

Compute's
AmigaOOS
Reference

Guide

Fourth Edition

Sheldon Leemon

COMPUTE Books
Greensboro, North Carolina

Editor: Stephen Levy

Cover design: Lee Noel

Copyright 1986, 1987, 1989, 1992, COMPUTE Publications International Ltd. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108
of the United States Copyright Act without the permission of the copyright owner is unlawful.

Printed in the Unit~d States of America

10987654321

0-87455-268-0

The author and publisher have made every effort in the preparation of this book to insure the
accuracy of the information. However, the information in this book is sold without warranty, either
express or implied. Neither the author nor COMPUTE Publications International Ltd. will be liable
for any damages caused or alleged to be caused directly, indirectly, incidentally, or consequentially
by the information in this book.

The opinions expressed in this book are solely those of the author and are not necessarily those of
COMPUTE Publications International Ltd.

COMPUTE Books, '324 West Wendover Ave., Suite 200, Greensboro, NC 27408, is a General
Media company and is not associated with any manufacturer of personal computers. Amiga is a
trademark of Commodore-Amiga, Inc.

Contents

Foreword ... vii

Introduction to AmigaDOS ... 1

The eLI Environment ... ~ 8
The CLI Console .. 9
Running a Program. from a CLI : ... 20
Starting Additional CLI Processes .. 22

The Filing System ... 28

Devices " .. 52
Disk Drives•... 52
The RAM: Disk ... 57
Communications Ports .. 59
Console and Others ... 60
Logical Devices ... : ... 66
MOUNTable Device Drivers and Handlers .. 76
Redirection of Input and Output ... 83

Command Sequence Flles .. 86

ED, the System Screen Editor ... 114
Immediate Mode ... 115
Extended Mode Commands .. 118
ED Command Summary ... 134

EDIT, the Line Editor .. 138
EDIT Command Reference .. 161

AmigaDOS Command Reference ... 164
AmigaDOS Filename Conventions ... 164
Pattern Matching (Wildcards) ... 166 .

. Pattern Matching Summary .. 169
AmigaDOS Templates ... 170
Redirected Output ... 172
Fonnat of the AmigaDOS Command Reference .. 173
ADDBUfFER~ ... 173
ADDDATATypES ... 175

I

\
\

IV

ALIAS ... 176
ASK ... 177
ASSIGN .. 178
AVAIL ... 184
BINDDRIVERS .. 185
BREAK ... 186
CD ... 187
CHANGET ASKPRI .. 189
CONCLIP : ... 190
COpy .. 191
CPU ... 196
DATE .. 198
DELETE .. 201
DIR .. 202
DISKCHANGE ... 204
DISKCOPY ... 205
DISKDOCTOR ... 208
ECHO .. 209
ED .. 212
EDIT .. 213
ELSE ... 215
ENDCLI ... : .. 216
ENDIF ... 217
ENDSHELL .. 217
ENDSKIP .. 218
EVAL : ... 218
EXECUTE ... 222
FAILAT ... 224
FAULT .. 225
FF .. 227
FILENOTE .. 228
FORMAT .. 229
GET ... 231
GETENV ... 232
IF ... 233
INFO .. 237
INSTALL .. 240
IPREFS ... 242

JOIN .. 243

LAB ... 244
LIST .. 245
LOADWB ... 250
LOCK .. 252
MAGTAPE ... 253
MAKEDJR .. 254
MAKELINK ... 258
MOUNT .. 259
NEWCLl ... 264
NEWSHELL ... 269
PATH .. 270
PROMPT ... 272
PROTECT ... 274
QUIT ... 277
RELABEL ... 278
REMRAD ... 279
RENAME .. 280
REQUESTCHOICE .. 283
REQUESTFILE .. 284
RESIDENT ... 287
RUN .. 290
SEARCH ... 292
; (Semicolon) ... 294
SET ... 295
SETCLOCK .. 296
SETDATE ... 297
SETENV ... 298
SETFONT ... 299
SETKEYBOARD ... 301
SETMAP ... 302
SETP A TCH .. 304
SKIP .. 305
SORT .. 306
STACK ... 308
STATUS ... 309
TyPE ... 310
UNALlAS ... 312
UNSET .. 313
UNSETENV ... 313

v

r

VERSION .. 314
WAIT .. 316
WHICH ... 317
WHY ... 318

Files On the Workbench Disk .. 320
Workbench Directories .. 320

AmigaDOS Error Messages•.•.......•.•....................•.............................•.....•.......•... 325

Index .. 331

vi

Foreword

The Workbench, the graphic-based interface that offers icons, pull-down menus,
and multiple windows, isn't the only way to operate the Amiga. A more direct
way to control this personal computer is called the CLI or Command Line
Interface.

Now in its fourth edition, this popular best-selling reference guide covers
all versions of AmigaDOS including the new Release 2 and Release 3.
AmigaDOS Reference Guide, Fourth Edition has been fully updated and shows
you how to access this operating environment and how to use its commands.

When COMPUTE published the first edition of this guide we expected it to
sell well-but we never expected the huge success it has seen. It has become the
standard AmigaDOS reference guide for Amiga users around the world. Best
selling author Sheldon Leemon has kept this guide up-to-date, adding new
information and revising the text to meet the needs of all Amiga users. Included
here is valuable, clear and concise information not only about the CLI, but also
the Amiga file system, devices, batch commands, and the two editors, Ed and
Edit.

This is the indispensable AmigaOOS guide and tutorial that has helped
thousands of Amiga users become CLI experts.

VB

Chapter I

Introduction to AmigaDOS

The Workbench environment makes it extremely easy for first-time users to learn
to use the Amiga personal computer. With its pull-down menus and its pictorial
representation of files and subdirectories" Workbench insulates you from the
harsh realities of a command-driven DOS (Disk Operating System) environment.
But this ease of use has its price. In accepting the Workbench environment, you
give up some of the flexibility and power afforded by a command-driven DOS.
More importantly, the Workbench also hides much of the nuts-and-bolts details
of what goes on at the DOS level. Leaving Workbench, users are somewhat
unprepared when things don't work exactly as expected.

While the Workbench approach has its share of advocates, many users of
the old-style DOS interface insist that they can run a program faster by simply
typing its name on a command line than they could by opening a disk icon and
double-clicking on the program icon. And for some Amiga users, the greater
control offered by a command-driven DOS interface is a matter of substance, not
style. Unless you are running Release 2 (or higher) of the operating system, there
are some things that you just can't do from the Workbench.

Before Release 2, the Workbench could only create a display for disks,
tools (program files), projects (data files), and drawers (subdirectories) for which
there existed a corresponding disk file whose name ends in . info (for instance,
Preferences. info). The .info files contain information about the type of object
which the icon represents and the graphic representation of the icon itself. But
there are many files on the Workbench disk that are not represented by icons.
These files include a simple sorting utility program and a screen-oriented text
editor. These programs could be well-used by many Amiga owners, but most
don't even know that they're present since they are not visible from the Work
bench unless you've turned on the "Show All Files" option of the Workbench 2
"Windows" menu.

Another feature of AmigaDOS that older versions of the Workbench do not
directly support is the use of command sequence files (known in the MSIPC
DOS world as batchfiles). These allow you to automate ajob which requires

INTRODUCTION TO AMIGADOS

several programs to be run in sequence, such as operating a compiler and linker
in order to produce an executable program. And while it's not possible to send
the directory of files on a particular disk to your printer from the pre-2.0 Work
bench (unless you write a program specifically for that purpose), it is easy to do
so from the CLI (Command Line Interface). Release 2 adds an "Execute Com
mand" feature that allows you to perform the same tasks from the Workbench,
but this feature merely invokes a CLI-like environment which can be best used
by someone who understands that environment.

Unlike some personal computers, the Amiga does not limit you to one
restricted operating environment, not even one so friendly as the Workbench. Its
operating system was designed to provide alternative ways to use the computer,
to meet the needs of as many kinds of people as possible. This philosophy is
evident in the way Amiga programs allow you to substitute control key sequenc
es for commands normally carried out by moving and clicking the mouse. Even
the Workbench lets you use the keyboard instead of the mouse. It should come as
no surprise, then, that the Amiga also offers the kind of command line interpreter
that is so familiar to users of MSIPC-DOS and UNIX. On the Amiga, this
environment is known as the CLI or shell. Just as Commodore has enhanced
Workbench functions in Releases 2 and 3, so too has it made the shell even more
useful in these new versions. COMPUTE's AmigaDOS Reference Guide, Fourth
Edition will tell you how to find this operating environment and how to use its
multitude of powerful and flexible commands.

What's Here
In addition, you'll find explanations of AmigaDOS's underlying concepts. These
concepts will be helpful not only when you use the CLI, but will also expand
your understanding of the Workbench and how to operate within it. If you have a
single-drive system, for example, you've probably noticed that when you try to
get a directory of the BASIC disk from BASIC, you're prompted to put in the
Workbench disk. When you swap disks, you receive a directory of the Work
bench disk instead. Knowing a little bit about how DOS operates and what files
it looks for can eliminate a lot of this disk swapping. The RAM disk and recover
able RAM disk (RAD:) also offer computing power impossible through the
Workbench alone. With a RAM disk, you'll have instant access to commands
which normally must be read from the disk, such as the one which is used to
produce a directory listing.

The introductory manual which comes with the Amiga personal computer
assumes that AmigaDOS is of interest only to software developers. That's simply

2

INTRODUCTION TO AMIGADOS

not true. Thousands of people-people who don't write software for a living
are interested in knowing more about their computers and learning how to get the
most out of them. If you fit that category, this book will help as you explore the
power of your Amiga computer.

The Workbench Versus the ell
The friendly Workbench environment that you see when you boot up your
Workbench disk is actually an application-in other words, a program-and not
part of the operating system. In fact, the computer starts in CLI mode and loads
the Workbench program automatically through the use of a command file (you'll
be hearing more about command files later).

Workbench's purpose is to interpret the choices you make when you move
the mouse pointer to various icons and click the button. As such, the Workbench
functions often have a close correspondence to DOS concepts. The drawer icons
you see on the Workbench desktop, for instance, represent the normal subdirec
tories created by DOS. And the Trashcan icon represents a subdirectory named
Trashcan. When you drag an icon to the trashcan, its corresponding file and that
of its icon are transferred to the Trashcan subdirectory. When you select Empty
Trash, the files which have been moved to the Trashcan subdirectory are deleted.

Some similarities between the Workbench and CLI environments are more
superficial. When you double-click on a tool (program file), the Workbench
prepares a suitable environment and runs the program. The same thing happens
when you type RUN program name from the CLI. But some Workbench pro
grams are not meant to be run from a CLI, and most CLI programs are not meant
to be run from the Workbench. In fact, none of the CLI commands found in the c
directory of the Workbench disk can be run from any version of the Workbench
prior to 2.0. Part of the reason for this is that older versions of the Workbench
recognize a file only if it has a corresponding file of icon information ending in
.info. Since none of the CLI command files has an icon file, none of them shows
up on a pre-2.0 Workbench.

But even if these did have icon files, the environment that CLI prepares for
a program is different enough from the environment provided by the Workbench
that these early CLI command programs still could not run under the Work
bench. For one thing, from the Workbench you may pass instructions to a
program to load a project (a data file that the program uses) by double-clicking
on the project's icon. Programs that use the CLI expect you to pass instructions
by typing them on the same line with the program name. The command line

COpy Holdfile H to Hnewfile"

3

INTRODUCTION TO AMIGADOS

for instance, tells the program named Copy which file to copy and what name to
give the new copy.

Getting to the ell or Shell Environment
If you're using a recent version of AmigaDOS, getting to the CLI environment is
no problem. All you have to do is open' the Workbench disk and double-click the
icon for the "Shell" program, which creates an enhanced CLI window. If you are
using an earlier version of the operating system, however, things are a bit more
complicated.

Pre-I.3 versions of the Workbench do not have the Shell program, nor do
they have visible icons for the CLI program (the CLl.info file in the System
subdirectory has been renamed CLI.noinfo.). You must use the Preferences
program to make the CLI icon in the System drawer of the Workbench visible.
Start the computer with the Workbench disk (preceded on the Amiga 1000 by the
Kickstart disk), and an icon representing that Workbench disk appears on the
screen. Open this disk by double-clicking on the icon, or by selecting it and then
selecting Open from the menu. A window will appear with icons representing the
programs on the disk. Start the program called Preferences by double-clicking on
its icon, which looks like an Amiga with a question mark on top of it. On the left
side of the Preferences screen, you'll see a box marked CLl, just above the Reset
Colors box and below the box where you choose between 60- and 80-column
text.

The CLI box is divided into two parts, one marked On, the other Off. The
Off box is highlighted in orange to show that the CLI icon is turned off. Click the
On side of the box so that it turns orange. While you're at it, you can set your
other preferences, such as text size and a printer driver, if you've not done so
already. Save your new preferences by clicking on the Save box at the lower
right of the screen. This renames CLI.noinfo as CLl.info.

Now, double-click on the System drawer to open its window. If you have
already opened the System drawer before running Preferences, you must close
the drawer and open it again in order to let your new preferences take effect since
the Workbench checks for icon files only when it opens a drawer. The window
which appears now contains an icon marked CLl (it looks like a box with the
characters 1> inside). Double-click on the icon. A window now displays on the
screen, with the title New CLI Window in its title bar and the prompt 1> await
ing your command. (To get started, see Chapter 2.)

There's another, even easier way to get to a CLI window. During the boot
up process, and after you insert your Workbench disk, the screen turns from

4

INTRODUCTION TO AMIGADOS

white to blue (gray under Release 2), and a sign-on message appears which reads
Copyright (C) 1985 Commodore-Amiga, Inc. When you see this message, hold
down the CTRL key and press the D key at the same time. This stops the execu
tion of the command file that loads the Workbench. **BREAK - CLI shows on
the screen, and under this, the familiar 1> prompt.

Creating a CLI Workbench Disk
If you're planning to use the CLI environment often, this process of opening the
Workbench and Shell icons (or the System drawer and the CLI icon) to get to the
CLI can become tedious. Since computers are supposed to make things easier,
doesn't it seem reasonable to expect the Amiga to do all this for you? With a bit
of setup work on your part, your computer can automatically open a Shell or CLI
window at startup time, or bypass loading and running the Workbench altogeth-
er.

In order to make a CLI Workbench disk, you should make a copy of your
Workbench disk, change the command file that automatically closes the CLI
window and loads the Workbench when the disk starts. To get you through this,
the procedure is completely outlined for you below, step by step.

Make a Copy of Your Workbench Disk
You can do this either from the Workbench or from the CLI. Let's assume you'll
use the CLI, since you presumably already know how to copy a disk with the
Workbench. First, bring up the CLI or Shell by double-clicking its icon on the
Workbench disk, or by booting the Workbench disk and then interrupting the
loading process with a CTRL-D key combination when the blue (or gray) screen
appears. From this point, the procedure is slightly different for single- and dual
drive systems.

Single-drive systems. When the CLI prompt (1)) appears, you may use the
DISKCOPY command to copy the Workbench disk. Get out a blank, new disk
for the copy. Remember, any information that's on this disk will be lost when
you copy to it. Type:

SYS:SYSTEM/DISKCOPY dfD: TO dfO:
and press RETURN. The copy program will prompt you when to put in the disk
to copy FROM (your original Workbench disk) and when to put in the disk to
copy TO (your blank disk). You'll have to swap the FROM and TO disks a
number of times with a single-drive system. The copy program will tell you
when the copy process is complete.

5

INTRODUCTION TO AMIGADOS

Dual-drive systems. When the CLI prompt (1)) appears, leave the Work
bench disk in the internal drive, and place a new, blank disk in the external drive.
Type:

SYS:SYSTEM/DISKCOPY dfO: TO dfl:
and press RETURN. You'll be prompted to put the FROM disk in drive dfO: and
the TO disk in drive dfl:, but since both disks are where they should be, merely
press RETURN. The copy program will tell you when the process is completed.
Place the disk which contains the copy of the Workbench into the internal drive.

