actually written to the disk instead of wait
ing in a buffer.

ACTION MORE_CACHE 18 AddBuffers(...) in 2.0
ARGl:

RESl:
RES2:

LONG

BOOL
LONG

Number of buffers

DOS TRUE
New number of buffers

This action allows an application to change the number of internal buffers used
by the filesystem for caching. Note that a positive number increases the number
of buffers while a negative number decreases the number of buffers. In all cases,
the number of current buffers are returned in RES2. This allows an application
to inquire the number of buffers by sending in a value of 0 (resulting in no
change). Note that the OFS and FFS in 1.3 do not accept a negative number of
buffers.

ACTION_INHIBIT 31 Inhibit(...) in 2.0
ARGl: BOOL DOSTRUE = inhibi t , DOSFALSE = uninhibit

RESl: BOOL Success/failure (DOSTRUE/DOSFALSE)

AMIGAOOS OAT A STRUCTURES 419

This action is probably one of the most dangerous that a file system has to han
dle. When inhibited (ARG1 = DOSTRUE), the filesystem must not access any
underlying media and return an error code on all attempts to access the device.
Once uninhibited (ARG1 = DOSFALSE), the file system must assume that the
media has been changed. The file system must flush the buffers before the
ACTION_INHIBIT, popping up a requester demanding that the user put back
the current disk, if necessary. The handler may choose to reject an inhibit
request if any objects are open for writing.

Although it's not required, a handler should nest inhibits. Prior to 2.0, the
system handlers did not keep a nesting count and were subject to some obscure
race conditions. The 2.0 ROM filing system introduced a nesting count.

ACTION_WRITE PROTECT 1023 <sendpkt only>

ARG1: EDJL IDSIRUE/IDSFAlSE (write protect/un-write protect)

ARG2: LONG 32 Bit pass key

RES1: BOOL DOSTRUE/DOSFALSE

This is a new packet defined for the Fast File System. This packet allows an
application to change the write protect flag of a disk (if possible - applications
cannot write to floppies that have their write-protect tabs set). This packet is
primarily intended to allow write-protecting nonremovable media such as hard
disks. The value in ARG1 toggles the write status. The 32-bit passkey allows a
program to prevent other programs from unwrite-protecting a disk. To unlock
a disk, ARG2 must match the passkey of the packet that locked the disk, unless
the disk was locked with a passkey of O. In this case, no passkey is necessary to
unlock the disk.

2.0 only

ACTION_IS_FILESYSTEM 1027 IsFi1eSystem(devname)

RES1:
RES2:

BOOL
CODE

Success/Failure (DOSTRUE/DOSFALSE)
Failure code if RES1 is DOSFALSE

Through this function, a handler can indicate whether or not it is a filesystem
(whether or not it can support separate files for storing information). Programs
will assume a handler can create multiple, distinct files through calls to OpenO
if the handler returns this packet with a DOSTRUE value. A handler does not
need to support directories and subdirectories in order to qualify as a filesys
tern. It does have to support the ExamineO IExNextO calls.

420 THE TECHNICAL REFERENCE MANUAL

Note that the AmigaDOS routine IsFileSystemO will attempt to use
Lock(":" ,SHARED_ACCESS) if this packet returns ERROR_ACTION_
NOT_KNOWN.

Handler Internal

There are several actions that are generally used by handlers to allow messages
returning from requested services (typically an Exec device) to look like incom
ing request packets. This allows the handler to request that an asynchronous
operation be notified of the completion. For example, a handler sends the seri
al.device a request for a read, but instead of sending a plain I/O request, it
sends a DOS packet disguised as an I/O request. The serial.device treats the
packet like a normal I/O request, returning it to the handler when it is finished.
When the handler gets back its disguised DOS packet, it knows that the read
has completed.

o <internal>

Although not specifically an action, many returns look like this value because
the action field has not been filled in.

ACTION_READ RETURN 1001 <internal>

This return is generally used to indicate the completion of an asynchronous
read request.

1002 <internal>

This return is generally used to indicate the completion of an asynchronous
write request.

30 <internal>

This return is used to indicate the passage of a time interval. Many handlers have a
steady stream of ACTION_TIMER packets so that they can schedule house keeping
and flush buffers when no activity has occurred for a given time interval.

AMIGAOOS DATA STRUCTURES 421

Obsolete Packets
There are several packet types that are documented within the system that
include files that are obsolete. A file system is not expected to handle these
packets, and any program that sends these packets cannot expect them to work:

ACTION_DISK_CHANGE 33 <Obsolete>
ACTION_DISK_TYPE 32 <Obsolete>
ACTION_EVENT 6 <Obsolete>
ACTION_GET_BLOCK 2 <Obsolete>
ACTION_SET_MAP 4 <Obsolete>

Of particular note here is ACTION_DISK_CHANGE. The DiskChange com
mand uses the ACTION_INHIBIT packet to accomplish its task.

Console Only Packets

The remaining packets are only used for console handlers and do not need to be
implemented by a file system.

ACTION_SCREEN_MODE 994 <sendpkt only>
ARG1: LONG Mode (zero or one)

RES1:
RES2:

BOOL
CODE

Success/Failure (DOSTRUE/DOSFALSE)
Failure code if RESl is DOSFALSE

Switch the console to and from RAW mode. An ARG1 of 1 indicates the unpro
cessed, raw mode while an ARG1 of zero indicates the processed, "cooked"
mode.

ACTION_WAIT CHAR
ARG1: ULONG

RES1:
RES2:

BOOL
CODE

20 WaitForChar()
Timeout in microseconds

Success/Failure (DOSTRUE/DOSFALSE)
Failure code if RESl is DOSFALSE

Performs a timed read of a character. The WaitForCharO function uses this
packet.

Summary of Defined Packet Numbers

This is a listing of all the DOS packets defined by Commodore. Packets 0-2049
are reserved for use by Commodore. Unless otherwise noted, packets 2050-2999

422 THE TECHNICAL REFERENCE MANUAL

are reserved for use by third-party developers (see table N below). The remain
ing packets are reserved for future expansion. (Note: packets 2008, 2009, 4097,
and 4098 are in use by Commodore.)

Decimal Hex Action #define

0 OxOOOO ACTION_NIL
1 <Reserved by Commodore>
2 OxOO02 ACTION_GET_BLOCK
3 <Reserved by Commodore>
4 OxOO04 ACTION_SET_MAP
5 OxOO05 ACTION_DIE
6 OxOO06 ACTION_EVENT
7 OxOO07 ACTION_CURRENT_ VOLUME
8 OxOO08 ACTION_LOCATE_OBJECT
9 OxOO09 ACTION_RENAME_DISK
10-14 <Reserved by Commodore>
15 OxOOOF ACTION_FREE_LOCK
16 OxOOlO ACTION_DELETE_ OBJECT
17 Ox00l1 ACTION_RENAME_OBJECT
18 OxOO12 ACTION_MORE_ CACHE
19 OxOO13 ACTION_COPY _DlR
20 OxOO14 ACTION_WAlT_CHAR
21 OxOO15 ACTION_SET]ROTECT
22 OxOO16 ACTION_CREATE_DIR
23 Ox00l7 ACTION_EXAMINE_OBJECT
24 OxOO18 ACTION_EXAMINE_NEXT
25 OxOO19 ACTION_DISK_INFO
26 OxOOlA ACTION_INFO
27 OxOOlB ACTION_FLUSH
28 OxOOlC ACTION_SET _COMMENT
29 Ox001D ACTION_PARENT
30 OxOOlE ACTION_TIMER
31 OxOOlF ACTION_INHIBIT
32 Ox0020 ACTION_DISK_TYPE
33 Ox0021 ACTION_DlSK_ CHANGE
34 Ox0022 ACTION_SET_DATE
35-39 <Reserved by Commodore>
40 Ox0028 ACTION_SAME_LOCK
41-81 <Reserved by Commodore>
82 Ox0052 ACTION_READ
83-86 <Reserved by Commodore>

AMIGADOS DATA STRUCTURES 423

87 Ox0057 ACTION WRITE

88-993 <Reserved by Commodore>
994 Ox03E2 ACTION_SCREEN_MODE

995-1000 <Reserved by Commodore>
1001 Ox03E9 ACTION_READ _RETURN
1002 Ox03EA ACTION_ WRITE_RETURN
1003 <Reserved by Commodore>
1004 Ox03EC ACTION]INDUPDATE
1005 Ox03ED ACTION_FINDINPUT
1006 Ox03EE ACTION_FINDOUTPUT
1007 Ox03EF ACTION_END
1008 Ox03FO ACTION_SEEK
1009-1019 <Reserved by Commodore>

1020 Ox03FC ACTION_FORMAT
1021 Ox03FD ACTION_MAKE_LINK
1022 Ox03FE ACTION_SET_FlLE_SIZE
1023 Ox03FF ACTION_ WRITE]ROTECT
1024 Ox0400 ACTION_READ _LINK
1025 <Reserved by Commodore>
1026 Ox0402 ACTION_FH_FROM_LOCK

1027 Ox0403 ACTION_IS_FILESYSTEM
1028 Ox0404 ACTION_ CHANGE_MODE
1029 <Reserved by Commodore>
1030 Ox0406 ACTION_COPY_DIR]H
1031 Ox0407 ACTION] ARENT _FH
1032 <Reserved by Commodore>
1033 Ox0409 ACTION_EXAMINE_ALL
1034 Ox040A ACTION_EXAMINE_FH
1035-2007 <Reserved by Commodore>
2008 Ox07D8 ACTION_LOCK_RECORD
2009 Ox07D9 ACTION_FREE_RECORD

2010-2049 <Reserved by Commodore>

2050-2999 <Reserved for 3rd Party Handlers>

4097 OxIOOl ACTION_ADD _NOTIFY

4098 Ox1002 ACTION_ REMOVE_NOTIFY

4099- <Reserved by Commodore for Future

Expansion>

424 THE TECHNICAL REFERENCE MANUAL

Using Packets Directly
AmigaDOS contains many features that can only be accessed by sending a
packet directly to a process. For example, the ACTION_DISK_INFO packet may
be used to find the Intuition window pointer of a CON: or RAW: window. This
is useful for redirecting system requesters so that they appear where the user
can see them (see Redirecting System Requesters, above). The Window pointer
will be returned in the ID_ VolumeNode field, and a pointer to the console's I/O
request will be returned in the ID _In Use field. Note that auxiliary consoles
(AUX:) can return a NULL Window pointer, and also may have no ConUnit
(io_Unit) associated with their I/O request block. Be careful to check for these
possibilities when you use this packet. If your application runs in a CLI win
dow, a user may be running you in an auxiliary (AUX:) CLI.

Another example is the ACTION_SCREEN MODE_MODE packet which can
be sent to the handler process of a CON: window to put the console into raw or
cooked mode.

By default, CON: provides mapped keyboard input which is filtered,
buffered, and automatically echoed. Many of the special key escape sequences
(such as those generated by the function, cursor, and help keys) are filtered out;
all strokes are buffered and held back from the reader until the user hits the
Return key; and the non filtered keypresses (such as alphanumeric keys and
backspace) are automatically echoed to the CON: window. This "cooked" mode
is perfect for general line input from a user because it provides automatic line
editing features (same as in the Shell command line).

Sometimes, however, an application needs to get individual keys immediate
ly from a CON: window, or control its own echoing, or receive the escape
strings that the keymap generates for special keys such as the Help key or cur
sor keys.

In this case, an ACTION_SCREEN_MODE packet with the argument
DOSTRUE (-IL) may be sent to the MsgPort of a CON: window to put the
CON: into "raw" mode. In raw mode, a CON: behaves much like a RAW: win
dow. Keyboard console input is not automatically filtered, buffered, or echoed.
When reading a CON: which has been set to "raw" mode, each keypress can be
read immediately as the ASCII value or string to which the key is mapped by
thekeymap.

For some applications, it may be convenient to toggle a CON: window
between cooked and raw modes, to use cooked mode for user line input, and
raw mode when keypresses should cause immediate actions.

ACTION_SCREEN_MODE with the argument DOSFALSE (OL) will place a
CON: window in cooked mode. Note that the ACTION_SCREEN_MODE pack
et may also be used on auxiliary (AUX:) consoles.

AMIGAOOS DATA STRUCTURES 425

The handler MsgPort of most named AmigaDOS devices (like DFO:) can be
found with the DeviceProcO function. Note that DeviceProcO cannot be used to
find a CON: or RAW: handler because there may be many handlers for each of
these. The handler MsgPort(ProcessID) of a CON: or RAW: window is in its
FileHandle structure (fh_Type). The MsgPort of a CLI process's "*" window is
process->pr_ ConsoleTask.

Here's how to find the MsgPort of a handler process (in all cases make sure
that port is non-NULL before using it):

1. Finding the MsgPort of a unique named handler process such as "DFO:"
port = (struct MsgPort *)DeviceProc("DF1 :").

2. Finding the MsgPort of the handler process for an open file:

fh = Open ("CON: 0 / 40 / 64 0 /14 0 /Test" ,MODE_NEWFILE);
if((fh)&&(fh->Type))

/* if Open succeeded and fh_Type is non-NULL */

port = (struct MsgPort *) (((struct
FileHandle *)
(fh«2))->fh_Type)i

3. Finding the MsgPort of your process's console handler:

struct Task *task = FindTask(NULL)i
if(task->tc_Node.ln_Type == NT_PROCESS)
{

/* port may be NULL - check before using! */
port = ((struct Process *)task)->pr_ConsoleTask;

Packets are sent by initializing a longword-aligned StandardPacket structure
and sending the packet to the MsgPort of a handler process.

The 2.0 DOS.library provides new simple functions for sending and replying
to packets:

SendPkt() - asynchronously send your initialized packet
WaitPkt() - wait for asynchronous packet to complete

426 THE TECHNICAL REFERENCE MANUAL

ReplyPkt() - reply a packet which has been sent to you
DoPkt() - creates and sends a packet, and waits for
completion

Refer to section 2.2 (AmigaDOS Functions) for a full description of these func
tions and their arguments.

If you need to send packets in a 1.3-compatible manner, the following func
tion may be used rather than the new 2.0 dos.library functions.

#include <exec/types.h>
#include <exec/memory.h>
#include <libraries/DOS.n>
#include <libraries/DOSextens.h>

* dopkt() by A. Finkel, P. Lindsay, C. Scheppner

*
*
*
*/

Send a packet in a 1.3-compatible manner
and wait for completion; returns Resl of the
reply packet

LONG dopkt(pid,action,args,nargs)
struct MsgPort *pidi /* process indentifier

/* (handler message port)
LONG action, /* packet type (desired action)

*/
*/
*/

args[l, /* a pointer to an argun1ent list*/
nargs; /* number of arguments in list * /

struct MsgPort *replyport;
struct StandardPacket *packet;

LONG count, *pargs, resl;

replyport = (struct MsgPort *) CreatePort(NULL,O);
if(!replyport) return (NULL) ;

packet = (struct StandardPacket *)
AllocMem((long)sizeof(struct

StandardPacket) ,MEMF_PUBLIC[MEMF_CLEAR)i
if (! packet)

{

DeletePort(replyport) i

return (NULL) i

}

AMIGADOS DATA STRUCTURES 427
-------------------------- -------------------------

packet->sp_Msg.mn_Node.ln_Name
packet->sp_Pkt.dp_Link
packet->sp_Pkt.dp_Port
packet->sp_Pkt.dp_Type

(char *)&(packet->sp_Pkt);
& (packet->sp_Msg);
replyport;
action;

/* copy the args into the packet */
pargs = &(packet->sp_Pkt.dp_Argl); /* address of first arg */
for(count=O;count < nargs;count++)

pargs [count] =args [count];

PutMsg(pid,packet); /* send packet */

WaitPort(replyport);
GetMsg(replyport);

FreeMem(packet, (long)sizeof(struct StandardPacket));
DeletePort(replyport);

return (resl);
}

Chapter 12

Additional Inforlllation
for the Advanced
Developer

This chapter describes certain topics that are likely to be of interest to the
advanced developer who may wish to create new devices to be added to the
Amiga or who wish their code to run with Amiga computers which have been
expanded beyond a 512K memory size.