Getting Going with ell
Restart the computer with your new disk. Press the CTRL key and both
Commodore/Amiga keys (the closed Amiga or Commodore key--on the left side
of the space bar-and the open Amiga or Commodore key-on the right side of
the space bar) at the same time to restart. Your new disk is now the system disk,
which will save you some disk swapping later.

Bring up the CLI. Use the CTRL-D combination to stop the Workbench
from loading during the boot process, or open the Shell icon (or System drawer
and CLI icon). If you use the Workbench CLI, you may find it convenient to size
this window to full-screen by moving it with the drag bar to the top left of the
screen and pulling the sizing gadget down to the bottom right.

Edit the command file. This is used to load the Workbench automatically
when you start the computer. You'll use the system screen editor program
called ED-to change the startup-sequence file in the s directory. To start the
editor, enter

ED s/startup-sequence

at the 1> prompt (whenever you see text in this font, press the RETURN key
at the end of the line). A new screen appears, showing the contents of this text
file. A text cursor shows at the top left corner. If you haven't changed the default
system colors, it will be orange (Release 2 users will have a blue cursor on a gray
screen). Use the down-arrow cursor key to move this cursor down to the second
from last line of the file (it should be resting on the first letter of the line that
reads LoadWB.)

If you wish to open a Shell or eLI window automatically and are using
Workbench 1.3 or above, type in the line

NEWS HELL

6

INTRODUCTION TO AMIGADOS

and press RETURN. Users of older versions should type in the line

NEweL I
and press RETURN. If you want to avoid opening the Workbench, you may also
delete the line that reads LoadWB. Make sure that your cursor is at the beginning
of that line, hold down the CTRL key, and press the letter "b". Not opening the
Workbench can be helpful if you are short on memory, but otherwise, you
probably want to leave this line as it is.

After you have made the desired changes, press the ESC key (found in the
upper left of the keyboard). An asterisk appears at the bottom of the screen, and
the cursor is now next to it. Type the letter "x" and press Return. This exits the
Ed program and saves your revised file to disk.

Make a backup copy of the disk right now, and put the original away so that
you can make clean copies of the disk in the future (unless you want to go
through these six steps every time). If you have only one drive, you'll find it
particularly convenient to have all of the CLI commands on the same disk as
your application programs. To make a new disk that contains both the CLl
commands and the application program, simply copy those application programs
onto duplicates of this master CLI disk. If you're really pressed for space, you
may have to delete some of the less useful commands, printer-driver files for
printers that you don't have, character font files, and so on. To determine which
files you can afford to delete, see Appendix A, which lists all the directories on
the Workbench disk.

7

Chapter 2

The ell Environment

When you turn on the computer and insert the Workbench disk into the disk
drive, the Amiga's operating system sets up a task (one of the programs that can
run simultaneously under a multitasking system such as AmigaDOS) called a
eLl process. The job of the CLI is to accept commands to run a program. When
the CLI finds the program, it loads the program, prepares its environment, then
passes control to the program. After the program finishes, control is passed back
to the CLI, which waits for the next command. Although the system starts up
only one CLI, you may start others yourself to run multiple tasks simultaneously.

The first thing that the initial CLI process does is to check whether there is
a command file in the s directory called Startup-Sequence. If there is, the com
mands listed in that file are executed automatically (see Chapter 5 for more
detailed information about command sequence files). On the standard Work
bench disk, this file contains commands to load and run the Workbench and end
the CLI process. But if there's no command present to load the Workbench, once
the command file is executed, the CLI process prints its prompt message (I»
and waits for further orders.

The AmigaDOS CLI is limited to the simplest of functions. It starts in
interactive mode, which means that it prints its 1> prompt and waits for you to
type something. It simply sits, letting you type until it sees that you have entered
a special editing character or pressed RETURN. The editing characters invoke
some minor screen-editing functions which are described below. But when you
press RETURN, the CLI looks at the whole line that you've entered.

It interprets the first word (a series of characters that end with a space) as a
filename. The CLI then tries to load a program file with that name. If it cannot
find the file, it prints an error message followed by another 1> prompt. If it finds
the file, the CLI tries to load it as a program. Since program files have a structure
that the CLI recognizes, it can tell whether or not the file is an executable pro
gram. Again, an error message and the I> prompt are displayed if the file is not
an executable program. If the file exists and is an executable program, the eLI

8

THE eLi ENVIRONMENT

loads the program into memory, prepares a stack area for the program to use as
workspace, tells the program where to find the rest of the text on the command
line in case it wants that text as instructions, and passes control to the program.
Once this happens, the CLI cannot accept user input until the program passes
control back to it.

Let's break this simple task into its component parts and examine them in
detail. We'll start with the process of accepting text characters that you type in.

The Cli Console
The console device that the CLI uses to accept keyboard input and display the
results operates much like an old-fashioned Teletype terminal-it can deal with
only a single line of text at a time. This command line may be up to 512 charac
ters long (255 if you're using an older version of AmigaOOS). It's possible,
therefore, that a single command line can occupy more than one line on the
screen. As far as the console device is concerned, you're still entering text on the
same line until you hit the RETURN key. When you've typed in 512 characters
(more than eight or so screen lines, depending on the column width of the
screen), the console refuses to accept any additional keyboard input.

One of the less pleasant aspects of using a simple line-oriented editor such
as the console device is that you cannot use the cursor keys to move to another
command line on the screen, edit it, and use the revised line. Each time you issue
a new command you have to enter the entire command line from scratch. In fact,
if you use one of the older Workbench versions, you cannot even use the cursor
keys to edit the line you're on. If you make a mistake at the beginning of a line,
you have to erase the whole line and start over. To remedy this situation, Work
bench 1.3 added a new console device called Newcon:, which performs line
editing functions. It also added a shell handler that introduced features like
aliases and command history. We'll be discussing these features, which became
a standard part of the operating system with Release 2, a little later on.

ell Editing
Because of its limited line-editing capabilities, the console device recognizes
only a very few special characters as editing commands. Some of these are useful
for working with the CLI, while others merely enable you to control the color
and appearance of the text that the console device prints to the screen (see
Chapter 4 for more about this device). In summary, here are the editing com
mands:

9

THE eLi ENVIRONMENT

Useful Editing Features

Key(s)
BACK SPACE or CTRL-H

\ CTRL-X

CTRL-L
RETURN or CTRL-M
CTRL-J

CTRL-\

Function
Erases the character to the left of the
cursor
Erases the entire current line (cancels the
line)
Clears the screen (form-feed)
Ends the line and executes the command
Moves the cursor to the next line, but
doesn't execute the command
Marks the start of a comment
End-of-file indicator

As you can see, on pre-l.3 systems, the only way to correct your typing
mistakes is to delete them with the BACKSPACE key (or hold the CTRL key
and press X if you want to erase the whole line) and retype. If you press the
CAPS LOCK key, the red light on the key appears, and all alphabetic keys will
be capitalized. This is of little practical significance since the CLI does not
discriminate between lowercase and uppercase, or even mixed case.

The RETURN key is the CLI's signal to process your command line. The
linefeed character (CTRL-J) moves the cursor to the beginning of the next line,
just like RETURN, but it doesn't cause the CLI to process the line until RE
TURN is pressed. This means that you can type a list of commands separated by
CTRL-J and have the CLI perform them one by one. For example, if you type

DELETE old file <CTR~-J> DIR

the CLI first deletes the file named in oldfile, then feeds the next instruction to
the following CLI prompt, which displays the new directory listing.

Though not really an editing character, the semicolon (;) is significant to
the CLI. The CLI interprets anything following a semicolon as a comment and
ignores the entire rest of the line. Comments may not be too useful for immediate
mode commands which you enter at the keyboard, but they can be extremely
helpful in documenting command sequence files (see Chapter 5).

The last character in the summary table of useful commands, CTRL-\, will
probably make more sense after you've read Chapter 4, which covers devices.
Briefly, it sends an end-of-file character to the console device. This is helpful

10

THE eLi ENVIRONMENT

Text Output Features

Key(s)
TAB or CTRL-I

CTRL-K
CTRL-O
CTRL-N
ESC-[lm
ESC-[2m
ESC-[3m
ESC-[4m
ESC-[7m
ESC-[8m

ESC-[Om
ESC-c

Function
Moves the cursor one space to the right (inserts a tab
character)
Moves the cursor up one line (vertical tab)
Switches to the ALTernate character set (shifts out)
Switches back to the normal character set (shifts in)
Switches to bold characters
Switches character color (to color 3)
Italics on
Underline on
Reverse video on
Switches character color (to background color
invisible)
Switches to normal characters
Clears the screen and switches to normal characters

Note: When using the ESC key combinations, just press the ESC key and then enter
the one to three additional characters. \\ .

because the Amiga is flexible about letting you use one device in place of
another. For instance, you can use the COpy command (program) not only to
copy one file to another, but also from one file to another device, such as the
printer. Likewise, you can COpy from the keyboard component of the console
device to a disk file. Unlike a disk file, the console device does not have a natural
limit to its input-you can keep typing and typing until you're too tired to type.
The CTRL-\ character, therefore, lets the console device know when you've
come to the end of the "file" so that you can stop using the console as an output
device and start using it for your CLI input again. PC/MS-OOS users will
recognize that this is the equivalent of the CTRL-Z (or F6) character used by that
operating system. Under AmigaOOS Release 2, you can also close the current
CLI window by sending it the CTRL-\ key combination.

Most of the other special command key combinations represent output
formatting commands that you may find amusing or learn to avoid. Their func
tions are really a by-product of the fact that the console device supports certain
standard codes which are usually applied to printer devices. The TAB key, for

11

THE eLi ENVIRONMENT

example, moves the cursor over one space as the space bar docs. But it leaves a
tab character in its wake, which early versions of the command line interpreter
didn't like at all. If you use a tab instead of a space, you may receive an error
message.

CTRL-O acts like an AL T -lock which permanently switches you to the
AL Ternate characters (you can think of these as the Other, or Oddball, charac
ters to remember the CTRL key combination). The alternate characters normally
appear only when you hold the ALT key down as you type. These characters,
which include accented vowels and other international symbols, are interesting to
look at if you want to see what characters the standard Amiga set contains, but
they're of little practical use here since the CLI doesn't recognize them. If you
get into this mode by mistake, type CTRL-N (for Normal characters) to get out
of it. You can also return to the normal character set by pressing ESC and the C
key, which both clears the screen and changes the character set. In pre-2.0
versions of AmigaDOS, when the screen clears, you don't get your prompt back
automatically-you must hit RETURN to get a new command line. If you just
want to clear the screen, CTRL-L (Linefeed) does the job.

The console device also recognizes a series of ESCape codes which change
the typeface of the font printed on the screen. For example, if you press the ESC
key, then the [key, I key, and m key, the screen text changes to boldface.
Likewise, the ESC-[2m combination changes the color of the printing. ESC-[3m
turns on italics, and ESC-[4m turns on underlining. These special features are
cumulative. In other words, if you change to bold. then turn italics on, the result
is text in bold italics. To disable all these special features and return to normal
text, use the ESC-[Om combination. Pressing ESC-C clears the screen and also
resets the text to normal characters. Note that although these features affect the
display, CLI pays no attention to special typefaces. This sampling of escape
codes was listed primarily to acquaint you with the fact that the console device
responds in many ways like a standard ANSI terminal. The codes are by no
means the only ones to which the console device responds. For instance, it also
accepts a wide range of cursor positioning commands. These commands, howev
er, are of little use to the average CLI user and are of greater interest to program
mers who wish to use the console device in their programs.

1.3 and Release 2 Console Enhancements
The original console device used by the CLI window was fairly primitive-it
couldn't even match the line-editing capabilities of the Commodore 64! This

12

THE eLi ENVIRONMENT

situation was remedied by a new console handler that was introduced with
Workbench 1.3. This new console did not become a built-in part of AmigaDOS
until Release 2, however. In version 1.3, this device (called NEWCON:) resides
in a file in the L: directory called Newcon-Handler, and must be added to the
system with the MOUNT command (the default startup-sequence file on Work
bench 1.3 mounts this console handler for you automatically). To start a CLI
window with the NEWCON: handler under 1.3, you must specify it as your
console in the NEWCLI command:

NEWCLI NEWCON:O/O/600/100/

Note, however, that if you use the NEWSHELL command (discussed below)
under 1.3, NEWCON: is used as the default console handler.

The enhanced console device adds two important enhancements to the
standard console handler. First, it adds line editing features. With the old con
sole, the only way to move back through a command line is with the Backspace
key, which erases everything as you go. The new one lets you use the left and
right cursor arrow keys to move left and right through the line, without erasing
any text. When your cursor is in the middle of a line, any additional characters
that you type will push ahead the existing characters to the right, without erasing
anything. The Backspace key can be used to erase the character to the left of the
cursor, while the Delete key erases the character under the cursor. The extended
editing features of the NEWCON: handler (and the Release 2 CON: device) are
summarized below:

The new console handler introduces one more subtle editing change.
Control characters are now printed in reverse video, and are not acted on imme-

Key
Del
CTRL-A

CTRL-K

CTRL-U

CTRL-W
CTRL-Y
CTRL-Z

Function
Erases the character highlighted by the cursor
Moves the cursor to the beginning of the line (or Shift
LeftArrow)
Erases everything from the cursor forward to the end of the
line
Erases everything from the cursor backward to the start of the
line
Deletes the word to the left of the cursor
Replaces the characters deleted with CTRL-K
Moves the cursor to the end of the line (or Shift-RightArrow)

13

THE eLi ENVIRONMENT

diately (though they will be passed through if the screen output is directed to a
file or device). This means that typing the sequence ESC-c will no longer
immediately clear the screen, although if you press RETURN after typing it, the
screen will clear when the 1.3 CLI prints the error message Can't open <ESC-c>.
Under Release 2, this error message changes to :Unknown command, and the
message stays on the screen after it is cleared.

In addition to enhanced editing functions, the new handler provides a
command history buffer. This buffer saves each command line as you enter it, up
to a maximum of 2,048 characters (when the buffer fills, the oldest command
line is deleted each time a new one is entered). To retrieve a previous command
line, you merely press the UpArrow key. Each time you press this key, the next
oldest command line appears. If you go past a command line, you can move
forward through the buffer with the DownArrow key. To move all the way
forward to the most recent (bottom) entry in the buffer, type CTRL-B (or Shift
DownArrow). This leaves you on a blank line. The command history also has a
search feature which allows you to find a past command by typing part of it and
then pressing Shift-UpArrow. For example, if you wanted to repeat the com
mand:

Copy Work:Wordprocessing/Documents/MyDoc to dfl:Backup

and you know you'd typed the command recently, you could just type:

Co <Shift-UpArrow>

and NEWCON: would display the last line that you typed that started with those
two letters. If the command line you'd like to repeat showed up, you could just
hit RETURN to re-issue the command. Note, however, that in 1.3, the search
function is case sensitive; if you type Co< Shi ft - UpArrow>, NEWCON:
won't find a command line that starts with copy. The search function of the
Release 2 console is not case sensitive, and will find copy when you type in Co.

The command history of NEWCON: can come in very handy when you're
performing repetitive tasks. For example, if you wanted to format a series of
disks, you would only have to type the Format command once. For each suc
ceeding disk, you would only have to press the UpArrow and Return keys.

A new feature that is unique to the Release 2 console device is the ability to
copy text from ~ console window and paste that text elsewhere in the same
console window, or even in a console window that belongs to an entirely differ
ent program such as the Ed text editor. To copy text, you move the mouse
pointer to the beginning of the text, hold down the left mouse button, and drag

14

THE eLi ENVIRONMENT

the mouse over the text until the desired portion is highlighted. Then, hold down
the right Amiga key and press C to copy the text to the buffer. When you wish
to paste the text, move the cursor the appropriate spot and press the right-Amiga
V combination. The same clip of text can be repeatedly pasted.

By default, the console device uses its own copy-and-paste buffer. When
you run the CLl program called CONCLlP, however, it uses the clipboard device
for these copy operations. This means that any program can participate in these
transfers, even if it doesn't use a console window (as most programs do not), just
by supporting the clipboard device. Since the default startup-sequence script
automatically runs CONCLlP when you turn the computer on, the console uses
the clipboard unless you specifically prevent it from doing so.

Pausing and Restarting
Another aspect of the console device that you should be familiar with is pausing
and restarting screen output. The CLI (and the command programs that use its
console device) constantly watches the console for input from the keyboard. If
you type a character while one of the command programs is running, the pro
gram will stop its own output to the screen so as not to mix it with your input.
Even if the command program prints no messages of its own, you'll not get the
CLI prompt (1)) back until you restart output. The way to do that is either to
erase the line that you're typing (by using the BACKSPACE or CTRL-X keys)
or finish the line by entering a RETURN.

The pause is really a function of the CLI's type-ahead feature. The CLI can
keep track of up to 255 characters of command instructions while it's busy
running a command program and will execute these instructions after it's fin
ished. In practical terms, however, it means that you can pause a display of, say,
a directory listing, by pressing the space bar and restart it later by pressing the
BACKSPACE key. This roughly corresponds to the function performed by the
CTRL-S, CTRL-Q combination on MS-DOS machines. Under AmigaDOS
Release 2, however, you can use CTRL-S to suspend output from the CLl, and
CTRL-Q to resume, just as with MS-DOS.

If you use the RETURN key to complete the line rather than erasing it, you
should be aware that the command line that you've just entered will be saved by
the CLI and will be executed after it finishes with the current command.

If you prefer to terminate output entirely instead of just pausing it, you can
use the BREAK function. Hold down the CTRL key and press the C key, and
you'll see the message **BREAK as the CLI prompt appears once again. You

15

THE eLi ENVIRONMENT

may also interrupt an EXECUTE command sequence with the CTRL-D combi
nation (see Chapter 5 for details on command sequence files). AmigaDOS
reserves the CTRL-C, CTRL-D, CTRL-E, and CTRL-F combinations for inter
rupt functions, but the CLI uses only the first two. Other programs may use the
latter two as they see fit.

As you'll see later on. it's possible to have more than one CLI window
open at a time. Using the CTRL-C or other break key combinations only work
for the CLl window that's clIrren/ly active. To interrupt others. you must either
make them the active CLl and use the break keys or use the BREAK command.
This command interrupts the other process just as i I' you'd made it active and
then used the break keys.

The Shell
Another CLl enhancement first offered in Workbench 1.3 is a slightly "smarter"
command shell. Where the earlier CLl would only execute the command whose
name appears as the first word of the command line, the Shell knows a few
additional tricks. Since the Shell did not become the default command handler
until Release 2, however, 1.3 users must add it to the system by loading the
L:Shell-Seg file on which it resides. To do this, use the command:

RESIJFNT eLI L:She11-Seg SYS?E~ pure

Executing this command. however, will not convert the CLI from which the
command was issued into a Shell CLl. Only CLI windows that are opened after
the command is given will have the properties of a Shell. The default Startup
sequence script file on Workbench 1.3 executes the necessary RESIDENT
command, so that all CLI windows that you open from the Workbench have the
Shell characteristics. The command NEWSHELL not only opens a new Shell
process (if the Shell-Seg has been loaded), but opens it with a NEW CON:
window as well. Remember, these distinctions apply to 1.3 only. As of Release
2, all CLI windows are Shell windows with the new console features.

The first enhancement offered by the Shell is recognition of a new
PROMPT argument. When you use the characters %S in a prompt string, they
will be replaced with the namc of the current directory, whatever that happens to
be at the time. For example. the command:

?rompt II%N.%S> II

might lead to a prompt string that looks like this:

1.Workbench 1.3>

16

THE eLi ENVIRONMENT

Whenever you change your current directory (more about that next chap
ter), the prompt will change to reflect the new location. For more dctails on the
PROMPT command, see the reference section.

The second new feature of the Shell is much more substantial. This is the
power to create aliases for commonly used AmigaDOS command. An alias is an
"assumed name" for an existing command, usually shorter than the actual
filename of the command. For example, you could give the command Makedir
the alias md, and then, whcncver you wanted to create a new directory, you'd
only have to type md, instead of Makedir. To create an alias, you use the Alias
command, which is recognized only by thc Shcll (it can be thought of as an
internal command, one the Shell knows about without reading in a command
file). The format for this command is:

ALIAS name command
where name is the new name by which you wish the command to be known, and
command is the command that you want executcd when that name is given. In
the example above, you'd give the Makedir command its alias by saying:

ALIAS md Makedir
Alias is good for more than just changing a command's name, however. It

can be used as a handy shortcut for an entire command line. For example, you
could use it to condense the command Format drive dfO: namc Empty noicons
down to the command fmt with the Alias command:

ALIAS fmt Format drive dfD: name E~pty noicons
Not only can you enter command parameters into an alias, but you can even

enter in a partial list of parameters, and specify a place where substitutions will
be made with a pair of square brackets U. For cxample, if you wantcd the above
alias to be usable with any floppy drive, not just the internal one. you could give
the command

ALIAS fmt Format drive df [l: name irrc[)ty noicom;

When you give the fmt command, the square brackets are replaced by
whatever number you type as a command parameter. For example, to format
drive I, you would type

FMT :
There are a few more facts that you should know about the ALIAS com

mand. The command ALIAS entered by itself will list the current aliases. To
remove an ALIAS, type ;'\L=;~S name with no command, whcre name is the

17

THE eLi ENVIRONMENT

alias you wish to remove (under Release 2, use the UNALIAS command).
Finally, each set of aliases is known only to its own particular shell process. If
you start a new Shell, it won't know about the old Shell's aliases. The same is
true for the enhanced prompt. If the old Shell had a prompt that contained the
%S character, the new Shell will inherit a prompt that reflects the directory of
the old Shell at the time the new one was created. This prompt will not automati
cally change to reflect the new Shell's path. Since it would be rather inconve
nient to enter a new prompt string and a new set of aliases for each new Shell
that you create, AmigaDOS lets you create a script file that automatically does it
for you. If you start a Shell with the NEWSHELL command, it will automatical
ly execute all of the commands in the file called S:Shell-Startup at the time of its
creation.

The last two features of the 1.3 Shell will be covered in greater depth later
on, since they concern subjects which we haven't covered yet. We'll mention
them here, just for the sake of completeness. The first has to do with sequence
file execution. Normally, you use the EXECUTE command to execute a com
mand sequence file. With the Shell, however, its possible to execute sequence
files just by typing their name, if the file's S protection bit has been set. The
second feature is a new kind of output redirection. Normally, when you redirect
output to a file. it creates a new file that overwrites the old file of the same name.
With the Shell redirection operator », new information is appended on to the
end of the old file, if any.

In addition to the benefits introduced in the 1.3 Shell, the Release 2 Shell
adds some new features of its own. One important new feature is the ability to
include the text output of one command as input for another command. Let's say
that you wanted to use the ECHO command to print the total amount of free
memory in a sentence such as The total amount of memory available is xxxxxxx
bytes, where the x's represent the number of bytes. This number may be obtained
as the output of the A V AIL command. By enclosing it with the special back
wards apostrophe character (also known as a back tick, it's the key right above
the TAB key), you can insert the AVAIL command right into the ECHO com
mand as follows:

ECHO liThe total amount of available memory is 'AVAIL
TOTAL' bytes"

When this command is executed, the A V AIL TOTAL command is per
formed first, and the results are printed as part of the output of the ECHO
command:

18

THE eLi ENVIRONMENT

The total amount of available memory is 965,432 bytes
When using a back tick command in an alias, you should remember that

embedded commands are executed at the time the alias is formed, not at the time
the alias is executed. If you wished to turn the above example into an alias, you
might try the command:

ALIAS free ECHO HThe total amount of available memory
is 'AVAIL TOTAL' bytes"

Unfortunately, the command AVAIL TOTAL will only be evaluated at the time
when the ALIAS command is issued. If there were 965,432 bytes available at
that time, that is the number you will see whenever you issue your new FREE
command, regardless of how much memory is actually free at that time. In order
to have the embedded command executed when the aliased command is execut
ed, you must use the asterisk escape character in front of each back tick charac
ter. By changing the ALIAS command to:

ALlAS free SCHO HThe total amount of available memory
is * 'AVAIL TOTAL*' bytes"

you'll get an accurate tally of free memory whenever you use the FREE alias.
The Release 2 Shell is also sensitive to environment variables. These are

stored text strings whose contents are retrieved each time the Shell executes a
command that refers to them. The two types of environment variables, local and
global, differ only in their scope. Local variables are created using the SET
command, and are significant only to the Shell in which they were created.
Global variables are created with the SETENV command, are stored in the ENV:
directory, and can be accessed by any ShelL or by any program. If you create the
environment variable Editor with the command:

SETEl'P1 editor \~emacs

then any program will be able to determine that your preferred editing program is
Memacs. Moreover, any Shell command that uses the expression $Editor (the
dollar sign is the character that identifies an environment variable) will have that
expression replaced by the string "Memacs". Therefore, if a Shell command or
script uses the line:

RUN $editor textfile
the Memacs program will be run, and it will load textfile. If you decided at some
other time that you liked a different text editor better. you could use SETENV to

19

THE eLi ENVIRONMENT

change the Editor variable to the name of another program, and the above
command would run that program instead.

Under Release 2, certain environment variables are maintained by
AmigaDOS. These are KICKST ART (contains Kickstart version), WORK
BENCH (contains Workbench version), ECHO (if set to ON, commands are
echoed to the screen before execution), PROCESS (contains the process num
ber), RC (contains the return code of the last command), and RESULT2 (con
tains the error number for last command).

Running a Program from a ell
Once the CLI has evaluated the text that you've typed in, the next phase of its
operation is running a program. Since the CLI interprets the first word you type
as the name of a program file, running a program from a eLI is simple-all you
do is type the name of the program at the prompt, followed by pressing the
RETURN key. If the program needs further input to run, you type that input on
the same line as the filename. For example, to create a duplicate of one file under
another name (on the same disk and in the same directory as the original), type:

COPY old file TO new file
In this command line, the word COPY is the name of the copy program file, and
the rest of the line tells that program what to do.

The Complete Location
In actual practice, running a program is not quite as simple as typing its name.
That works only if the program is located in the current directory of the current
disk, or if it's located in the current command directory or command path. These
concepts will be discussed in detail in Chapter 3, which deals with the directory
structure, and Chapter 4, which explains the use of virtual devices. Generally
speaking, however, when you start up the system, the current directory is the root
(topmost) directory of the Workbench disk that's in the internal disk drive (DFO:)
or the boot partition of your hard drive, and the command directory is the c
subdirectory found on that disk. If your program is anywhere else, you have to
specify its complete location by typing in the name of the disk and/or the subdi
rectory on that disk. For instance, to run a program called WordWizard located in
the Wordprocessing subdirectory of the external floppy drive (DFI :), you would
enter the command:

JFl:ltJo:cdprocessing/Wordwizard

20

THE eLi ENVIRONMENT

There are other reasons why a program may not run when you type its
name. There may be typing errors in either the program name or the instruction
line that follows it. The file may not be in the executable load format that
AmigaDOS requires, or the disk itself may be damaged or write-protected. In
most cases, AmigaDOS gives you complete error messages and may even give
you a chance to remedy the error without having to redo the command. In some
cases, however, these messages may not be satisfactory. You can get more
information about a failure by using the WHY command--:iust type WHY after
receiving an error message. Only rarely will you receive a more cryptic message,
such as Error code 218. To find this error code's meaning, use the FAULT
command. Typing FAULT n, where n is the error code number, will usually
yield a clearer explanation. If all this fails, or if you're simply curious, consult
Appendix B, which explains the various errors you might receive. Release 2
users will be happy to know that starting with that version, error messages are
much less cryptic.

When a program ends, it usually exits with a return code. This code may be
zero if the program exits nonnally, or higher if it exits because of an error or
problem. This feature is sometimes used to form a conditional block of state
ments in a command sequence file, as we will see in Chapter 5. Under
AmigaDOS Release 2, the system maintains the RC and RESUL TS2 environ
ment variables to help you keep track of the last return code and error number.

Room to Work
One rare problem which you might encounter concerns the environment that the
CLI provides to the program that it's running. As mentioned earlier, after the eLi
successfully loads the program, it prepares a stack area for the program to use as
working storage. The initial allocation for this stack area is 4000 bytes. Usually,
this will be enough, but in some cases there won't be enough stack space for the
program to run. If you try to run the ABasiC program that was supplied with the
first Amigas from a CLI, for example, you'll receive a message that there's not
sufficient stack space. If you first increase the stack space to 8000 bytes, howev
er, with the STACK command (STACK 8000), the program runs. Other pro
grams, like early versions of the SORT command-which needs a lot of working
space if it's to sort a large file-may run out of stack space and cause the com
puter to hang up. If you arc using an early version of AmigaDOS, increase the
stack space before sorting a large file.

21

THE eLi ENVIRONMENT

Though most programs written for the CLI will not need their stack in
creased, some programs that were written for the Workbench environment may
need a stack increase when run from the CLI. To see the stack size that's re
quired, click once on the program's icon, then select the Info item from the
Workbench menu (Information is in the Tools menu in Release 2). There will be

- - a number III aboxmarked "Stack" which will tell you the required stack size.
A final note about the simple nature of the CLI process. Some disk operat

ing systems (like MS/PC-DOS) have a set of intrinsic commands, which the
DOS recognizes and executes as soon as the user types them in on the command
line. In Workbench versions prior to Release 2, CLI commands are all disk-based
programs, so you must have the CLI disk in the drive before you can use any of
these commands. This is not as inconvenient as you might expect. For one thing,
you can transfer the commands that you use most often to the RAM device and
add that directory to the current search path. Starting with Workbench 1.3, you
can also make commands resident by using the Shell and the RESIDENT com
mand (more on these later). This gives you the equivalent of a custom-tailored
set of intrinsic commands which occupy no more user RAM than is really
necessary. Another nice thing about having all the commands as program files is
that you can rename any command to suit your preference (though for the sake of
compatibility, you'll probably want to make a copy of the program with a new
name, while retaining the file with the old name as well). For example, if you're
used to MS/PC-DOS, you might want to use the word ERASE instead of DE
LETE. If you type COPY c/de1ete TO c/erase, you'll be able to use either
form of the command. The alias feature of the Shell (discussed above) provides
similar capabilities, without requiring multiple copies of the file.

Starting with Workbench 2.0, over 30 CLI commands have been removed
from the C: directory and have become internal commands that are always
available. You can get a list of names by issuing the RESIDENT command.
Although these internal commands are part of the CLI, they can still be replaced
using the REPLACE option of the RESIDENT command.

Starting Additional eLI Processes
Though AmigaDOS is a multitasking operating system, each CLI can run only
one program at a time. To run several programs simultaneously, you must create
additional CLI processes. The command program NEWCLI takes care of this
nicely. When you type NEWCLI, a new interactive CLI window opens up in
front of the current window. This window displays the message NeweLl task 2
(or New Shell Process 2), followed by its prompt, 2>.

22

THE eLi ENVIRONMENT

This should solve the mystery of why the prompt in the first CLI window is
1>. The number in the prompt is the task number of the CLI. By the way, you're
free to change the prompt to anything you want, in any CLI window. by using
the PROMPT command. For instance,

PROMPT I/What is your wish, 0 Master?"

will change the prompt to this verbose phrase. Even AL T characters, such as
foreign language accented characters, can be used in a prompt string. In fact, you
can use the text output commands (within quote marks) to change the color of
your prompt, or to make it appear in reverse video, as with the command shown
below.

PROMPT I/<ESC>[7mReverse prompt» <ESC>[Om 1/

When you create a new CLI window, it becomes the active window. You
can tell which window is active by looking at the title bars. The title bar of the
window that's currently active is a solid color, while the title bars of the other
windows are dotty (or ghosted, as it's called). To change a window from inactive
to active. just move the mouse pointer inside the window and click the mouse
button. Whenever you type anything at the keyboard, the printing always appears
in the active window. The other rules for system windows apply to CLl windows
as well. You can use the normal system gadgets to change the size of the new
CLI window, drag it around the screen, and move it in front of or behind other
windows. You can keep opening as many as 20 CLI windows, provided that
there's enough available memory (this 20-window limit was removed in Release
2).