The following topics are covered here:

Overlay Hunk Description
for developers putting together large programs

Linking in a new disk-device to AmigaOOS
lets a developer add a hard disk or disk-like device as a name-addressable
part of the filing system.

Linking in a new non-disk-device to AmigaDOS
lets a developer add such things as additional serial ports, parallel ports,
graphics tablets, RAM-disks, or what-have-you to AmigaOOS
(non-filing-system related).

Using AmigaOOS without using Intuition
for developers who may prefer to install and use their own screen handling
in place of that provided by Intuition.

429

430 THE TECHNICAL REFERENCE MANUAL

Hunk Overlay Table-Overview
When overlays are used, the linker basically produces one very large file con
taining all of the object modules as hunks of relocatable code. The hunk overlay
table contains a data structure that describes the hunks and their relationship to
each other.

When you are designing a program to use overlays, you must keep in mind
how the overlay manager (also called the overlay supervisor) handles the inter
action between the various segments of the file. What you must do, basically, is
build a tree that reflects the relationships between the various code modules
that are a part of the overall program and tell the linker how this tree should be
constructed.

The hunk overlay table is generated as a set of 8 long words, each describing
a particular overlay node that is part of the overall file. Each 8 long word entry
is comprised of the following data:

Hunk Overlay Symbol-Table Entry Data Structure:

long seekOffset;
long dummyl;
long dummy2;
long level;
long ordinate;
long firstHunk;

long symbolHunk;

long symbolOffsetX;

/* where in the file to find this node * /
/* a value of 0 ... compatibility item * /
/* a value of 0 ... compatibility item * /
/* level in the tree * /
/*f item number at that level * /
/* hunk number of the first hunk containing

* this node. * /
/* the hunk number in which this symbol is
* located * /

j* (offset + 4), where offset is the offset
* within the symbol hunk at which this
* symbol's entry is located. * /

Each of these items is explained further in the sections that follow.

Designing an Overlay Tree

Let's say that you have, for example, the files main, a, b, c, d, e, f, g, h, i, and j,
and that main can call a, b, c, and d and that each of these files can call main.
Additionally let's say that routine e can be called from a, b, c, d, or main, but
has no relationship to routine f. Thus, if a routine in e is to be run, then a, b, c,
and d need to be memory-resident as well. Routine f is like e; that is, it needs
nothing in e to be present, but can be called from a, b, c, or d. This means that

ADDITIONAL INFORMATION FOR THE ADVANCED DEVELOPER 431

the overlay manager can share the memory space between routines e and f,
since neither need ever be memory-coresident with the other to run.

If you consider routine g to share the same space as the combination of a, b, c,
and d and routines h, i, and j sharing the same space, you have the basis for
constructing the overlay tree for this program structure:

main (root level of the tree)

I I
j,b,C,d(1'i) 1 9(1,2),

e(2,1) f(2,2) h(2,1) i(2,2) j(2,3)

Figure 12-1.

Not only have we drawn the tree, but we have also labeled its branches to
match the hunk overlay (level, ordinate) numbers that are found in the hunk
overlay table that matches the nodes to which they are assigned.

From the description above, you can see that if main is to call any routine in
program segmenta-d, then all of those segments should be resident in memory
at the same time. Thus they have all been assigned to a single node by the link
er. While a-d are resident, if you call routines in e,the linker will automatically
load routine e from disk, and reinitialize the module (each time it is again
brought in), so that its subroutines will be available to be run. If any segment
a-d calls a routine in f, the linker replaces e with the contents of f and initializes
it. Thus a-d are at level 1 in the overlay tree, and routines e and f are at level 2,
requiring that a-d be loaded before e or f can be accessed and loaded for execu
tion.

Note: A routine can only perform calls to routines in other nodes that either
are currently memory-resident (the ancestors of the node in which the routine
now in use is located), or a routine in a direct child node. That is, main cannot
call e directly, but e can call routines in main since main is an ancestor.

Note also that within each branch of each subnode, the ordinate numbers
begin again with number 1 for a given level.

Describing the tree

You create the tree by telling the overlay linker about its structure. The numeri
cal values, similar to those noted in the figure above, are assigned sequentially

432 THE TECHNICAL REFERENCE MANUAL

by the linker itself and appear in the hunk node table. Here is the sequence of
overlay link statements that cause the figure above to be built:

Figure 12-2.

OVERLAY
a,b,c,d
*e
*1

9
*h
*j

*j

This description tells the linker that a, b, c, d are part of a single node at a
given level (in this case level 1), and the asterisk in front of e and f each say that
these are one each on the next level down from a-d, and accesible only through
a-d or anything closer toward the root of the tree. The name g has no asterisk,
so it is considered on the same level as a-d, telling the linker that either a-d or g
will be memory-resident, but not both simultaneously. Names h, i, and j are
shown to be related to g, one level down.

The above paragraphs have explained the origin of the hunk node level and
the hunk ordinate in the hunk overlay symbol table.

seekOffset Amount

The first value for each node in the overlay table is the seek offset. As specified
earlier, the overlay linker builds a large single file containing all of the overlay
nodes. The seek offset number is that value that can be given to the seek(file,
byte_offset) routine to point to the first byte of the hunk header of a node.

firstHunk

The firstHunk value in the overlay symbol table is used by the overlay manager
when unloading a node. It specifies the initial hunk that must have been loaded
in order to have loaded the node that contains this symbol. When a routine is
called at a different level and ordinate (unless it is a direct, next level, child of
the current node), it is necessary to free the memory utilized by invalid hunks,
so as to make room to overlay with the hunk(s) containing the desired symbol.

ADDITIONAL INFORMATION FOR THE ADVANCED DEVELOPER 433

symbolHunk and symbolOffsetX

These table entries for the symbols are used by the overlay manager to actually
locate the entry point once it has either determined it is already loaded or has
loaded it. The symbol Hunk shows in which hunk to locate the symbol.
symbolOffsetX-4 shows the offset from the start of that hunk at which the entry
point is actually located.

Overlay Nodes and the Linker

While linking an overlaid program, the linker checks each symbol reference for
validity. Suppose that the reference is in a tree node R, and the symbol is in a
node S. Then the reference is legal if one of the following is true:

1. Rand S are the same node.

2. R is a descendant of S.

3. R is the parent of S.

References of the third type above are known as overlay references. In this
case, the linker enters the overlay supervisor when the program is run. The
overlay supervisor then checks to see if the code segment containing the symbol
is already in memory. If not, first the code segment, if any, at this level, and all
its descendants are unloaded, and then the node containing the symbol is
brought into memory. An overlaid code segment returns directly to its caller,
and so is not unloaded from memory until another node is loaded on top of it.

For example, suppose that Figure 12-3 is the tree:

Figure 12-3.
The tree.