Your Own Windows
If you just type NEItJCLI, the operating system decides at what position on the
screen to create the window and how large the window will be. These sizes are
measured in pixels (picture elements), which are the individual dots used to
create the display. The standard DOS screen is 640 pixels across and 200 pixels
high. Versions 1.3 of AmigaDOS creates new CLI windows that start at the top
left comer of the screen, and are 640 pixels wide by 100 pixels high. All new
CLI windows are created in the same place, in the same size, unless you specify
otherwise. This means that the third CLI window appears atop the second, and
you'll have to drag one of them out of the way to use both.

You can create a new CLI window in a particular location and size by
describing the console device output window. The description for this device
follows the format

23

THE eLi ENVIRONMENT

CON: hpos/vpos/width/height/windowtitle
where hpos is the horizontal position of the top left corner of the window (ex
pressed as the number of pixels in from the left edge of the screen), vpos is the
vertical position of the top left corner of the window (expressed as the number of
pixels down from the top edge of the screen), and ~vidth and height give the size
of the window in pixels. The maximum size for a CLI window is the screen size,
which for the default Workbench screen is 640 x 200 pixels. The minimum is
90 x 25 pixels. The last entry, l1'indOlvtitle, is optional. It allows you to enter the
text of a title to appear in the title bar. If you don't enter any text, the title is left
blank. To create a new CLI window that occupies the full screen, you would type

KEWCLI CON:O/O/640/200/

Note that the last slash mark is required, even though you didn't specify the
title,

A title can contain special characters, such as the space character (which
AmigaDOS usually interprets as separating one command word from another),
but if you use them, you must put the entire device name in quotation marks:

N~WCLI uCON:40/40/200/100 i A Standard Window"
Starting with AmigaDOS Release 2, the CON: window description can

have one more item added, an options entry that appears after the title, and is
separated from it by a slash. Actually, one or more of these options can be used,
each one separated from the previous one with a slash. The relevant options
available for a Shell window are:

CLOSE

BACKDROP

NOBORDER

NODRAG

NOSIZE

24

A close gadget is included in the window border. This is the
default case if no options are selected.
The window type is changed to backdrop, which means that it
appears behind all other windows on the Workbench screen.
You cannot depth-arrange, move, or resize it (except by using
the zoom gadget).
No visible line is drawn around the window, although the
zoom and close gadgets will still appear above it. If you zoom
this window to full size, those gadgets will disappear, and you
will have a full-screen window that can't be sized or moved.
The window can't be dragged. It will have a zoom, depth, and
size gadget, but no close gadget.
The window will not have zoom, size, or close gadgets. Only
a depth gadget will appear.

THE eLi ENVIRONMENT

SCREENname The window will open on the public screen whose name is
name. For example, to open the CLl window on the public
screen named Fred, you would add /SCREENFred to the end
of the window description. This option only works if a public
screen of the specified name is already open.

SIMPLE This option chooses the simple window refresh scheme. If
you enlarge such a window, the text expands to fill the
available space, allowing you to see more information,
including information that had scrolled off the screen. This is
the default refresh type for Release 2 Shell windows, if no
option is specified.

SMART This option chooses the smart window refresh scheme. If you
enlarge this kind of window, existing text is not redrawn. This
is the kind of CLl window used by AmigaDOS 1.3 and
earlier.

To open a new Shell as a borderless backdrop window on a public screen
named PubScreen, you would use the command

NEWCLI HCON:40/40/200/100/Shell Window/BACKDROP/
NOBORDER/SCREENPubScreen H

Another difference between the Release 2 Shell and previous models is that
the window uses whatever font is chosen for System Default Text using the Font
preferences editor. This must be a fixed width font such as Courier. You may
also change the font in each individual Shell window by using the new
SETFONT command.

There's one more feature of NEWCLl that you should know about. When
the first CLl window opens, it automatically executes a command sequence file
called s:startup-sequence. We'll talk all about command sequence files in
Chapter 5, but for now, let's just say that it's a file that executes a series of CLl
commands. If you want your new CLl window to automatically execute a series
of commands when it starts up, you can specify a command sequence file in the
NEWCLl command:

NEWCLI FROM StartupFile

where StartupFile is the name of the command sequence file that you want
executed. Under Workbench 1.3 and higher, if no FROM file is specified, the
sequence file S:CLl-Startup is automatically executed when a NEWCLl com-

25

THE eLi ENVIRONMENT

mand is issued. Likewise, if no FROM file is specified when a new Shell window
is opened, the file S:Shell-Startup will be executed instead.

Going Away
Any time you want to eliminate one of your CLI windows, make that window
active by clicking the mouse button inside its borders, and type ENDCLI. The
message eLI task n ending (where n is the number of the CLI task) is briefly
printed, and the window closes. (In fact, the message prints so quickly that you
probably won't see it.) In Release 2, there are a couple of additional ways to
close a Shell window. You can use the close gadget in the upper left corner of
the window, and you can also press the CTRL and backslash keys at the same
time (which give the "end of file" signal to the CLI).

If the Workbench isn't open, always leave yourself at least one open CLI
window-if you close the final window, you won't be able to issue any com
mands. You'll have no choice but to warm start the computer by pressing CTRL
and both Amiga keys at the same time. In fact, it's not a bad idea to keep an extra
CLI around, just in case. There are programs, like the public domain "PopCLI,"
which allow you to open a new CLI window just by pressing a hot key combina
tion.

If you're using one program and want to start another, you can switch back
to the Workbench screen (the one on which the CLls reside), either by using the
depth-arrangement gadgets at the top right of the screen, or by using the Amiga
N key combination to bring the Workbench screen forward and Amiga-M to
send it back. (The Amiga key combinations move entire screens, not just individ
ual windows.) This gives you access to your open CLI so that you can run
another program or use one of the DOS command programs.

If you have a number of CLI tasks running at the same time, some whose
windows do not appear on the Workbench screen, you may lose track of them
all. The STATUS command prints a list of all of the current CLI tasks and the
command programs that they're running.

Running Programs In a Noninteractive Process
When you want to run a program as a separate task, but don't need the interac
tive features (and the memory overhead) of another CLI window, you can use the
RUN command program. When you type RUN followed by a command you
would normally type in a CLI window, a new CLI process is created which
executes the command, but it doesn't open a CLI window. Let's say that you

26

THE eLi ENVIRONMENT

want to run a word processor program without losing your current CLI window.
If you normally would type wordprocessor to start the program, type RUN
wordprocessor instead. The RUN command prints a message like [eLl nJ
(where n is the next unused CLI number) and then runs the word processor. This
saves you the trouble of typing NEWCLI before entering the command and of
getting rid of the CLI with ENDCLI after you're finished. It also saves you the
memory that would ordinarily be taken up by the CLI window. When you finish
with the word processor and exit the program, it leaves nothing behind.

Even though RUN does not provide you with a command window, it does
offer a way to send additional commands to the process. At the end of the first
command, type a plus sign (+) and press RETURN. You may then enter a second
command on the next line. If you want to add a third, type the plus sign and
RETURN at the end of the second line and add the new command on the third
line. At the end of your last command line, just type RETURN. The RUN
command executes each of the command lines in sequence, just as if you had
typed them in a CLI window, one after the other. For example, if you want to
send a sorted list of BASIC program files to the printer, enter

RUN LIST #?bas TO ram:temp+
SORT ram:temp TO prt:
This runs the LIST program, which sends a list of all files with the charac

ters .bas in their filenames to a file on the RAM disk. After LIST has finished,
the CLI runs the SORT program, which sorts the lines and sends them to the
printer. This CLI process doesn't disappear until the last task is finished.

Throughout the rest of the book, you' 11 occasionally come across lines to be
entered on the Amiga which, because of the book's formatting, are split on
the page. A continued line is indented-do not press RETURN at the end of
the first physical line, but simply continue typing with the indented charac
ters.

27

Chapter 3

The Filing System

Each Amiga personal computer comes with an internal double-sided, double
density (or high density) 3Y2- inch disk drive. Each double density 3Y2- inch disk
can hold a total of 880K bytes or 901,120 characters of information. Of this total,
about 837K bytes is available for user storage (879K if the disk is formatted
using the Fast File System under AmigaDOS Release 2). Before a disk can be
used to store information, AmigaDOS must first write certain information to it in
order to prepare it for use with the Amiga filing system. This is called formatting
the disk and is performed by the FORMAT command. Its syntax is

FORMAT DRIVE dfO: NAME Volume name

Volume Names
When you format a disk, the program notifies you as each of the 80 cylinders
(tracks) on the disk is formatted (written), then verified (read) to make sure that
the formatting information is correct. If you want to format the disk on a drive
other than the internal drive, just substitute the device name of that drive (for
example, df1: refers to the first external 3Y2- ~inch drive on an Amiga 500 and
600, or the second internal drive on a 2000 or 3000). Notice that after the name
of the drive, the command specifies NAME Volume name. AmigaDOS requires
you to give each disk a name, known as the volume name. You must use the
keyword NAME before entering the name. To name a disk as Wordprocessing,
you'd use NAME Wordprocessing. It's a good idea to use a name which identi
fies the disk as precisely as possible. AmigaDOS is able to identify a disk by its
volume name as well as the device name of the drive in which it resides. There
fore, if you remove the Wordprocessing disk from the drive and DOS wants to
access something on that disk, it will prompt you to Please insert volume
Wordprocessing in any drive. (This message is not always accurate. Sometimes
the disk must be placed in a specific drive, normally the one which it was in
earlier. If you put the disk in the wrong drive, the message will reappear.) You

28

THE FILING SYSTEM

can change the volume label of a disk at any time with the RELABEL command
program. To change the name of the disk in the above example to Spreadsheet.
for instance, you'd type

RELABEL dfO: Spreadsheet

Identification
Besides the volume name, AmigaDOS also writes an identification number on
each disk. It tries to make each of these 1D numbers unique, so even if two disks
both have the same volume name, the disk operating system can tell them apart.
The disk-duplication programs provided on your Workbench disk do not repro
duce the old ID number on the new disk, so even exact copies can be distin
guished from the original. Only disks that are duplicated by a commercial mass
duplicating machine, or by a software program designed to exactly duplicate
copy-protected software, will have IDs that match the original.

Info
After a disk is formatted, the INFO command shows that it contains 1758 blocks
of usable storage space, each containing 512 bytes. Note that this is two blocks
short of 880K-the disk operating system reserves these for its own purposes. In
addition, DOS uses two of these 1758 blocks, leaving you with] 756 free blocks
(878K) on a newly formatted disk. If you want to verify this, you can use the
command program INFO to display the amount of storage used on the disk and
the amount of remaining free space. Type INFO using version 1.3, and you'll see
a display which looks like this:

Mounted disks:
Unit Size Used
DF1: 880K 1317
DFO: 880K 2
Volumes available:
Empty [Mounted]
Workbench [Mounted]

Free
441
1756

Full
74%
0%

Errs
o
o

Status Name
ReadlWrite Workbench
ReadlWrite Empty

This display tells you the size of the total storage space on each disk
currently in each drive (mounted), how many blocks have been used, how many

29

THE FILING SYSTEM

are free, the percentage of disk space that's used up, how many errors were
encountered in reading from the disk, whether or not the disk is write-protected,
and the volume name of each disk.

The 1.3 INFO results are somewhat misleading, because they fail to indi
cate that under the original Amiga filing system, only 488 bytes out of each 512-
byte block are actually used for storage. The other 24 bytes are used to hold
duplicate information about the structure of the files themselves, making it
somewhat easier to recover files that have been corrupted by a bad write opera
tion, or by problems with the disk medium itself. Under AmigaDOS Release 2,
the INFO command shows 837K under the Size column for a normal Amiga
floppy.

AmigaDOS Release 2 makes it possible to format a floppy disk using the
Fast File System, a new filing system that is most commonly used for hard
drives. To format a Release 2 disk with this new organization, use the FFS
switch in the format command:

FORMAT DRIVE dfO: NAME FastDisk FFS
A disk formatted using this file system will be read a little quicker, and will

hold a little more information than a standard Amiga floppy. These advantages
are outweighed, however, by the fact that an FFS disk can only be read on a
system that has AmigaDOS Release 2 installed. For this reason, few users bother
to format floppy disks using the Fast File System option.

Installing
There are a couple of other things that you should know about formatting a disk.
First, it's not necessary to format a disk before you perform a DISKCOPY to it.
The DISKCOPY program both formats the new disk and copies all of the
information from the source disk to this disk. Second, the system will not accept
a newly formatted disk if it's inserted at the prompt which tells you to put in the
Workbench disk (it just keeps asking for a Workbench disk). In order to make a
newly formatted disk bootable, you must use the INSTALL program. To install
the boot information on drive dfO:, for example, enter

INSTALL dfO:
The INSTALL program doesn't prompt you to put the disk into the drive

it does the installation immediately. This makes it difficult to use INSTALL 011 a
single-drive system because without an opportunity to swap disks, you must have
the INSTALL program on the disk that you want to install. If you don't want to

30

THE FILING SYST~M

copy that program to the disk, you can make use of the command template
feature to pause the command after it is read off of the disk, allowing you to
swap disks at that point. This feature is invoked by typing the command, fol
lowed by a question mark. In this case, with the Workbench disk in the drive we
type:

INSTALL ?

When the INSTALL program is loaded up, it responds with the command
template that shows the command line requirements and options. In the case of
the Release 2 INSTALL command, it responds:

DRIVE/A,NOBOOT/S,CHECK/S,FFS/S:

which tells us that a drive name is required, and the options include NOBOOT
(make it non-bootable), CHECK (check for boot block viruses), and FFS (write a
Fast File System bootblock). After the command prints its template, it waits for
you to enter the rest of the command information. At this point, you can pop out
the Workbench disk, insert the disk you want to install, and enter "DFO:" at the
prompt. The newly formatted disk you have inserted into the internal drive will
be the one that is INSTALLed.

Once the INSTALL process is completed, you may put that disk into the
internal drive when the system prompt for the Workbench appears on the screen,
and the disk will boot and show the CLl I> prompt. Unless you put the DOS
command files on that disk, of course, you cannot use the commands just by
typing their names.

The CHECK option that was added as of Workbench 1.3 allows the TN
STALL program to see if the information on the boot block of the disk is the
standard Commodore-Amiga code, or some non-standard code which may
indicate that the disk contains a virus (a hidden program which may adversely
affect your computer's performance). Using the INSTALL program to re-write
the boot block to the disk will destroy most virus programs. but it can also cause
some copy-protected programs to cease functioning.

Files and Their Characteristics
The basic unit of information stored on a disk is called afile. A file is just a
group of characters of information which are stored together on the disk under a
common filename. A file can represent a computer program, or a collection of
data used by that program, such as the text of a document created by a word
processing program. To see the contents of a file, use the TYPE command.

31

THE FILING SYSTEM

To print a text file called document on the screen, for example, enter the
command TYPE document. You may remember from the previous chapter that
you can pause output to the screen at any time by striking a key, such as the
space bar, and restart output by using the BACKSPACE key to erase that key
stroke. TYPE is really only helpful for seeing the contents of text files. If a file
contains the numeric code for a computer program, the TYPE command will
print out what seems like a jumble of nonsense characters.

Each file has a number of characteristics associated with it. These include
the name of the file, the number of characters it contains, the number of disk
blocks it uses, the protection level, the date and time of its creation, and com
ments (if any). To display a directory (a list of the names of files on a disk,
sorted into alphabetical order), use the DIR command.

The LIST command displays a list of files and all of their characteristics.
You can LIST all the files in a directory, a selected portion of the files, or even a
single file. There are a number of variations on this command (see the "Com
mand Reference" section for details). The simplest form is

LIST
which displays information about the files and directories in the current directo
ry. As with other displays, you can pause it by pressing a key, such as the space
bar, and resume it by pressing the BACKSPACE key.

In the sections below, we'll examine in detail each of the file characteristics
displayed by the LIST command program.