A

/\
B C

11\
D E F

When the linker first loads the program, only A is in memory. When the linker
finds a reference in A to a symbol in B, it loads and enters B. If B, in turn, calls D

434 THE TECHNICAL REFERENCE MANUAL

then again a new node is loaded. When B returns to A, both Band 0 are left in
memory, and the linker does not reload them if the program requires them
later. Now suppose that A calls C. First the linker unloads the code segments
that it does not require, and which it may overwrite. In this case, these are B
and D. Once it has reclaimed the memory for these, the linker can load C.

Thus, when the linker executes a given node, all the node's "ancestors," up to
the root are in memory, and possibly some of its descendants.

The linker assumes that all overlay references are jumps or subroutine calls,
and routes them through the overlay supervisor. Thus, you should not use
overlay symbols as data labels.

Try to avoid impure code when overlaying because the linker does not
always load a node that is fresh from the load file.

The linker gives each symbol that has an overlay reference an overlay num
ber. It uses this value, which is zero or more, to construct the overlay supervisor
entry label associated with that symbol. This label is of the form "OVL Ynnnn",
where nnnn is the overlay number. You should not use symbols with this for
mat elsewhere.

The linker gathers together all program sections with the same section name.
It does this so that it can load them continuously in memory.

Delete all the material on "ATOM: (Alink Temporary Object Modifier)". It
describes a product no longer sold or supported by Commodore.

Creating a New Device to Run Under AmigaDOS
This section provides information about adding devices that are NOT part of
the DOS filing system like the console and port handlers. The next section pro
vides information about adding file-system-related devices (hard disks, floppy
disks)-that is, devices that DOS can use to read and write files with their asso
ciated directories.

You would want to use this information to add a new device such as a new
serial port or a new parallel port. In this case you may be creating a device
named "SER2:" which is to act just like "SER:" as far as DOS is concerned.

There are two steps involved here. First, you must create a suitable device, a
process that is not addressed here.

Second, you must make this new device available as an AmigaooS device.
This process involves writing a suitable device handler and installing it into the
AmigaDOS structures. You install a new device and its handler under
AmigaDOS with the MOUNT command. You need to put the device in the
DEVS: directory, the handler in the L: directory, and add an entry for the device
in DEVS: mountlist.

ADDITIONAL INFORMATION FOR THE ADVANCED DEVELOPER 435

The device handler is the interface between your device and an application
program. The AmigaDOS kernel will attempt to load the code of the handler
and create a new process for it when it is first referenced. This is handled auto
matically when the kernel notices that the Task field in the DevInfo structure is
zero. If the code is already loaded, the code segment pointer is placed in the
SegList field. If this field is zero, the kernel loads the code from the filename
given in the filename field and updates the SegList field.

Making New Disk Devices
To create a new disk device, you must construct a new device node as described
in "Info Substructure,"Chapter 11 of this book. You must also write a device
driver for the new disk device.

A device driver for a new disk device must mimic the calls that are per
formed by the trackdisk device. It must include the ability to respond to com
mands such as ReadO, WriteO, SeekO, and return status information in the same
way as described for the trackdisk driver.

Using AmigaDOS Without Workbench/Intuition
This information is provided to give developers some information about how
AmigaDOS and Intuition interact with each other. As of this writing, it is not
possible to fully close down Intuition or the input device. It is possible to install
one's own input handler within the input stream and thereby handle input
events yourself, after your program has been loaded and started by AmigaDOS.
If, after that point, you take over the machine in some manner, you can prevent
AmigaDOS from trying to put up system requesters or otherwise interacting
with the screen by modifying DOS as shown below. Basically, your own pro
gram must provide alternate ways to handle errors that would normally cause
DOS to put up a requester.

Another alternative for taking over the machine is to ignore the AmigaDOS
filing system altogether, and use the trackdisk.device to boot your code and
data on your own.

Here are the details about AmigaDOS and Intuition:
AmigaDOS initializes itself and opens Intuition. It then attempts to open the

configuration file (created by Preferences) and passes this to Intuition. It then
opens the initial CLI window via Intuition and attempts to run the first CLI
command. This is commonly a loadwb (load Workbench), followed by an end
cli on the initial CLI.

436 THE TECHNICAL REFERENCE MANUAL

An application program can be made to behave like Workbench, in that it
spawns a new process. The next CLI command is then endcli, which closes
everything down, leaving only the new process running (along with the filesys
tern processes). This process would set the pr_WindowPtr field to -1, which
indicates that the DOS should report errors quietly. Note that the application
MUST handle all errors. There are further details on this in Chapter 11. DOS
will also have initialized the TrapHandler field of the user task to point to code
that will display a requester after an error; this should be replaced by a user
provided routine. This will stop all uses of Intuition from the user task, provid
ed there are no serious memory corruption problems found, in which case DOS
will call Exec Alert directly.

There is still the problem that the filesystem processes may ask for a
requester, in the event of a disk error or if the filesystem task crashes due to
memory corruption. To stop this, the pr_WindowPtr and tc_TrapHandler fields
of the file system tasks must be set to -1 and a private Trap handler must be pro
vided in the same way as was done for the user task. This is easily done as
shown below.

Find the message port for each file system task by calling DeviceProcO, pass
ing it each of the devices AmigaDOS is running (DFO:, DFl:, etc.). You get the
device names by walking the device list pointed to by the Info structure. An
error indicates that the device is not present. From the message port you can
find the task base for each filesystem task, and hence patch these two slots. This
procedure should be repeated for each disk unit.

The application program can now close Intuition. Workbench has, of course,
never been invoked. Note that as of this writing, it is not possible to stop DOS
from opening Intuition.

Note that if the applications want to use any other device such as SER:, the
handler process must be patched in exactly the same way as the filesystem pro
cesses. The application should obviously not attempt to open the CON: or
RAW: once Intuition has become inactive.

Index

A
AbortPkt, description of, 188-189
ADDBUFFERS,43

description of, 189-190
AddDosEntry, description of, 190
ADDMONITOR,44
AddPart, description of, 191
AddSegment, description of, 192
ALIAS, 45-46
Aliases

removing, UNALIAS, 147-148
setting, ALIAS, 45-46

ALINK
command line syntax, 317
parameters, 317-318
WITH files, 318-322

AllocDosObject, description of, 193
AmigaDOS

commands, 19-21
console handling, 6-8
filing system, 8-18
processes of, 5-6
updating, 21-22

AmigaDOS devices, 327-331
communication with, 331
listing of, 328-331

Amiga linker, 170
Angle brackets, in format listings of

commands, 41
ARG1,398
Arguments, 8
Arrow symbols, redirection of

input/output, 21, 30
ASCII files, displaying contents, MORE,

118-119
ASK,46
Assembler, 170, 352
ASSIGN, 35-37, 46-50
AssignAdd, description of, 193-194
AssignLate, description of, 194-195
AssignLock, description of, 195-196

437

AssignPath, description of, 196
Asterisk (*), 16

as device name, 16
and filenames, 8-9

AttemptLockDosList, description of,
196-197

Automatic overlay system, linker, 321
AUTOPOINT,51
AUX,328
AVAIL,51-52

B
Background

running commands in, 20
RUN,134-135

Background patterns, creating,
WBPATTERN,151-152

Basic Input/Output, packet, 398, 399-402
BCPL,381-382
BINDDRIVERS, 52
BINDMONITOR, 52-53
BLANKER, 53-54
BOOL,398
Boolean returns, functions, 188
Bootable disks

creating, INSTALL, 105-106
creating CLI disk, 26
INSTALL,25-26

Booting, automation of boot sequence, 35
BPTR, 381, 392, 393, 398
Braces, in format listings of commands, 41
Brackets, in format listings of commands,