Filenames
The most important characteristic of a file is its name, since you must know the
name in order to access the information a file contains. A filename may be up to
30 characters long and may contain almost any character, with a few exceptions.
A filename can't contain a slash (I) or colon (:); DOS uses these to identify the
directory to which a file belongs (see the section below on directories for more
information). A filename cannot use nonprinting characters (like TAB). In earlier
versions of AmigaDOS they also may not contain characters from the alternate
character set (which appear when you hold down the ALT key and type a charac
ter).

If you want to use the special characters that the CLI recognizes as com
mand modifiers in a filename, you'll have to jump through some hoops. To use
the space (), equal (=), semicolon (;) or a trailing plus (+) in a filename, you
must put the whole filename in double quotation marks. For instance,

32

THE FILING SYSTEM

COpy SOB TO HSon of a Rlitter Object"

If you include the device name and/or directory name as part of the file
specification, the whole file specification must appear in quotation marks, like
this:

HDFJ : Programs/My Program"

Not like this:

DFl : Programs / "My Program"

By using the double quotation mark for this purpose, you've made it an
exception to the naming rules. So what if you want to have a filename which
includes quotation marks? You'll have to use an asterisk (*) in front of the
double quotes as an escape character to tell DOS that you want the quotation
mark to appear in the name and not just set off a chunk of tex t that contai ns
space characters. This means that you would type the filename "So-Called"
Facts like this:

H*"So-Called*" Facts"

Confused? It gets worse. Now you've made the asterisk an exception, too.
That means in order to use the asterisk in a name, you must use another asterisk
in front of it. The name *void where prohibited must be typed as

H**void where prohibited"

To summarize:
I Filenames may be up to 30 characters long.
I They may not contain a colon (:), slash (I), or nonprinting character (nor an

ALTernate character in older AmigaDOS versions).
I If you want to use characters like the space, plus (+) at the end of a name,

equal (=), and semicolon (;), all of which have special significance to CLI,
you must put the entire filename in double quotation marks ("A Special File").
If you want to use double quotation marks or an asterisk in a filename, you
must precede them with an asterisk ("*"Confusion**10*" "for
"Confusion * 1 0").

In the examples above, some of the filenames appear in lowercase charac
ters, some in a combination of upper- and lowercase. Any combination can be
used in naming a file. When you LIST the filenames, they'll be printed using the
same combination of uppercase and lowercase used when the file was named.
The CLI, however, does not distinguish between cases. You can refer to a file
named CAPITAL as capital or Capital or even CAPital, and the CLI reads them

33

THE FILING SYSTEM

all identically. Since you cannot have two files with the same name in the same
directory, a single directory cannot contain files named Test and TEST, because
to the CLI each name looks the same.

Filenotes
Though the name of a file is your chief source of information about its contents,
AmigaDOS provides another source as well. Using the command program
FlLENOTE, you can attach a comment of up to 80 characters to a file. This
comment can be used to note what's in the file or show how this file differs from
other files with similar names. When you use the LIST command to obtain
information about the files on a disk, the FILENOTE comment is displayed right
beneath the name of the file.

Not all files have filenotes attached. (No filenote is automatically attached
to the file when it's created.) You must enter it yourself with the command
FILENOTE, which uses this format:

FILENOTE filename COMMENT "This comment tells you
about the file"

The use of the keyword COMMENT before the comment is optional. The
rules for using special characters (such as spaces) within comments are the same
as those for using such characters within filenames. If you use spaces within the
text of the comment, the entire comment must be enclosed within quotation
marks, and if you want to include quotation marks or an asterisk in the comment,
you must precede them with an asterisk.

An interesting characteristic of filenotes is that they remain firmly attached
to the file to which they're appended. The comment does not change or disappear
when you rename the file. If you copy the contents of a file to one which has a
filenote, the filenote stays attached, even though its contents have changed. If,
however, you copy a file with a filenote to a new file, the filenote is not copied
along with the contents (unless you use the COM or CLONE options with
COPY). It sticks like glue to the original. In earlier versions of AmigaDOS, there
is no way to delete a filenote alone. If you want to get rid of it, you have to
change the comment to something innocuous, like a single blank space, or copy
the whole file and delete the original. Under AmigaOOS Release 2, using the
FILENOTE command without any comment will delete the comment.

34

THE FILING SYSTEM

File Size
The LIST command displays a number after the filename. This number repre
sents the size of the file in bytes (characters). This number should not be con
fused with the number of disk blocks that the file uses. Even though each block
can hold 512 bytes of information, every file uses a minimum of two disk blocks.
This means that a file only one character long uses up 1024 characters of disk
space.

To test this, type INFO to see the number of free blocks on your disk. Now
type

COpy * TO test

Press the Return key, and then the CTRL key and the back slash key (\) at
the same time.

This copies from the keyboard of your console device (represented by the
asterisk) to a disk file named test. The CTRL-\ key combination is the end-of-file
character, which signals the end of output from the console device and stops the
copying process. What you end up with is a file that contains only one character.

If you enter LIST test. you'll see that the file length is really one charac
ter. But if you type INFO again, the number of free blocks has decreased by two.
Keep this in mind-numerous small disk files may take up more space than if the
same information was stored as one long file. Even an empty file uses up one
block of storage.

Protection Level
On the display provided by LIST, there's space for eight characters next to the
size of the file. These characters-hsparwed-represent the eight protection
status flags associated with each file. The letter codes for these status flags are
derived from the first letter of the words that describe the status flag functions:
Hidden, Script, Pure, Archive, Read, Write, Execute, and Delete.

Some of these flags actually control the functions that AmigaDOS will
perform on the files, while others are merely advisory, and are enforced only by
programs that recognize them. AmigaDOS versions prior to 1.3 recognize only
four of these flags, the ones that determine whether or not you may Read, Write,
Execute or Delete a file. Read, }lorile, and delete are fairly self-explanatory-if
set, these flags allow you to read from the file, write new information to it, and
delete the file completely. Execute affects only program files-it allows DOS to
execute (run) the program. If the Execute t1ag is not set on a file, AmigaDOS

35

THE FILING SYSTEM

will not run it from the CLI or Shell, even if it really is an executable file (though
you still can run it from Workbench if it has an icon). Of course, even if the
Execute flag is set, the file must be actually executable for AmigaDOS to load
and run it.

The Hidden, Script, Pure, and Archive bits were added for AmigaDOS 1.3.
Only Script and Pure settings are enforced by AmigaDOS. The S (or Script) flag
is used to tell the Shell that a file is a script file that would normally be run with
the EXECUTE command (Chapter Five covers such script files in great detail). If
the Script flag is set, you can type in the name of a script file at a Shell prompt
and the Shell will execute the script even though you don't type in the EXE
CUTE command name. Under Release 2, if you set the script bit of an ARexx
program file, you can run the program just by typing in its name, without using
the RX command.

The P (or Pure) flag is used by the RESIDENT command, which loads a
CLI command into memory and uses it as if it were a "built-in" AmigaDOS
command. Only "pure" programs (those that can be run from multiple CLI's at
the same time, using only one copy of the program) can be made resident.
Therefore, the Resident command will only make a program resident if its Pure
bit is set, indicating that it is a suitable candidate, unless you use the Force
option. ft is not a good idea to make a program resident if you aren't sure that it
is pure, because if you do so (either by setting its Pure flag yourself or by using
the FORCE option), the program may function unreliably, or you may even
experience a software failure.

The final two flags, Archive and Hidden, are always advisory. The Archive
flag is used by some hard-drive backup programs to allow what is known as an
incremental backup. Once you have made a copy of your hard drive, the program
will set the archive flag on all of the files that you have copied. Any new file that
is subsequently created or any old file that has been changed will not have this
flag set. Therefore, the next time you go to back up your hard drive, you need
only copy the files whose archive flags are not already set. AmigaDOS does not
automatically set the archive bit every time you copy a file, however. That is
strictly a function of the hard drive backup software. The final flag which marks
a file as Hidden is reserved for future use. Currently, AmigaDOS pays no
attention to this flag.

When a file is created, the RWED flags are set, and the four characters
(nved) appear in the LISTing of the file name (along with four dashes, represent
ing unset flag bits). To change the protection status of a file, use the PROTECT
command program. The form of this command is

36

THE FILING SYSTEM

PROTECT lename FLAGS rwed
where filename is the name of the file whose status you wish to alter, and rwed
are the letters for the flags that you wish to enable. For example, if you want to
remove just the deletion t1ag from a file called LifesWork, you'd enter

PROTECT LifesWork FLAGS rwe
This would allow you to read or execute the file (if it is a program), but not

to delete it (or to write to it, which would require its deletion as an intermediate
step). As of Workbench 1.3, the PROTECT command allows you to use the +
and - characters to add or subtract one or more protection flags. For example, to
set the Script flag on a file called Execute.Me, you'd enter

PROTECT Execute.Me +8

File Dating
The final item displayed by the LIST command program is the date and time that
the file was created. The Amiga 2000 and 2500 come equipped with a battery
powered clock/calendar module, from which the time and date is read at power
on, using the SETCLOCK command. The Amiga 1000 does not come with such
a clock module, and is optional on the Amiga 500. If your computer does not
have a clock/calendar, it's up to you to set the correct time and date each time
you turn on the machine, or reset the computer. You can find out what time and
date the Amiga is currently using by checking the time setting in the Preferences
program or by entering the command filename DATE. You can set the time from
the Preferences program that comes with the Workbench disk or by using the
DATE command program.

To set the time using the DATE command, use the form

DATE HH:MM:SS

where HH is a two-digit number for the hour, MM is a two-digit number for the
minute, and SS is a an optional two-digit number for the second. If you don't
specify the seconds, the Amiga uses 00 for you (if you don't specify seconds,
you don't need to include the final colon). Note that hours are expressed in a 24-
hour format, in which 1 :00 p.m. is referred to as 13:00, and midnight as 00:00.

The DATE program expects the date in the format DD-MMM- YY, where
DD is a two-digit number representing the day of the month, MMM is the first
three letters of the name of the month, and YY is the last two digits of the year.
For example, to set the date to September 30, 1991, you'd type

37

THE FILING SYSTEM

DATE 30-Sep-91
It's possible to set both the date and time with one command:

DATE 16-May-89 14:56
Besides the DD-MMM-YY format, AmigaDOS also understands some

common ways of expressing the date, such as Yesterday, Today, Tomorrow, and
the days of the week, such as Monday, Tuesday, Wednesday, and so on. You can
use these expressions in place of the DD-MMM-YY format anytime you want to
change the current date to one within the coming week. For example, let's say
that you just turned on the Amiga and used the DATE command to find out the
current time and date setting. If today is Sunday, November 30, 1986, and you
last wrote a file to the disk the day before, you may find that the setting is
Saturday 29-Nov-86 20:20:02. To make the date current, you need only type

DATE tomorrow
or

DATE Sunday 10:00

Either form advances the setting one day.
Remember that using the name of a day of the week (you can't use abbrevi

ations here-you must use the full name of the day) will always set the date
forward to that day. In the example above, if you'd typed DATE Friday, it would
have set the date to Friday OS-Dec-86 instead of Friday 28-Nov-86. The only
date word that sets the date backward is Yesterday. The DATE Yesterday com
mand moves the date back by one day.

AmigaDOS also uses these words in its LIST display, so don't be surprised
if you see recent files with dates like Yesterday or Today. The meaning of such
terms in the LIST display is somewhat different from the DATE command,
however. DATE expects that the new date you're setting will be later than the
current date that's shown. So if you use day names like Tuesday, it sets the date
to the Tuesday following the current date. LIST, however, assumes that files on
an existing disk must have been created previously, so when LIST says Tuesday,
it means the Tuesday before the current date. If you put in a disk that wasn't in
the drive when you booted up the Amiga, and there's a file on the disk with a
date later than the current date, LIST will show its date merely as Future. To see
the actual date of such a file, you would have to change the current date far
enough to the future so that it's later than that of the file.

38

THE FILING SYSTEM

If you've set the correct date. expressions like Today or Wednesday can be
helpful in quickly picking out new files from old ones. But what date does the
Amiga use if you haven't set the correct date? AmigaDOS sets aside a place on
each disk where it records the latest date and time that a file was created. This
latest date is updated with the current date and time every time you write to a file
(provided that the current date is later than the latest date). When you boot up the
computer, AmigaDOS checks the latest date recorded on the boot disk (and on
the disk in the external drive as welL if one's inserted). It sets the current date
and time just a little later than the latest date found (AmigaDOS appears to
advance it by 11 seconds). That way. even if you forget to set a new time and
date when you boot up, your files will still appear in correct chronological order.
You won't be able to tell the exact date and time a file was created, but you will
be able to tell which was created most recently.

This time-stamping feature of AmigaOOS can be a great aid when you're
trying to identify one file among several. In fact, it's so convenient that if your
computer doesn't have a clock/calendar, you may want to alter the startup
command file so that it prompts you to enter the correct date and time whenever
you turn the computer on. An example of such a file can be found in Chapter 5,
which explains command sequence files. If you have a 1 meg Amiga 500, a 2
meg 600, or an Amiga 2000 or 3000, however, your machine comes standard
with a hardware clock. In that case, you normally need only to set the hardware
clock to the correct time and date, and from then on, the computer will read the
time and date from the clock hardware when you turn the computer on. Setting
the hardware clock under AmigaDOS versions 1.3 and earlier is a two-step
process. First, set the correct time and date using the DATE command. Then,
save this setting to the hardware clock using SAVE option of the SETCLOCK
command:

SETC~OCK S;J!E

Your startup script will automatically read the time and date from the
hardware by using the LOAD option of the SETCLOCK command:

SETCLOCK LOAD.

Under Release 2, using the hardware clock is even easier. The Time prefer
ences editor sets the hardware clock/calendar automatically when you hit the
Save button, and the Release 2 operating system reads the clock whenever you
reset the computer automatically, without need for the SETCLOCK LOAD
command.

39

THE FILING SYSTEM

While normally you only need to set the date and time once, you may find
at some point that the clock has stopped working, and SETCLOCK LOAD either
yields a nonsense time and date, or the message «unset». Many people
assume that this indicates a hardware problem such as a battery failure, when
most often, it really means that some errant program has written nonsense
commands to the clock hardware. To correct this problem, issue the command
SETCLOCK RESET from AmigaDOS 1.3 or higher, and then repeat the normal
clock setting procedure.

Directories and Subdirectories
(and Sub-subdirectories ...)
With 880K of storage space, it's quite possible to have over a hundred entries in
you list of file name. Working with that many names in a single list can be
cumbersome-just finding a single name in such a large list can turn into a major
chore. This problem becomes much worse when you start to work with a hard
disk that has upwards of one hundred million bytes of available storage space.

AmigaDOS's answer to this problem is to provide multiple directory levels,
which branch out from the highest directory on down. This allows you to group
lists of related filenames into their own directory, where they are isolated from
the other, unrelated files on the disk. Using smaller sub-lists of filenames makes
finding and working with files much easier when the disk you are using contains
a large number of files. Your Workbench disk, for example, contains directories
like c, which contains command program files, and devs, which contains files for
device drivers like the one that makes your printer work. Some of these subdirec
tories, such as Utilities, even have icon files associated with them which make
them appear on the Workbench screen as drawers.

Root and MAKEDIR
When you create a new file structure by formatting a disk, there's only one list of
filenames on the disk. This is the highest level, or root, directory. When you
write files to this disk, the names of these files are automatically recorded in the
root directory. If you wish, however, you can create new directories, known as
subdirectories, within the root directory. Let's say that you're going to use part
of the disk for storing word processing files and part of the disk for telecommu
nications files. You could create separate subdirectories for each kind of file by
using the MAKEDIR (make directory) command program. Just type MAKEDIR,

40

THE FILING SYSTEM

followed by the name ofthe directory. The rules for naming directories are the
same as for naming files (see above for more information). Using the names in
the example above, you'd type

MAKEDIR Wordprocessing
MAKEDIR Telecommunications
After you've put a few files into each of the directories, your directory

structure might look like this:

A Typical Directory Structure

Root

Textfile Wordprocessing (dir) Telecommunications (dir)

I

Textfile Moretext Terminal Downloads

This structure is similar to what you might see when you draw a family
tree. At the top level is the root directory, which contains a file (a data file called
Textfile) and two subdirectories (Wordprocessing and Telecommunications).
These subdirectories in turn contain their own files. The Wordprocessing directo
ry contains the files Textfile and Moretext. and the Telecommunications directory
contains the files Terminal and Downloads.

You'll notice that the root directory and the Wordprocessing directory both
contain a file named Textfile. You probably already know that you can't have
two files of the same name in the same directory. If you tried to create a new file
with the same name as an existing one, the new file would overwrite and replace
the existing one. But as you can see, there's no problem having two files of the
same name in different directories. Each directory can be thought of as its own
small disk except that a directory doesn't have a fixed size. A directory takes up
as much space as required to hold its files and subdirectories.

41

THE FILING SYSTEM

Just as the root directory can contain either files or subdirectories, the
subdirectories themselves may contain files or subdirectories. For instance, if
you have a large number of document files in the Wordprocessing directory, you
may wish to group them into subdirectories, such as Personal Letters, Business
Letters, Proposals, and Speeches. There's no limit to the number of directory
levels you can create-again other than the space available on the disk. Most
people find, however, that about four or five levels down is as far as they care to
go. A large list of subdirectories can be as bad as the large list of filenames that it
was meant to prevent.

If you want to see the complete contents of a disk, including files within
subdirectories, you can do so by adding the phrase OPT A or the word ALL to
the DIR command. If you examined the sample disk illustrated above with the
command DIR OPT A, you'd see the following display:

Telecommunications (dir)
Downloads

Wordprocessing (dir)
Moretext

Textfile

Gaining Access

Terminal

Textfile

You can gain access to files within subdirectories in one of two ways. One
method is to specify complete information about the file, including each of the
directory levels between it and the root directory (this is known as the full
pathname). You do this by naming each of the directories, in order, from the root
down, separating the name of each directory with a slash (I). If the disk described
above is in the internal drive, you could refer to the file Textfile in the
Wordprocessing directory as DFO: WordprocessingtFex(file. Specifying the entire
path from the top down always works, but it can be a bit tiresome (particularly
with a file like DFO:Wordprocessing/Personal Letters/Aunt Charlotte-Thank
You).

An easier alternative uses the concept ofthe current, or default, directory. If
you refer to a file without specifying a device or directory path, AmigaDOS
looks for that file in whichever directory is currently the default directory. When
you first start up the computer, AmigaDOS sets the root directory of your boot
disk (the one in the internal drive or the boot partition of your hard drive) as the

42

THE FILING SYSTEM

current directory. You're free to assign a new current directory at any time. Just
type CD (for the Current Directory command program), followed by the name of
the directory (or directory path, if you're going down more than one level).
Release 2 users don't even have to include the CO command-just typing the
name of the new directory at the command line is enough to make it the current
directory. Using the same example, you could make the Wordprocessing directo
ry the current one by typing

CD Wordprocessing

From then on, when you want to use the file Tex(flle, you can refer to it by
name, instead of as WordprocessingfFextjlle. If you use the command OIR after
changing the current directory to Wordprocessing, you see only a list of the files
in that directory.

Up and Down
It's possible to skip down more than one level at a time. If you want to change
the current directory from the root directory to the Business Letters subdirectory
of the Wordprocessing directory, enter

CD "Wordprocessing /Business Let ters" (quotes needed
for names with spaces)

Unless otherwise specified, the CD command assumes that the name you
give it is of a directory or path that lies below the level of the current directory.
To move up to a higher level, you must use one of two special characters. The
first is the familiar slash (I). A slash in front ofa directory name is the signal to
move up a level to the directory which contains the current directory. The slash
alone works-you don't have to specify the name of the higher directory-since
each directory has only one directory immediately above it. To change the
current directory to the one immediately above, just type

CD /

You're not limited to a single slash. You can use as many slashes as there
are directories above the current one. Thus.

CD II

moves you up two directories.
Nor are you limited to going in one direction at a time with CD. Assume

that your current directory is the Letters subdirectory of the Wordprocessing

43

THE FILING SYSTEM

directory, and you want to change to the Telecommunications subdirectory of the
root directory. You could use the command form

CD //Telecommunications
The first slash takes you up to Wordprocessing, the second slash takes you

up to the root directory, and Telecommunications takes you down one level to
make that directory current.

If your goal is to return to the root directory, however. it's not necessary to
enter a slash for each level. You can use the colon (:) to indicate a move directly
up to root level. For instance,

CD :

changes the current directory to the root directory of the current volume, while

CD :Telecommunications
changes the current directory to the Telecommunications subdirectory of the root,
no matter how far down you were when you entered the command.

CD is not the only command that interprets an initial slash as a signal to
move up one directory leveL and you can use the colon to refer to the root
directory at any time. Commands such as

DIR
DIR :Wordprocessing
DIR /
DIR /Wordprocessing

all work, as long as the directories referred to really exist.
If you wish to change the default directory to one located on another disk,

you must specify the device name or volume name when using CD. To switch to
the root directory on the disk in the external 3Y2- -inch drive, for example, you'd
use

CD dfl:
Note that when you switch the current directory to another disk,

AmigaDOS internally refers to that disk by its volume name and not by the
device name of the disk drive in which it's mounted. This means that when you
put a disk with volume name CLI in drive dfl: and type CD :J1;'1:, AmigaDOS
changes the current directory to the root directory of volume CLI. If you take
that disk out of the external drive and replace it with another, AmigaDOS will
not recognize the root directory of that disk as the CUITent one. Use DIR with the

44

THE FILING SYSTEM

new disk in the drive, and DOS won't comply. It will put up a requester box
asking you to replace volume CLI in any drive. That's because AmigaDOS
identifies the current directory as the root of the specific disk named CLI, not
just any disk that happens to be in the external drive. When you wish to replace
that disk with another, you should change the current directory to one of the
disks you'll be using. In the example above, once you replaced the CLI volume
with another disk, you could issue the command CD DF1: once again, making
the root directory of that volume the new current directory. Then if you issued
the DIR command, you would not be prompted to swap disks. If you're ever
unsure which is the current directory, simply use the command CD (and that's
all) to display the current directory name. For more information on device
names, logical devices, and volume names, see Chapter 4.

File Manipulation Commands
Some of the most commonly used CLI commands are those which copy, delete,
rename, and join (combine) files.

COpy
The COPY command is used to create a duplicate of a file in the same directory,
in another directory, or even on another disk.

COpy vitalstuff TO vitalstuff.backup
This creates a duplicate copy of the file in the same directory with another

name.

COpy programfile Programs/programfile
While this command line creates a copy of the file with the same name in

the subdirectory named Programs.

COpy filename dfl:
And this command makes a copy ofthe file (with the same name) in the root
directory of the disk in drive dfl:.

RENAME
The RENAME command program changes the name of a file or a directory.
When you RENAME a directory, you change its position in the directory struc
ture:

45

THE FILING SYSTEM

RENAME program TO program. old
This changes the name of the file program to program. old.

RENAME dtl:c/delete TO dfl:c/erase
While this command line changes the name of the command program

delete on disk drive df1: to erase, also on disk dfl:.

RENAME Wordprocessing/Letters TO :WordWiz/Textfiles
And this example moves the directory WordprocessinglLetters and all of its

contents to the directory WordWiz/Tex({iles.
While renaming can be used to change the location of a file or directory on

its current volume, it cannot be used to move it to a different volume.

DELETE
DELETE removes a file from the disk. Once you delete a file, the information
contained in it is lost forever. DELETE lets you name up to ten files to delete at a
time. Separate each filename with a space.

DELETE oldfile
This permanently erases the file oldfile.

DELETE oldfilel oldfile2 oldfile3
And this sample erases all three of the named files.

DELETE can also be used to erase a directory. but only if it does not
contain any files or subdirectories. You can use the same DELETE command
first to erase the files in the directory, then to delete the directory, or you can use
the keyword ALL. For example:

DELETE Wordprocessing/lonefile Wordprocessing
This first deletes the only file in the Wordprocessing directory, then deletes

the directory. Or you can use

DELETE Wordprocessing ALL
which deletes the directory and all files that it contains.

JOIN
The JOIN command file takes the contents of from 2 to 15 files and combines
them into a new and larger file (the Release 2 version of JOIN is no longer
limited to joining 15 file). The original files are unchanged.

46

THE FILING SYSTEM

JOIN firsthalf secondhalf AS bothparts
This creates a new file called bothparts which contains all of the informa

tion of both firsthalf and secondhalf.

Pattern Matching (Wildcards)
Sometimes it's possible to specify one or more filenames which have a common
characteristic without typing the entire filename. This technique, called pattern
matching, lets you perform tasks like listing all files with names ending in the
characters .bas or deleting every file in a directory at once.

AmigaDOS pattern matching is similar to the concept of wildcard charac
ters used in MS/PC-DOS, but there are important differences. In PC-DOS, the
asterisk (*) can be used to substitute for any string of characters in a filename. In
AmigaDOS, the asterisk is used as an escape character, to allow quotation marks
(and other asterisks) in a filename. Also, as you'll see in the next chapter, the
asterisk is used to refer to the currently active console device.

PC wildcards can be used with more commands than AmigaDOS pattern
matching, which is mostly confined to COPY, DELETE, DIR, and LIST (though
the range of commands that allow the use of patterns is greatly expanded in
Release 2). AmigaDOS patterns, however, are much more flexible. They allow
you to match names starting with the same group of characters, end with the
same group of characters, or have the same characters in the middle, preceded by
any number of characters and followed by any number of characters. Such
flexibility makes the system somewhat complex to learn, but well worth the time
and effort required.

? and #
The most important pattern matching characters are the question mark (?) and the
pound sign (#). The pound sign followed by a single character matches any
number of repetitions of that character (including none). For example, #STUT
TER matches STUTTER (#S substitutes for one S), SSSSTUTTER (#S substitutes
for four consecutive S's), and TUTTER (#S can also substitute for zero occur
rences of the letter S).

The question mark is used to replace any single character (but not the null
string, or no character). Thus, ?LA?S matches FLATS (first? replaces F, second
replaces T) or 2LAPS (first? replaces 2, second replaces P), but not LAPS (first?
must replace an actual character).

47

THE FILING SYSTEM

When you put these two special characters together (# ?), they become a
powerful pattern which can match any number of any characters (or no charac
ters at all). For example, you could use PART#? if you wanted a pattern to match
all filenames starting with the letters PART. If you wanted to LIST all of the icon
information files (whose names always end in .il~f{)), you could use the pattern
#?.INFO to find them. You could also use a pattern like PART#?.INFO to match
any file starting with PART and ending with .INFO, with anything (or nothing) in
between (like PARTlCLE.INFO, PARTYANIMAL.INFO, PART47ZYC-
332.INFO, and even PART.INFO). Likewise, you could use a pattern like
#?CAT#? to match a filename which had the letters CAT anywhere in it (like
CATAPULT, SCAT, SCATTER, or "I SNEEZE AT CAT HAIR").

()
In addition to the pound sign and question mark, there are three other characters
which have special meaning when used for pattern matching. Parentheses () may
be used to group a number of characters together into a single pattern element. If
you follow a pound sign with a group of characters within parentheses, for
instance, it will match any number of repetitions of that pattern group (including
none). Thus, #(YO) matches the filenames YO, YO YO, YO YO YO YO, and so on. If
you didn't use the parentheses, #YO would match YO and YYYYO, but not YO YO,
because the #Y could substitute only for repetitions of the single letter Y. Paren
theses let you become creative, like using #(P? NG) to match the filename
PINGPONG.

The vertical bar (I), entered by pressing the SHIFTed backslash key, is used
when you want one of two or more patterns to match the characters in the
filename. AlB matches either the letter A or the letter B. The pattern GOOD 1
BAD matches either a file named GOOD or one named BAD. And pattern MO(B
1 N)STER matches both MONSTER and MOBSTER (note how the parentheses
were used to set off the BIN as a distinct pattern). AmigaOOS versions prior to
Release 2 understand the vertical bar as applying only to one part of the
pathname. For example, the command

COpy dfO:c/COPYIDIRILIST to ram:

would be understood to mean "copy any file named COPY, OIR, or LIST from
the C directory on dfO: to the root directory of the RAM disk," and not "copy the

48

THE FILING SYSTEM

file named COpy from the C directory of dfO:, or OIR or LIST from the current
directory to the RAM disk." This aspect of the vertical bar comes in quite handy
when dealing with several files in a complicated path at one time. Another
peculiarity of early versions is that prior to Workbench 1.3, there was a limit of
31 characters in anyone wildcard expression, which limited the number of files
you could join with the vertical bar. This limit was removed in 1.3.

With AmigaOOS Release 2. the rules of using the vertical bar changed
somewhat. To copy multiple files from a single directory, you need to enclose
the filenames in parentheses. The above example must be changed to:

COpy dfO:c/(COPYiDIRILIST) to ram:

in order to work properly. Since this does the correct thing in all versions of
AmigaOOS and is easier to understand, always use this form of the command
when you want to access mUltiple files from the same directory.

%
The percentage sign (%) represents the null string (no character). You've already
seen how a pattern starting with the pound sign matches any number of repeti
tions of the following character, including none at all. The pattern S#HIN, for
example, matches SHIN, SHHHIN, and SIN. But if you want to match only a
single appearance of the character or none at all, you can use the form (H I %),
which stands for either H or the null character (no character at all). Therefore,
S(H I %)IN would still match SHIN and SIN. but would not match SHHHIN,
which repeats the H character more than once.

Combining the percentage sign with the question mark in the form (? I %)
creates an expression that will match any character or no character at all. Using a
previous example, you could substitute the pattern (? I %)LA? S to match either
2LAPS or just plain LAPS.

There's another special character used to address a problem created by the other
special characters. Since those characters have special meanings in the language
of pattern matching, it makes it difficult when you want to match a name which
contains one of those special characters as part of the filename. In order to match
a filename that contains a question mark, for example, you must precede the
question mark with an apostrophe (') to let the pattern matching mechanism
know that you want to match an actual question mark, without using the question

49

THE FILING SYSTEM

mark as a substitute for any other character. For instance, you could use the
pattern ?OW'? to match filenames like HOW? and COW?

Naturally, since the apostrophe is now a special character, you must use
two apostrophes to represent an apostrophe which might be part of a filename. A
pattern like ?ONT'T is needed to match filenames like DON'T and WON'T. If
these rules remind you of the rules for naming files, all the better. The same rules
apply to pattern substitution, too. If you're using a pattern containing space
characters, for example, you must enclose the entire pattern with double quota
tion marks.

- and-
Release 2 of AmigaDOS introduces some very handy new pattern characters, the
tilde (-) and the dash(-). The tilde functions as a not operator, selecting any file
that doesn't match the pattern. For example, if you wanted a directory listing of
all files except icon files (those whose name end in .info), you could use the
command DIR -(#?info). The other new character, the dash, is used in an
expression set off by square brackets to indicate a range of characters. Thus, the
expression [W-Z]#? would select any file beginning with W,X,Y or Z, just like
the expression (WIXIYIZ)#? Be sure that to use the square brackets (the keys
just to the left of the top of the Return key), not the parentheses. To copy all files
from the c: directory that begin with the letters A-D, you could use the command

COpy c: [a-dJ#? ram:

Pattern Matching Summary
#c Matches any number of repetitions of the character c (including

#(group)

?

#?