41
BREAK, 54-55
BSTR, 381, 398
Buffered I/O, 179-180
Buffers, adding cache buffers,

ADDBUFFERS, 43-44
Burst mode, 62-63

c
C, logical device, 17

438 THE AMIGADOS MANUAL

Caches
clearing CPU caches, CPU, 62-64
instruction cache, 62

Calculations, on-screen, CALCULATOR,
55

CALCULATOR,55
CAMG chunk, 72
Caps lock key, disabling, NOCAPSLOCK,

121
CD,56
C directory, 18
ChangeMode, description of, 197-198
CHANGETASKPRI,57
Characters, alternative character set, 7
CheckSignal, description of, 198
Cli, description of, 199
CLOCK,57-58
Close, description of, 199-200
CMD,58-59
CODE,398
COLORS, 59-60

changing
COLORS, 59-60
PALETTE, 123

Command history, use of, 6
Command line, and linker, 315
Command line buffer, 6
Command Line Interface

activation of, 3
creating CLI disk, 26
See also Shell

Command path, search of, WHICH, 152
Commands, 19-21

ADDBUFFERS, 43
ADDMONITOR, 44
ALIAS, 45-46
ASK, 46
ASSIGN,46-50
AUTOPOINT,51
AVAIL,51-52
BINDDRIVERS, 52
BINDMONITOR, 52-53
BLANKER, 53-54
BREAK, 54-55
CALCULATOR,55
CD,56
CHANGETASKPRI,57
CLOCK, 57-58
CMD,58-59
COLORS, 59-60
conventions related to, 40
COPY, 60-62
CPU, 62-64
DATE,64-65
DELETE, 65-66
DIR,66-68

directing input/ output, 21
DISKCHANGE,68-69
DISKCOPY, 69-70
DISKDOCTOR, 70-71
DISPLAY, 71-73
ECHO, 73
ED,74-77
EDIT,78-81
ELSE,82
ENDCLI,82-83
ENDIF,83
ENDS HELL, 83
ENDSKIP,84
EVAL,84-86
EXCHANGE,86-87
EXECUTE,87-91
execution of, 19, 20, 39-40
FAILAT,91-92
FAULT,93
FILENOTE, 93-94
FIXFONTS, 94
FKEY,94-95
FONT,95-96
FORMAT, 96-97
format listings, 41
format of, 41
GET,97
GETNV, 97-98
GRAPHIC DUMP, 98-99
ICONEDIT,99
ICONTROL,99-100
ICONX,100
IF,100-102
IHELP, 102-103
INFO, 103
INITPRINTER, 104
INPUT,104
INSTALL, 105
instructing command sequence to fail,

FAlLA T, 91-92
interactive running of, 19
interrupting current command, 21
IPREFS,106
JOIN,106
KEYSHOW, 107
LAB,107
LIST,107-110
listing of commands, 153-157
loading commands faster, 19
LOADWB,110-111
LOCK, 111
MAKEDIR,112
MAKE LINK, 112
MEMACS, 113-118
MORE,118-119
MOUNT,119

NEWCLl,119-120
NEWSHELL, 120--121
NOCAPSLOCK,121
NOFASTMEM,122
OVERSCAN, 122
P ALEITE, 123
PATH,123-124
POINTER,125
PRINTER,125
PRINTERGFX, 126
PRINTFILES, 126-127
PROMPT, 127-128
PROTECT, 128-129
QUIT, 129-130
RELABEL, 130
REMRAD,131
RENAME,131-132
RESIDENT,132-134
RUN,134-135
running in background, 20

RUN, 134-135
SAY, 135
SCREENMODE, 136
SEARCH, 136-138
SERIAL,138
SET, 138-139
SETCLOCK, 139-140
SETDATE,140
SETENV, 141
SETFONT,141-142
SETMAP, 142-143
SETPATCH,143
SKIP, 143-144
SORT,144-145
STACK,145
STATUS, 146
template, 42
template of command, accessing, 24
TIME, 146-147
TYPE,147
UNALIAS, 147-148
UNSET,148
UNSETENV,148
VERSION,148
WAIT,149-150
WBCONFIG, 150
WBPAITERN,151-152
WHlCH,152
WHY, 153

Commodity Exchange programs, control
of, EXCHANGE, 86-87

Communication specifications, setting,
SERIAL,138

CompareDates, description of, 200
CON, 15,328-330
Conclip, 329-330

INDEX 439

Console
console handler, 6
packets for, 398, 421

Control key combinations, 6-8
editing commands, 7-8

COPY, 19,32-33,60-62
Copying directories, COPY, 60-62
Copying disks, DISKCOPY, 24-25
Copying files, COPY, 32-33, 60--62
C programming, initial environment in,

172
CPU, 62--64
CreateDir, description of, 201
CreateNewProc, description of, 201-202
CreateProc, description of, 202-203
CurrentDir, description of, 203-204
Current directory, changing, CD, 10-11,

29-30
Current drive, setting, 12-13
Cursor, moving with ED, 75

D
Data blocks, 348-350
Data structure

file handles, 393-394
library structure, 387-392
locks, 394-395
packets, 395-427
process data structure, 382-387
segment lists, 393

DATE, 22, 30, 64--65
changing dates tamp, SETDATE, 140
setting, DATE, 30, 64--65

DateStamp, description of, 204-205
DateToStr, description of, 205-206
Delay, description of, 206-207
DELETE, 31-32, 65--66
Delete character, 6
Delete directories, DELETE, 65--66
DeleteFile, description of, 207
Delete files, DELETE, 31-32, 65--66
Delete line, 6, 7
DeleteVar, description of, 207-208
Device drivers, binding to hardware,

BlNDDRIVERS, 52
Device names, 13, 13-16

asterisk (*), 16
CON,15
NIL,14
PAR,14
PRT,I4-15
RAM,14
RAW, 15
SER,14
use of, 13-14

DeviceProc, description of, 208-209

440 THE AMIGADOS MANUAL

Devices
device names, 13--16
disk devices, creating new device, 435
logical devices, 16-19
making available to system, MOUNT,

119
new device to run under AmigaDos,

creating, 434-435
See also AmigaDOS devices

DEVS,17
DlR, 4, 27, 66-68
Directories

C directory, 18
changing, CD, 56
changing name of, RENAME, 131-132
copying directories, COPY, 60-62
creation of, MAKEDlR, 33--34, 112
and current drive, 12
deleting directories, DELETE, 65-66
directory list for search to find

commands, PATH, 123-124
displaying files in, DlR, 27, 34, 66-68
listing information about, 107-11 0
root directory, 9
search of, 11
setting current directory, 10-11
structure of, 9-10
and subdirectories, 10
T directory, 18

Directory / file manipulation/ information,
packet, 398, 403-416

DlSKCHANGE, 68-69
DISKCOPY, 24-25, 69-70
Diskcopy program, 4
Disk devices, creating new device, 435
DlSKDOCTOR, 70-71
Disks

assigning disks, ASSIGN, 35-37
changing in disk drive, DlSKCHANGE,

68-69
changing volume name, RELABEL, 130
copying contents, DlSKCOPY, 69-70
formatting, FORMAT, 96-97
repair of corrupted disk,

DISKDOCTOR, 70-71
viewing contents of disk, 34
write-protection, setting, LOCK, 111

DISPLAY, 71-73
changing size of, OVERSCAN, 122
selecting mode, SCREENMODE, 136

DoPkt, description of, 209-210
Dos.library, and programming, 170,

174-176
DOS packet interface, 331
DupLockFromFH, description of, 211
DupLock, description of, 210--211

E
ECHO, 73
ED,34-35,74-77

extended mode commands, 76-77
immediate mode commands, 75-76
moving cursor, 75

EDlT,78-81
character positioning commands, 80
current line commands, 80
file commands, 81
global commands, 81
positioning commands, 79
search commands, 79-80
text verification commands, 81

Editing
icons, ICONEDlT, 99
summary of editing commands, 7-8
text files, ED, 74-77
text files by processing source files,

EDlT,78-81
ELSE,82
ENDCLI, 35, 82-83
ENDlF,83
EndNotify, description of, 212
End-of-file indicator, 7
ENDSHELL, 3, 22, 83
ENDSKIP,84
Error codes, printing messages for,

FAULT,93
Error messages

listing of, 157-161
printing, WHY, 153

ErrorReport, description of, 212-213
EVAL,84-86
ExAll, description of, 213--216
Examine, description of, 216-217
ExamineFH, description of, 217-218
EXCHANGE, 86-87
Exclusive locks, 174
EXECUTE, 17,20,33,35,87-91

dot commands, 90
description of, 218-219

Exit, description of, 219-220
Exiting, programs, 172-173
ExNext, description of, 220-221
Expression, evaluation of, EV AL, 84-86
External references, 351-352
External symbols, 361

F

handling by linker /loader, example,
368-371

FAILAT, 20, 91-92
Failure, of programming routine, 172

INDEX 441

FAULT,93
description of, 221-222

FGetC, description of, 222-223
FGets, description of, 223-224
File description, 12
File handles

data structure, 393-394
input/output programming, 174,

177-179
structure of, 393-394

File header block, 345-347
File list block, 347-348
Filenames

changing, RENAME, 31,131-132
creation of, 8-9
warning about creating new files, 9

Filenotes, attaching to files, FILENOTE, 13,
93-94

FilePart, description of, 224
Files

accessing from disk, 13
attaching note to, FILENOTE, 93-94
changing protection bits, PROTECT,

128-129
combining two files, JOIN, 106
copying files, COPY, 60-62
deleting files, DELETE, 65-66
displaying files in directory, DIR, 66-68
linking, MAKELINK, 112-113
listing information about, LIST, 107-110
viewing contents of, ED, 34-35

Filesystem. See AmigaDOS devices
File system information

INFO,29,103-104
LIST,27-28

Filing system
attaching filenotes, 13
device names, 13-16
directories, 9-10
disk blocks

data blocks, 348-350
file header block, 345-347
file list block, 347-348
root block, 336-341
user directory blocks, 341-344

function of, 327
logical drives, listing of, 16-19
naming files, 8-9
setting current device, 12-13
setting current directory, 10-11

FindArg, description of, 225
FindCliProc, description of, 225-226
FindDosEntry, description of, 226
FindSegment, description of, 227
FindVar, description of, 228
FIXFONTS, 94

FKEY, 94-95
Flags, setting, BREAK, 54-55
Flush, description of, 228-229
FONT,95-96
Fonts

changing Shell font, SETFONT, 141-142
specifying, FONT, 95-96
updating files, FIXFONTS, 94

FORMAT, 25, 96-97
description of, 229-230

Format listings, 41
Formatting disks, FORMAT, 25, 96-97
FPutC, description of, 230
FPuts, description of, 231
FRead, description of, 231-232
FreeArgs, description of, 232-233
FreeDeviceProc, description of, 233
FreeDosEntry, description of, 233-234
FreeDosObject, description of, 234
Function keys, assigning text strings to,

FKEY,94-95
Functions

description of
AbortPkt, 188-189
Add Buffers, 189-190
Add Dos Entry, 190
AddPart, 191
AddSegment, 192
AllocDosObject, 193
AssignAdd, 193-194
AssignLate, 194-195
AssignLock,195-196
AssignPath, 196
AttemptLockDosList, 196-197
ChangeMode, 197-198
CheckSignal, 198
Cli,199
Close, 199-200
CompareDates, 200
CreateDir, 201
CreateNewProc, 201-202
CreateProc, 202-203
CurrentDir, 203-204
DateStamp, 204-205
DateToStr, 205-206
Delay, 206-207
DeleteFile, 207
DeleteVar, 207-208
DeviceProc, 208-209
DoPkt, 209-210
DupLockFromFH,211
DupLock, 210-211
EndNotify, 212
ErrorReport, 212-213
ExAll,213-216
Examine, 216-217

442 THE AMIGADOS MANUAL

ExamineFH,217-218
Execute, 218-219
Exit, 219-220
ExNext, 220-221
Fault, 221-222
FGetC, 222-223
FGets, 223-224
FilePart, 224
FindArg, 225
FindCliProc, 225-226
FindDosEntry, 226
FindSegment, 227
FindVar, 228
Flush, 228-229
Format, 229-230
FPutc, 230
FPuts, 231
FRead,231-232
FreeArgs,232-233
FreeDeviceProc, 233
FreeDosEntry, 233-234
FreeDosObject, 234
FWrite,235
GetFileSysTask, 238-239
GetArgStr, 235-236
GetConsoleTask,236
GetCurrentDirN arne, 236-237
GetDeviceProc, 237-238
GetProgramDir, 239
GetProgramName, 239-240
GetPrompt,240-241
GetVar, 241-242
Info, 242-243
Inhibit,243
Input, 243-244
InternalLoadSeg, 244-245
InternalUnLoadSeg, 245-246
IoErr, 246
IsFileSystem, 247
IsInteractive, 247-248
LoadSeg, 248-249
Lock,249
LockDosList, 249-250
LockRecord,250-251
LockRecords,251-252
MakeDosEntry, 252-253
MakeLink,253-254
MatchEnd, 254
MatchFirst, 254-256
MatchNext, 256
MatchPattern, 257
MatchPatternNoCase, 257-258
MaxCli, 258-259
NameFromFH,259
NameFromLock,259-260
NevvLoadSeg,260-261

NextDosEntry, 261-262
Open,262
OpenFromLock, 263
Output, 263-264
ParentDir, 264
ParentOfFH, 265
ParsePattern, 265-266
ParsePatternNoCase, 266-267
PathPart, 267-268
PrintFault, 269
PutStr, 268-269
Read, 269-270
ReadArgs, 270-272
ReadItem, 272-273
ReadLink,273-274
Relabel, 274
RemAssignList, 275
RemDosEntry, 275-276
RemSegment,276
Rename, 277
ReplyPkt, 277-278
RunCommand, 278-279
Same Device, 279
SameLock, 280
Seek,280-281
SelectInput, 281-282
SelectOutput, 282
SendPkt, 282-283
SetArgStr, 283-284
SetComment, 284
SetConsoleTask,284-285
SetCurrentDirName, 285
SetFileDate, 286
SetFileSize, 286-287
SetFileSysTask,287-288
SetIoErr, 288
SetMode, 288-289
SetProgramDir, 289
SetProgramName, 290
SetPrompt,290-291
SetProtection, 291-292
SetVar, 292-293
SetVBuf,293-294
SplitName, 294-295
StartNotify,295-296
StrToDate, 296-297
StrToLong, 297-298
SystemTagList, 298-299
UnGetC, 299-300
UnLoadSeg, 30G-301
UnLock,301
UnLockDosList, 302
UnLockRecord, 302-303
UnLockRecords, 303
VFPrintf,304
VFWritef,304-305

INDEX 443
-- -- --------

VPrintf, 305-306
WaitForChar, 306-307
WaitPkt, 307-308
Write,308
WriteChars, 308-309

listing of, 310-313
syntax of

Boolean returns, 188
register values, 187
values, 188

FWrite, description of, 235

G
GetFileSysTask, description of, 238-239
GET,97
GetArgStr, description of, 235-236
GetConsoleTask, description of, 236
GetCurrentDirName, description of,