50

none)
N#O matches N, NO, NOO, and NOOOOOOOOOOO
Matches any number of repetitions of group (including none)
#(TOM) matches TOM and TOMTOM
Matches any single character (but not the null character)
K?NG matches KING and KONG (but not KNG)
Matches any number of repetitions of any character (including
none)
#?BAS matches any filename ending in .BAS

PIIP2

%

(? 1%)

()

[CI - C2]

-P

THE FILING SYSTEM

Matches either pattern PI or P2
B(A I O)Ymatches BAY and BOY
djD:clL/SIlDIR matches dfO:clL/ST or djD:clDIR
Matches the null string (no character)
(S I %)TOP matches STOP or TOP
Matches any character or no character
(? I %)LOT matches SLOT, CLOT, and LOT
Used to set off a group of characters as its own distinct pattern
(M I PYA matches MA or PA
M I PA matches M or PA
Used in front of one of the special characters to show that you
want to match it, not invoke its special meaning
?ON"T matches WON'T and DON'T
Matches any character in the range from CI to C2
AmigaDOS Release 2 and higher only.
C:[t-w]#? matches TYPE, VERSION, WHICH and WAIT
Matches any file that does not fall within the definition of
pattern P
AmigaDOS Release 2 and higher only.
-(? info?) matches all files in the current directory except the
icon files whose names end in .info

51

Chapter 4

Devices

The main function of a disk operating system like AmigaDOS is to let you
control disk storage devices. But there are several other kinds of devices with
which the Amiga can communicate, and the CLI also provides ways of interact
ing with them. Some of these devices are physical devices, like the console
screen and keyboard, hard disks, streaming tape drives, printers, and modems.
Others are "software" devices like the RAM disks and pipe handler. AmigaDOS
can even treat a disk directory as a logical device.

Some devices are a standard part of the operating system, and as such are
automatically recognized by AmigaDOS. Others use the Amiga's capability to
auto-configure expansion devices to have their device driver software automati
cally added to the system. Still others must have their driver or handler software
added to the system by use of the MOUNT or BINDDRIVERS command.

Disk Drives
Every Amiga comes with an internal disk drive. This device is known as DFO:
(device type = Drive, drive type = Floppy, drive unit = 0). Optionally, you can
connect an external 3Y2-inch drive (or in the case of the 2000, 2500, or 3000, a
second internal drive), known as DFl:.

Although the Amiga supports up to four floppy drives, the power supply
that comes with the Amiga 500 really only provides enough power for one
external drive. If you want to run more drives than that, you should find a drive
with an independent power supply, or buy one of the larger replacement power
supplies that are available for the 500.

The Amiga 2000 or 3000's power supply is quite sufficient for four flop
pies, and even the 1000 should be able to handle three or four of the newer
drives, which consume much less power than previous models.

The 5l;4-inch drive which Commodore used to offer for use with MS-DOS
disks is self-powered, but is not automatically recognized by AmigaDOS. The
MOUNT command must be used to add this device to the system (a sample entry

52

DEVICES

can be found in the OEVS:Mountlist file that comes with the Workbench for this
device, under the name DF2:). When used this way by AmigaDOS, however, the
5%-inch drive can only store 440K, half of the amount stored on a 3V2-inch drive.

A disk drive does not accept a single, indivisible stream of information like
a printer does. Rather, its storage area is divided into a number of different files,
whose filenames are stored in one or more directories. Therefore, you' 11 most
often use the device name DFO: or OFl: only as part of a file or a directory
description.

A Complete Description
The most complete kind of file description contains the disk device name,
followed by the names of each succeeding directory level (which are separated
by slashes). then finally the name of the file. The name DFl: WordWiziLettersl
Formletter is a good example. The filename is Formletter, which is stored in the
directory Letters, which in turn is in the directory WordWiz. All are found on
device DF 1:. the external (or second internal) disk drive. While this kind of
description tells AmigaDOS exactly where to look for the file, it takes quite a
few keystrokes to get there.

Fortunately, you don't always have to give a complete description of a file.
AmigaOOS also recognizes references to a file which are relative to the current,
or root, directory. One directory is always recognized as the current directory.
When you power an Amiga up, it uses the root directory of the disk it starts from
(either an internal floppy or hard drive) as the default directory. Therefore, if you
boot from a floppy and immediately refer to a file as Myprogram, AmigaDOS
interprets this as DFO:Myprogram. If you change the current directory to C, for
example, using the CD command, a reference to the file Dir will be taken to
mean DFO:CIDir.

You can use the colon (:) to indicate the root directory of the disk on which
the current directory is located. Therefore, even when DFO:C is the current
directory, you can specify a file in the S directory with the description :slstartup
sequence, which is equivalent to DFO:slstartup-sequence. Note that AmigaDOS
ignores case in these names. Any combination of uppercase and lowercase can
be used, as long as the letters themselves match.

You may always use the volume name of the disk itself in place of the
device name of the drive in which it's mounted. For example, if you had a file
called program. bas located on a disk whose volume name was Extras. you could
describe the file as Extras:program.has. In fact, such a description is often

53

DEVICES

preferable to using the device name of the drive, since it is valid regardless of
which drive is used for the Extras disk.

In some cases, it is necessary to refer to a disk by its volume name. Let's
say that you have only one disk drive and want to list a directory of a disk which
doesn't contain the DIR command program. The volume name of this disk is
Stuff When you insert the Stuff disk into the drive and type D CR, the system
prompts you to put the disk containing the commands into the drive. When you
do, the Amiga lists a directory of that disk, not Stuff. But if you enter DIR Stuff.' ,
you'll be prompted first to put in the disk with the commands, then to put in
Stuff. Now you'll get a listing of the Stuff disk. Of course, there are other solu
tions to this problem-you could copy the DIR file to Stuff. or you could copy
your commands to the RAM: disk device (see below). But if you want to specify
operations on a particular disk, using the volume name assures you of the correct
result. In fact. AmigaDOS keeps track of the disk with the current directory in
just this way. If you take the disk out and type in a command, DOS prompts you
with the volume name of the disk it wants you to insert.

Hard Disks
Most hard disks have fixed media that can't be removed from the drive like
ordinary disks. The drives either fit inside the computer itself, or in a box that
sits next to the computer. Although hard drives are more expensive that floppy
drives, they can read and write information much more quickly, and can store as
much information as dozens or even hundreds of floppy disks. These advantages
are particularly important to Amiga owners, since the Amiga floppy drives are
relatively slow, program and data files are getting larger all of the time, and some
of the Amiga system software (such as text fonts) must be read in from disk. As
we will see in the section on logical devices, software may need to read operat
ing system files from the Workbench disk at any time, so it can be quite handy to
have that disk constantly available. With the 1.3 Kickstart ROM, Commodore
introduced auto-booting to the Amiga, which means that it is possible for the
computer to start up from the hard drive. without having to read a Workbench
disk in the floppy drive.

Although hard drives were not well supported by AmigaDOS until version
1.2, there are now a number of different interfaces that can be used to add a hard
disk to your system. Early hard drives added their device control software to the
system through the use of the MOUNT or BINDDRIVERS command, or by
means of a special mounting program like SupraMount (for hard drives manufac-

54

DEVICES

tured by Supra Corporation) or DJMount (for drives connected to the A2000 via
the IBM compatibility option, or Bridge Board).

Newer hard drive controllers which follow Commodore's Rigid Disk Block
specification, store all of the mounting information on the hard drive itself. This
makes it possible to mount all of the drive partitions automatically, and to boot
the computer from any of these partitions. It also makes it possible to connect
just about any drive to any controller, and have it work without reformatting the
drive to conform to special layout requirements of that controller.

Traditionally, DHO: (for Hard Drive 0) is the device name used for a hard
drive. There are many exceptions, however. For example, SCSI (Small Computer
System Interface) drives connected to Commodore's own hard drive controller
are numbered starting at DH2:. AmigaDOS partitions on a hard drive that is
connected to a PC Bridge Board on the Amiga 2000 are known to AmigaDOS by
names such as JHO: and JHl: (which stands for Janus Hard drive, after the Janus
software which allows the Amiga and IBM-compatible sides of the computer to
work together). Since the introduction of Rigid Disk Blocks, you can give a hard
drive any device name you want, such as MyHardDrive:. Since some programs
have problems with long device names, however, it is often best to stick with
names that are three characters long, such as PRG: for a program drive, or DAT:
for a data drive.

Hard drives are much larger storage devices than floppy disks, holding as
much information as dozens of floppy disks. For this reason, most hard drive
interface software allows the user to partition the drive into smaller, logical
drives. A 105 megabyte drive, for example, might be divided into a 15 megabyte
partition called DHO:, a 40 megabyte partition called DH1:. and a 50 megabyte
partition called DH2:. The details of partitioning depend on how the device
driver software is added to the system. Hard drives that use the MOUNT com
mand usually have an entry describing each partition in the devs:MountList file.
Hard drives that follow the Rigid Disk Block standard generally come with
partitioning software, such as Commodore's HDToolbox, which writes the
partition information to the hard drive itself. IBM-compatible hard drives that are
interfaced through the Bridge Board use a program on the IBM side called
ADISK which creates AmigaDOS partitions on the MS-DOS hard drive.

Using a hard drive on the Amiga is very similar to having a large t10ppy
disk drive, so any information in this book concerning floppies (DFO: and DFl:)
generally applies to hard disks as well. Transferring programs to hard disk from
floppies, however, can present a number of difficulties to novice users. While a
program can generally rely on the volume name of its floppy disk, it has no way

55

DEVICES

of knowing the name of the hard drive partition to whieh it has been copied. For
that reason, some programs require a logical device name be assigned to the hard
disk subdirectory from which they are run. Another problem that complicates
hard drive installation is that some programs need support files in addition to the
main program file. These support files may need to be copied to the same
directory as the program file, or they may need to go into one of the system
directories. When in doubt, consult the program's instruction manual. If the
program is capable of running from a hard drive, there are likely to be quite
detailed installation instructions. Also, check to see if the software includes a
hard drive installation utility. Many packages come with such a program, which
completely automates the installation process.

Commodore introduced a new piece of system software in Workbench 1.3
called the Fast File System (FFS). This is a new AmigaDOS disk software
interface which provides much quicker disk access than the old filing system.
The FFS comes standard with Release 2, but must be loaded from disk in ver
sions 1.3 and below. For that reason, you can't boot from an FFS floppy under
1.3. In order to be compatible with all systems, therefore, almost everybody uses
the old file system for floppies. Non-removable media, however, like hard disks
and RAM disks don't face this problem.

Most hard drives can be formatted using the new layout, resulting in speed
increases of 500% or more. The new filing system software is located in a file
called FasfFiieS.vstem, which is located in the L directory of the Workbench disk.
(It's built in on Release 2 and up.) Details of using the Fast File System vary
from drive to drive, so you'll have to consult your hard disk interface manual for
instructions on installing in on your hard drive. In most cases, the hard dri ve
preparation software automatically installs the FFS.

Release 3 introduces a new file system, the Directory Caching File System
(DCFS). This file system is designed to make directory searches, and thus file
reads. somewhat faster. On a fast hard drive system. however, it does not speed
up disk reads as much as it slows down disk writes. It is therefore more suitable
for use with floppies, but only those disk that will be used exclusively on a
system with Release 3 or higher.

PCO: and PC I :
These two new MOUNTable devices, added in version 2.1 and higher, are
software-only file system extensions that permit you to use your normal 3Y2-inch
floppy disks to read and write IBMIMS-DOS compatible disk. The software is

56

DEVICES

licensed from Consultron, who sells it independently under the names CrossDOS
and Cross/PC. It includes a device driver that is able to handle the physical
format in which MS-DOS stores information on a disk (devs:mfm.device), and a
file system handler that lays out the information in the same format as that used
on PC's and compatibles (l:CrossDOSFileSystem). Because the file system is
mounted as a normal Amiga device, you can read or write to it directly like any
other device. In other words, if you have PCO: mounted, you can insert a nOK
IBM 31/2-inch floppy into the first internal drive and read a text file into your word
processor by selecting drive PCo: in the file requester, and write out the modified
file the same way. Versions 2.1 and higher of the operating system include
enhanced versions of the DISKCOPY and FORMAT commands which recog
nize and can deal with IBM format floppies.

There are some limitations to keep in mind with these devices, however.
First, the normal-density 31/2-inch drive used in most existing Amiga models can
only handle 31/2-inch disks that have been fonnatted at 360K or nOK densities.
Only the newer high-density disks that come with some Amiga 3000, 3000T and
4000 models can handle the 1.44M format disks used by most new IBM compat
ibles (and by Macintosh models that include a Superdrive). Also, in order to
assure complete compatibility, you must observe MS-DOS filename conven
tions. While AmigaDOS files can have very long names, MS-DOS filenames can
be no longer than eight characters, followed by a period and three additional
characters (e.g. "MYLETTER.TXT").

When PCO: or PCI: is MOUNTed, it "shares" the drive with DFO: or DFI:.
This means that if you have an MS-DOS disk mounted in the first internal drive,
the operating system may flash a requester that tells you that the disk in DFO: is
"Not a DOS disk." There is no cause for alarm however-by definition, a disk
that is right for PCo: can't be read by DFO:, even though both devices use the
same drive.

The RAM: Disk
There's another disk drive available to all Amiga users. AmigaDOS allows you
to reserve a section of memory for use as a super-fast electronic disk drive,
known as the RAM: device. The RAM: device does not exist when you first start
up the computer. It is automatically created by AmigaDOS at the first reference
to the device. For example, when you COpy a file to RAM:, AmigaDOS creates
the device if it doesn't already exist. But you don't have to move any informa
tion to RAM: in order to create the device. Typing a command like CD RAG::: ,

S7

DEVICES

which changes the current directory to the root directory of RAM:, works as
well.

Though AmigaDOS understands references to RAM:, the actual device
handler for RAM: (the program which routes information to the device) must be
loaded in from disk before the device can be used. This handler is located in a
file called Ram-Handler in the directory of the system disk. If this file is not
available when the first reference to RAM: is made, the device cannot be created.
Once it's loaded, however, the system doesn't have to refer to this file again
when using the RAM: device. The "startup-sequence" file on Workbench disks
whose version number is 1.2 or higher refer to RAM: in the initial command
sequence, so the RAM disk is automatically created when the Workbench is
started.

You can read, write, execute, and delete files from RAM: just as from any
other disk device. There are, however, a few important differences. The most
significant is that RAM: is a temporary storage device. Its files disappear when
you turn off the power or when you warm start the computer with the CTRL
Amiga-Amiga key combination. If.vou store flies to RAM:, then, remember to
copy them to a physical disk device before you turn the power off or reset the
computer.

Another difference between RAM: and the physical disk drives is capacity.
The 3V2-inch disks have a fixed storage capacity of 880K, but RAM: is limited to
available free memory. Unless you have substantial expansion memory, you
won't be able to store as much in the RAM: disk as on the physical drives. In
fact, you should avoid storing too much information in the RAM: disk. It's
possible to crash the system if you take up all available memory. Even if things
don't reach that stage, however, you may not have enough room to run applica
tion programs if your RAM: disk is too full.

One of the best ways to put the RAM: disk to use is to copy all or some of
your CLI command programs to it and use the ASSIGN command (explained
below) to make it the new command directory. The simplest way to do this is

COpy C: RAM: ALL
ASSIGN C: RAM:

This is discussed at greater length in the section "Logical Devices," later in
the chapter.

58

DEVICES

Communications Ports
The Amiga personal computer comes with two communications ports-one
serial and one parallel. The serial port can be used for transferring information to
or from a modem (or another computer), a MIDI musical device (with the proper
interface), or to a serial printer. The communication speed for this serial interface
can be set from the Preferences program at speeds ranging from 110 to 19,200
bits per second (bps). The parallel port is initially set up by the system as a
Centronics-type printer interface, which can be used only to send information to
a printer. Application programs (but not AmigaDOS) can configure this parallel
port so that it can be used to input information as well. For example, external
devices such as audio digitizers, video digitizers, and scanners, all use the
parallel port for input rather than output.

AmigaDOS allows you to write information to either of these devices just
as you would to a disk file. For example, if you wish to transfer the contents of a
disk file named wordfile to a parallel printer, you could use the command TYPE

worcifile TO PAR: or COpy wordfi:Ce erO P]\R:. You could send the contents
of the file to a serial printer or modem with the same commands by substituting
the device name SER: for PAR:. You may also use the redirection operator (» to
cause the output from one of the disk commands to be sent to the parallel or
serial devices (see the section on redirection below).

The software handlers which actually send output to the communications
ports are not an integral part of AmigaDOS. They reside on disk files named
serial.device and parallel. device in the devs directory of the Workbench disk.
The first time that AmigaDOS tries to open these devices, it must read the proper
handler file from disk. If it cannot find the file, it cannot open the device. Once
the handler is loaded, it stays in memory, and DOS doesn't need to access the
file again.