236-237
GetDeviceProc, description of, 237-238
GETNV, 97-98
GetProgramDir, description of, 239
GetProgramName, description of, 239-240
GetPrompt, description of, 240-241
GetVar, description of, 241-242
Global variables

getting value of, 97-98
removing, UNSETENV, 148
setting, SETENV, 141

GRAPHIC DUMP, 98-99
Graphics

H

display and IFF ILBM format,
DISPLAY, 71-73

printing, specifying, PRINTERGFX, 126

Handler internal, packets, 398,420-421
Handlers

file handlers, 178-179
function of, 178,327
handler maintenance, packets, 398,

417-420
See also AmigaDOS devices

Hard link, 346-347
Hash function, 341
Hashing algorithm, 342
Header, 320
Header files, 170
Hunks, 353

format of, 354
hunk overlay table, 430-433
of library files, 373-379
of load files, 365-367
of object files, 354-364

I
ICONEDlT,99

Icons
editing, ICONEDlT, 99
execution of script file from, ICONX,

100
ICONTROL, 99-100
ICONX,100
IF,100-102

alternative to IF, ELSE, 82
termination of, ENDIF, 83

IHELP, 102-103
INFO, 103

description of, 242-243
Inhibit, description of, 243
INITPRINTER, 104
INPUT,104

description of, 243-244
Input/output

redirection of, 21, 30
redirection of output, CMD, 58-59

Input/output programming, 173-186
buffered I/O, 179-180
dos.library functions, use of, 174-176
example of basic I/O file, 176-177
file handles, 174, 177-179
locks, 174
standard command line parsing,

181-186
INSTALL, 25-26,105
Instruction cache, 62
InternalLoadSeg, description of, 244-245
InternalUnLoadSeg, description of,

245-246
IoErr, description of, 246
IPREFS, 106
IsFileSystem, description of, 247
IsInteractive, description of, 247-248

J
JOIN,106

K
Keyboard

setting speed, INPUT, 104-105
taking over mouse operations, IHELP,

102-103
Keymap

changing, SETMAP, 142-143
displaying, KEYSHOW, 107

KEYSHOW, 107
Kickstart process, 25

L
L, logical device, 17
LAB,107
Libraries

and linker, 315
resident library, 315

444 THE AMIGAOOS MANUAL

scanned library, 315
Library data structure, 387-392

Info substructure, 389-392
Library files

example of, 372
hunks of, 373--379
new structure of, 373--379
original fonnat, 371

LlBS, 17
Linker

automatic overlay system, 321
caution related to, 325
driving linker, methods of, 315--316
errors, types of, 325-326
errors and, 320
function of, 315
input files and, 316
order for reading files, 320
output of, 320-321
OVERLAY directive, 321-324
overlay supervisor, 315
processes in, 316
references to symbols, 324--325
See also ALINK

Linking
hard link, 346--347
linking files, MAKELlNK, 112-113
soft link, 347

Link map, 315, 320
LIST,27-28,107-110
Load files, 315, 353

fonnat of, 364--365
hunks, listing of, 365-367
structure of, 364--365

LoadSeg, description of, 248-249
LOADWB,35,110-111
Local variables

getting value of, GET, 97
removing, UNSET, 148
setting, SET, 138-139

LOCK, 111,398
description of, 249

LockDosList, description of, 249-250
LockRecord, description of, 250-251
LockRecords, description of, 251-252
Locks

data structure, 394--395
exclusive locks, 174
functions of, 394
input/ output programming, 174
shared locks, 174
zerolock,395

Logical devices, 16--19
assigning to directories, ASSIGN, 47-50
C,17
DEVS,17

FONTS, 17
L,17
LlBS, 17
S,17
SYS, 16--17

LONG,398
Loops, counter for, 85--86

M
MAKEDIR, 33--34, 112
MakeDosEntry, description of, 252-253
MAKELlNK,112

description of, 253--254
MatchEnd, description of, 254
MatchFirst, description of, 254--256
MatchNext, description of, 256
MatchPattern, description of, 257
MatchPatternNoCase, description of,

257-258
MaxCii, description of, 258-259
MEMACS, 35, 113-118

editing commands, 114--115
extra commands, 117-118
filing commands, 114
line commands, 116
move commands, 116
search commands, 117
window commands, 115--116
word commands, 116--117

Memory
allocation of, 392-393
buffers, 43
creating devices in, 14
report of information, AVAIL, 51-52
use of only resident Chip RAM,

NOFASTMEM,122
Monitor

assigning names to display modes,
BIND MONITOR, 52-53

blanking screen, BLANKER, 53--54
changing colors, COLORS, 59--60
non-RGB, ADDMONITOR, 44--45

MORE,118-119
MOUNT,119
Mouse, setting speed, 104--105
Mouse operation, keyboard assignment of,

IHELP, 102-103
Multitasking

nature of, 5
and priority numbers, 57

N
NameFromFH, description of, 259
NameFromLock, description of, 259-260
NEWCLI,119-120
NEWCON,330

NewLoadSeg, description of, 260-261
NEWSHELL,120-121
NextDosEntry, description of, 261-262
NIL, 14, 330
NOCAPSLOCK, 121
Node, 354
NOFASTMEM,122

o
Object files, 315, 352

hunks, listing of, 354-364
structure of, 353-354

Open, description of, 262
OpenFromLock, description of, 263
Output, description of, 263-264
OVERLAY directive, linker, 321-324
Overlay files, 320

and linker, 315
Overlav number, 325
Overlay reference, 324
Overlay supervisor, linker, 315
Overlay table, hunk overlay table,

generation of, 430-433
OVERSCAN, 122

P
Packets, 395-427

Basic Input/Output, 398, 399-402
categories of, 397-398
console only packets, 398, 421

directory /file manipulation/
information, 398, 403-416

direct use of, 424-427
handler internal, 398, 420-421
handler maintenance, 398, 417-420
listing of, 398
obsolete packets, 398, 421
operation of, 395-396
relationship to operating system, 395
StandardPacket, 395
summary of defined packet numbers,

421-423
volume Manipulation/Information,

398,416-417
PALETTE, 123
PAR, 14,330
Parameter file, and linker, 315
ParentDir, description of, 264
ParentOfFH, description of, 265
ParsePattern, description of, 265-266
ParsePatternNoCase, description of,

266-267
Parsing, standard command line parsing,

181-186
PATH,123-124
PathPart, description of, 267-268

INDEX

Patterns, background patterns,
WBPATTERN,151-152

PIPE,330-331
POINTER,125

445

Preferences, communicating information to
Workbench, IPREFS, 106

Primary binary input, and linker, 315
PRINTER, 125

initializing, INITPRINTER, 104
sending files to, PRINTFILES, 126-127
specifying/ setting options, PRINT,

125-126
PRINTERGFX, 126
PrintFault, description of, 269
PRINTFILES, 126-127
Printing

error messages, WHY, 153
graphics printing, PRINTERGFX, 126

Processes
beginning new process, NEWCLl,

119-120
changing priorities,

CHANGET ASKPRI, 57
data structure, 382-387
listing of information, STATUS, 146
nature of, 5-6
process values, 382-383
redirecting system requests, 386-387

Programming
creating executable program, steps in,

171
getting started, 169-170
input/ output programming, 173-186
resident libraries, calling, 170
running program

under Shell, 171-173
underWorkbench,173

Program unit, 353
PROMPT, 19, 127-128

changing, PROMPT, 127-128
PROTECT, 28, 128-129
Protecting files, PROTECT, 28-29
Protection bits of file, changing, PROTECT,

128-129
Protection flags, 28
PRT, 14-15, 330
PutStr, description of, 268-269

Q
QUIT,129-130

R
RAM,14,32
Ramdisk,32
Ramdrive, removing recoverable device,

REMRAD,131

446 THE AMIGADOS MANUAL

RAW, 15, 330
Read, description of, 269-270
ReadArgs, description of, 270--272
ReadItem, description of, 272-273
ReadLink, description of, 273-274
Redirection, of input/ output, 21, 30
References to symbols, linker, 324-325
Register values, functions, 187
RELABEL, 28, 130

description of, 274
Relabeling disks, RELABEL, 26-27
RemAssignList, description of, 275
RemDosEntry, description of, 275-276
REMRAD,131
RemSegment, description of, 276
RENAME, 31, 131-132

description of, 277
Repair of corrupted disk, DISKDOCTOR,

70--71
ReplyPkt, description of, 277-278
RESIDENT, 19, 132-134
Resident commands, display /

modification of, RESIDENT, 132-134
Resident library, 315, 354

See also Functions
Return Code Limit, 92
ROM patches, creating, SETPATCH, 143
Root block, 336-341
Root directory, 9
RUN, 20,134-135
RunCommand, description of, 278-279

S
S, logical device, 17
Same Device, description of, 279
SameLock, description of, 280
SAY, 135
Scanned library, 315, 354
Screen dump, GRAPHICDUMP, 98-99
SCREENMODE, 136
Screen pointer, changing, POINTER, 125
Script files, 35-36

afternative to IF, ELSE, 82
evaluating conditional operations, IF,

100--102
execution from icon, ICONX, 100
exiting with return code, EXIT, 129-130
getting user input, ASK, 46
skipping label, SKIP, 143-144
specifying labels, LAB, 107
termination of IF, ENDIF, 83
termination of SKIP block, ENDSKIP,

84
Scripts, execution of, EXECUTE, 87-91
SEARCH,136-138

of command path, WHICH, 152

of directories, 11
last occurrence of command, 6
text strings, SEARCH, 136-138

Seek, description of, 280--281
Segment lists, 393

data structure, 393
SelectInput, description of, 281-282
SelectOutput, description of, 282
SendPkt, description of, 282-283
SER, 14,330
SERIAL,138
Serial port, setting communication specs,

SERIAL,138
SET,138-139
SetArgStr, description of, 283-284
SETCLOCK, 22, 30,139-140
SetComment, description of, 284
SetConsoleTask, description of, 284-285
SetCurrentDirName, description of, 285
SETDATE,140
SETENV,141
SetFileDate, description of, 286
SetFileSize, description of, 286-287
SetFileSysTask, description of, 287-288
SETFONT,141-142
SetIoErr, description of, 288
SETMAP, 142-143
SetMode, description of, 288-289
SETP ATCH, 143
SetProgramDir, description of, 289
SetProgramName, descriftion of, 290
SetPrompt, description 0 ,290--291
SetProtection, description of, 291-292
SetVar, description of, 292-293
SetVBuf, description of, 293-294
Shared Global Vector, 387
Shared locks, 174
Shell

ending process
ENDCLI, 82-83
ENDShell, 3, 22, 83

opening new window, NEWShell, 3, 22,
120-121

processes, 5-6
prompt, 19
running program under, 171-173

failure of routines, 172
initial environment in assembler,

171-172
initial environment in C, 172
terminating program, 172-173

680XO processors, 62-63
SKIP, 143-144
Soft link, 347
SORT,I44-145

alphabetical, SORT, 144-145

SPEAK, 331
Speech capabilities, use of, SAY, 135-136
Speed, loading commands faster, 19
SplitName, description of, 294-295
Square brackets, in format listings of

commands, 41
STACK,145
Stack pointer, 172
Stacks, 171

setting size, STACK, 145
StartNotify, description of, 295-296
Startup-sequence, 35, 52
Static Column Dynamic RAM (SCRAM),

62--63
STATUS,55,146
Strings, display of, ECHO, 73
StrToDate, description of, 296-297
StrToLong, description of, 297-298
Symbol cross-reference table, 315
SYS, 16-17
SystemTagList, description of, 298-299

T
T directory, 18
Template, 42

accessing, 24
codes of, 42
example of, 42

Temporary files, directory for, 18
Text files

creating/ editing, MEMACS, 113-118
display of, TYPE, 147
editing, ED, 74-77
editing by processing source files,

EDIT,78-81
typing to screen, TYPE, 31

TIME, 22,146-147
on-screen clock, CLOCK, 57-58

setting/reading hardware clock,
SETCLOCK, 30,139-140

setting system clock, TIME, 146-147
waiting period for specified time,

WAIT,149-150
Tree structure, 321
TYPE, 31, 147

U
UNALIAS, 147-148
UnGetc, description of, 299-300
UnLoadSeg, description of, 300-301
UnLock, description of, 301
UnLockDosList, description of, 302
UnLockRecord, description of, 302-303
UnLockRecords, description of, 303
UNSET,148
UNSETENV, 148

INDEX

Updating AmigaDOS, 21-22
User directory blocks, 341-344

V
Validation process, restarting, 21-22
Values, functions, 188
VERSION,148-149

447

Version of software, finding, VERSION,
148-149

Vertical bars, in format listings of
commands, 41

VFPrintf, description of, 304
VFWritef, description of, 304-305
Volume Manipulation/Information,

packet,398,416-417
Volume name, 13

changing, RELABEL, 130
VPrintf, description of, 305-306

W
WAIT,149-150
WaitForChar, description of, 306-307
Waiting period, for specified time, WAIT,

149-150
WaitPkt, description of, 307-308
WBCONFIG, 150
WBPATTERN,151-152
WHICH, 152
WHY, 153
Wildcards, 9
Windows

background patterns, WBPATTERN,
151-152

control of backdrop window,
WBCONFIG, 150

opening new window, NEWSHELL,
120-121

selection of, AUTOPOINT, 51
WITH files, ALINK, 318-322
Workbench

background patterns, WBPATTERN,
151-152

changing colors, PALETTE, 123
communicating preferences

information to, IPREFS, 106
relationship to subdirectories, 4
running program under, 171-173
setting parameters, ICONTROL, 99-100
starting, LOADWB, 110-111
using AmigaDos without, 435---436

Write, description of, 308
WriteChars, description of, 308-309
Write-protection, setting, LOCK, 111

The AmigaDOS Manual, 3rd Edition

The Official AmigaOOS Source Book

This 3rd erution of The AmigaDOS Manual has been extensively
revised to cover AmigaDOS 2.04 and contains every command and
function included in that operating system. This book has been
substantially revised by Commodore-Amiga, Inc., to make it more
cohesive and accessible to users.

THE AMlGADOS MANUAL describes this powerful operating
system more thoroughly than any of the documentation and provides
you with a comprehensive reference to the commands, functions,
and innermost workings of AmigaDOS. You get detailed information
on the two user interfaces, Workbench and Command Line Interface
(CLI), and on which programs and commands can be run under which
interface. With AmigaDOS 2.X, the CLI has now been endowed
with a Shell, which makes the CLI even more flexible and powerful.

In addition, you'll find out about:
• The subtle differences between the CLI and the Shell .
.• The startup sequence.
• The script directory.
• Directory and open library calls .
• Command scripts.
• How to open a shell window.
• The new shell and its numerous icons .
• Windows.
• The complete error codes and messages .
• Plus a complete glossary of AmigaDOS terms.
The Developer's Manual part of the book shows you how to
program on the Amiga and includes complete coverage of the
AmigaDOS Linker (ALink). You will find out more about:
• Using ALink .
• Command line syntax.
• MAP and XREF output.
• Overlaying.
• Reference guide to symbols.

Discover why THE AM1GADOS MANUAL, 3rd EDITION, is the only
source for your AmigaDOS needs.

9 034

N 0-553-35403-5>2495
0-553-35403-5 . IN U.S. $24.95 (IN CANADA $31.95) . BANTAM COMPUTER BOOKS
In U.K. £21.99