Using PRT:
Although you can control a serial printer directly through the SER: device and a
parallel printer via the PAR: device, there's a better way. The device called PRr:
can be used to send output to the printer, regardless of whether you have a serial
or parallel printer connected. In the old Preferences scheme used in Workbench
1.3 and below, the PRT: device gets its information about which type of printer
is connected from the system-configuration file in the devs directory. This is the
file which the Preferences program uses to store the preference settings. In the
new Release 2 preference scheme, PRT: gets its information from the

59

DEVICES

printer.prefs file which is stored in the prej.~!env-archive/sys drawer on the boot
disk, and moved to the ram:env/sys drive before the Workbench is loaded. In
order to route information through the printer device, DOS must first load a
handler that's stored in the disk file printer. device in the devs directory of the
Workbench disk. This handler itself must refer to a specific printer-dri ver file in
the printers subdirectory of the same devs directory. The PRT: device uses the
information stored there to translate control codes (such as those used to start and
stop underlining) to equivalent codes used by your printer. In addition, the PRT:
device translates the linefeed character (CTRL-J or ASCII 10) to a carriage
Return character (CTRL-M or ASCII 13), plus a !inefeed character. If you wish
to use PRT:, but don't want a carriage Return added to the linefeed, you may
specify the device PRT:RA W.

Diagnosing problems with the PRT: device can be difficult, because there is
both a hardware and software component to the device. Printer problems may be
due to the hardware connection between the printer and the computer, or they
could be due to problems with the printer driver software. When testing a printer,
it is helpful to first try sending output to the PAR: or SER: device first (depend
ing on whether the printer is connected to the parallel or serial port). A command
like "COpy s:Startup-Sequence to PAR:" should print the file to the device
(though the line spacing may not be right, due to the absence of carriage Return
characters). If this procedure doesn't work, the problem is with the hardware
connection between your printer and computer (either the printer isn't ready to
print, or you've got a bad cable). If it does work, however, you know that the
problem lies with the printer driver software.

To summarize the AmigaDOS devices names that can be used to send
information to the printer:
Device Name Function

PAR: or SER:
PRT:RAW

PRT:

Sends data directly to the printer, with no translation.
Sends data to the printer, translating printer codes, but does
not add a carriage Return to each Iinefeed.
Sends data to the printer, translating printer codes, and adds a
carriage Return to each linefeed.

Console and Others
The console device is used to accept input from the keyboard and the mouse, and
to print the characters on the screen. Output goes to a window on the screen,

60

DEVICES

known as the console window. The console device accepts input from the key
board a line at a time. At any point before you press the Return key, you may
edit the line using CTRL-H or the BACKSPACE key to delete characters, and
CTRL-X to delete the entire line (see Chapter 2 for more information about the
editing capabilities of the console device). When the console receives a line of
text, it translates the keystrokes into ASCII and extended ANSI codes. As noted
in Chapter 2, the console device responds to a number of ANSI escape codes
which control things like cursor positioning, screen scrolling, line insertion and
deletion, and the like. Workbench 1.3 comes with an enhanced console device
called NEWCON:, which introduces new features like line editing and command
history. Since this device was not automatically recognized by AmigaDOS until
Release 2, we'll cover it more fully in the treatment of MOUNTable devices,
below.

Each CLI comes with its own console window (it's the window in which
the >n prompt appears). When you use the NEWCLI command to start a new
CLI process, you may specify the starting position, size, and title of its console
window (see Chapter 2 for more information on starting a new CLI process). If
you don't specify these characteristics. a default console window is used.

It's possible, however, to create your own console windows which are not
related to any existing CLI process. To do so, you refer to the device as

CON:hpos/vpos/widtli/heiglit/windowtitle

where hpos is the horizontal position of the top left corner of the window (ex
pressed as the number of pixels in from the left edge of the screen), vpos is the
vertical position of the top left corner of the window (expressed as the number of
pixels down from the top edge of the screen), and width and height give the size
of the window in pixels. The maximum size for a console window is the screen
size, 640 x 200 pixels in the default Workbench screen. The minimum is 81 x 25
pixels. Thc windowtitle entry is optional and allows you to enter a title which
will appear in the title bar. If you don't enter a title, the title bar is left blank.
Note that the final slash is required, even when you don't specify a title.

Each console window comes with a sizing gadget to change its size, but in
versions prior to Release 2, the window doesn't redisplay the current data after
you change the window size. This means that if you make the window smaller,
the text in the area the window previously occupied is wiped out. If you later
make the window larger again, the new area of the window will be blank, rather
than holding its old contents. Besides the sizing gadget, each console window
has the depth arrangement gadgets in the upper right corner, which let you send

61

DEVICES

the window to the back of the screen or bring it forward on top of another
window. Console windows also have a drag gadget (which coincides with the
title bar) that lets you change the position of the window on the screen.

Like the RAM: device, you create a new console window by referring to its
device name. For instance, to LIST the directory to a new console window, you
could type

LIST TO CON:O/O/640/100/

Try this, and you'll see that although a new console window is created and
the listing prints within it, it disappears as soon as the command is completed.
Though you can pause the display before it disappears by hitting any key (use the
BACKSPACE key to restart), the short-lived nature of such a window limits its
usefulness as an output device.

A number of options were added to the console window in AmigaDOS
Release 2 to expand its usefulness. The CON: window description can have one
more or more options entries appearing after the title, each separated by a slash:

CON: hpos/vpos/rvidth/height/windof;/ti tl e/optionl /
option2 . ..

These options include:

AUTO

CLOSE

BACKDROP

NOB ORDER

NODRAG

NOSIZE

62

The window opens automaticaIly when the program that
opened it requires input or produces output.
A close gadget is included in the window border. This is the
default case if no options are selected.
The window type is changed to backdrop. which means that it
appears behind all other windows on the Workbench screen,
and you cannot depth-arrange, move or resize it (except by
using the zoom gadget).
No visible line is drawn around the window, although the
zoom and close gadgets will still appear above it. If you zoom
this window to full size, those gadgets will disappear. and you
will have a full-screen window that can't be sized or moved.
The window can't be dragged. It will have a zoom, depth. and
size gadget, but no close gadget.
The window will not have zoom, size, or close gadgets. Only
a depth gadget will appear.

SCREENname

SIMPLE

SMART

WAIT

DEVICES

The window will open on the public screen whose name is
name. For example, to open the CLI window on the public
screen name Fred, you would add /SCREENFred to the end of
the window description. This option only works if a public
screen of the specified name is already open.
Choses the simple window refresh scheme. If you enlarge
such a window, the text expands to fill the available space,
allowing you to see more information, including information
that had scrolled off the screen. This is the default refresh type
for Release 2 Shell windows if no option is specified.
Choses the smart window refresh scheme. If you enlarge this
kind of window, existing text is not redrawn. This is the kind
of CLI window used by AmigaDOS 1.3 and earlier.
The window does not close automatically when the program
that created it terminates. Rather, it waits until its close gadget
is selected (if it has one), or the user enters the CTRL-\ key
combination.

By using these options, you can create a more useful list window with
CON:

LIST ~O CON:O/O/640/100/ListWindow/CLOSE/WAIT

This window differs from the previous one in two important ways. First, if
this window is too short to display all of the information, you can see more by
increasing its size. Second, it doesn't disappear when the LIST program ends,
but rather waits until you click on the close gadget.

Console as Input
The console window can also be used as an input device. In this role, it can act as
a mini text editor, which can be used to create small text files or printed docu
ments. For example, you can create a text file on the RAM: disk by typing

COPY "CON:40/40/200/100/File Creator" TO RAM:text

The new console window appears and is the active window. Start typing
text, using the BACKSPACE key to delete errors. When you've finished a line,
press the Return key and that line is sent to the file. When you're done, enter a
CTRL-\ character to signal AmigaDOS that you are at the end of the file. Enter
this character by holding down the CTRL key and pressing the backslash (\) key,

63

DEVICES

located next to the left of the BACKSPACE key. When you end the file, the
window disappears and the disk file is closed. To see the contents of that file,
enter

TYPE ?cAM: text

The console device gi ves you a handy way to create a small file (like the
command sequence files discussed later). You can also send input from a console
device to any other device (even another console window). For example, type

COPY CON:40/40/200/100/Typewriter TO PRT:

and each line that you type in the window is sent to the system printer (as soon as
you press Return). Again, use CTRL-\ to end the session.

In addition to the new console windows which you create, you can also use
the existing console windows belonging to your CLls. You do this by referring to
the active console device, named * (asterisk). This use of the asterisk should not
be confused with the universal wildcard character used by MS-DOS (and option
ally by AmigaDOS Release 2) or the asterisk used as an escape character before
quotation marks in a filename. As an output device, * is more durable than CON:
since the window doesn't vanish after each command. Unfortunately, it's not
much more useful, since most commands output to the current console window
anyway. It, too, can be used as an input device, and as such, it's even handier to
type

COpy * TO textfile

than specifying a long CON: device name. This is a quick and easy way to create
a short text file.

RAW
There's one more window device available to AmigaDOS, but it's really only
suitable for application programs and not for general use by the CLl command
programs. This device is called RAW:, and it's an apt name. A normal console
window heavily filters what comes through it. You'll notice, for example, that
the cursor keys have no effect when you're typing in a console window. The
RAW: device, on the other hand. doesn't filter anything. Thus, it would be nice
to use if you wanted to create a file which contained characters other than the
standard letters, numbers, and punctuation marks-such as cursor movement
codes. But, alas, RAW: passes through the CTRL-\ without interpreting it as an
end-of-file character. So while a CON: disappears before you're through with it,

64

DEVICES

there's no way to close a RAW: window from CLI and therefore no way to close
the file to which it's writing (not even the Release 2 close gadget works). If you
really want to play with RAW:, remember that once you create the window, the
only way to get rid of it is terminate the command that created it with the CTRL
C key combination, or to warm start the computer by pressing the CTRL-Amiga
Amiga key combination. A fairly safe experiment for the incurably curious is to
type

COpy RAW: O/O/lOO/SO/Input 1.'0 RAW: O/SO/640/l00/0utput

Click in the Input window to activate it and start typing. Everything you
type shows up in the Output window, including cursor movement keys. You can
now warm start the computer, secure in the knowledge that you've tried every
thing at least once and that RAW: is as useless for ordinary purposes as we say it
is.

It's NIL
Speaking of useless, the last device to investigate does absolutely nothing. True
to the British origins of AmigaDOS, it's called NIL:. When used as an input
device, NIL: just sends the end-of-file character. When used as an output device,
NIL: accepts the output, and does nothing with it. Still, it's not as useless as it
may seem at first. Programmers sometimes have a use for such devices in testing
I/O routines. And even for the casual user. there are occasions where it's useful
to get rid of output without showing it to anybody. For example, if you examine
the command file called startup-sequence in the s directory, which is normally
used to load and run the Workbench, you'll find that the last line of the file reads
endcli > nil: . (You can look at this file by warm starting the Amiga, then putting
the Workbench disk in the drive lthe Workbench disk, not the CLI disk you've
probably created], opening the System drawer, double-clicking on the CLI icon,
and typing TYPE s/sta:ctup-sequence.)

The ENDCLI command usually prints the message eLl task n ending or
Process n ending (where n is the task number), just before the window disap
pears. Apparently, the developers didn't want that message to print when the
Workbench loaded and so used output redirection (which is discussed at the end
of this chapter) to send the offending character string to limbo. Suppressing
output from commands becomes more important under Release 2, where the first
part of the startup-sequence is known as the "silent startup-sequence." If any of
the commands outputs text before the IPrefs program sets the screen and font
preferences, those preferences won't be put into immediate effect. Another

65

DEVICES

practical example of using the NIL: device is shown in Chapter 5, which deals
with command files, where the output from DATE? is sent to NIL: as a way of
allowing you to enter the date without seeing the command template as a prompt.

In versions 1.3 and above, NIL: performs another useful role. Normally, a
program that is RUN from a CLf depends on that CLI console window for its
standard input and output streams. That means that unless the program takes
special pains to detach itself from the CLI console, you won't be able to close
that window as long as the program is running. Clicking on the close gadget will
produce the eLI task n ending message, but the window won't close. This
problem is most apparent with programs that are run from the initial CLf, which
ordinarily is closed when the Workbench is opened. It can often be avoided by
using the redirection operators to specify NIL: as the default input and output
device:

RUN <>N1L: P~ogram

Logical Devices
In addition to physical devices like the disk drive and printer, AmigaDOS also
supports a variety of pseudodevices known as logical devices. Logical devices
provide a way of giving a short device-like name (ending in a colon) to a particu
lar disk directory. For example, if you assign the logical device name let: to the
directory dfO: Wordprocessingipersonailletters. you could refer to a file in that
directory as let:AuntMartha rather than as ((fO: Wordprocessingipersonalilettersl
AuntMartha. This makes it easier to shorten the reference to a directory, without
having to make that directory the current one. Logical devices also allow a
program to have access to a file without knowing its exact physical pathname.
For example, a word processing program may need to read a dictionary file in
order to perform spell checking functions. It can assume that the dictionary is in
the current directory, but that makes it difficult to store the dictionary in RAM:
for faster access, or to place it in a directory of your choosing on your hard drive.
If the program looks for the dictionary in a logical device called DT:, however,
you can store the file wherever you want. By assigning the logical device name
DT: to whatever directory you use to store the file, you can make it accessible to
the word processing program, regardless of its actual physical location.

You can use the ASS I G N command program to assign logical devices to
directories. When used for this purpose, the command format is ASSIGN

66

Volumes:
Extras [Mounted]
Workbench 1.3 [Mounted]
Directories:
CLIPS RAM DlSK:clipboards
ENV RAM DlSK:env
T RAM DISK:t

S Workbench I .3: s
L Workbench 1.3:1

C Workbenchl.3:c

FONTS Workbench 1.3 :fonts

DEVS Workbench 1.3:devs

LlBS Workbench 1.3:libs

SYS Workbench 1.3:

Devices:

PIPE AUX SPEAK

LJFO PRT PAR

CON RAM

DEVICES

NEWCON LJFI

SER RAW

dcvicell{[IIlC directory. The assignment given in the first example above could be
accomplished by the command

ASSIGN let: d~O:Wordprocess Iperson/AuntMartha

Assigning for Itself
User-created logical devices are not the only kind found on the Amiga.
AmigaDOS itself uses these devices to solve the problem of having too much
system software to fit in the Kickstart ROM. Since some of the system software
is used only occasionally. it is automatically loaded from disk whenever neces
sary. The most obvious example of this process is the CLl commands them
selves. which all reside on disk and must be loaded before they can be used. The
handlers for the RAM: disk. the parallel, serial, and printer devices. all must be
brought in from disk. As you'll soon see. the list of disk files which contain
information significant to the operating system is quite long. AmigaLJOS recog
nizes that it would be foolish to assume that each of these files is always in the

67

DEVICES

current directory. Therefore, it uses logical devices as a means of providing an
alternative place to search for these important files. When you start up the
Amiga, DOS assigns a number of logical device names to certain directories.
When DOS needs to find one of the system files, it first looks in the current
directory, but if it doesn't find the file there, it searches one of the logical devic
es.

To see a list of the logical devices which DOS creates, use the ASSIGN
command name by itself. This command program displays a list of all logical
devices, both the ones assigned by the system and those assigned by you. If
you've not assigned any logical devices, a typical display produced by ASSIGN
is shown on page 182 (assuming a dual-drive system and disks in the drives with
volume names of Extras and Workbench}.3):

s:
There are seven directories to which DOS assigns logical device names (and at
least three more to which names are assigned by the startup-sequence file de
scribed below). S:, the first logical device, is a directory used to hold command
sequence files (batch files). When the EXECUTE command is told to execute a
sequence file, it first looks for the sequence file in the current directory. If it
doesn't find the file, it tries the directory to which the logical device name S: has
been assigned. If the boot disk contains a directory called S, AmigaDOS auto
matically assigns it the logical device name S: at startup time.

The Workbench disk contains a file called startup-sequence in its S:
directory. Thi s sequence file is automatically loaded and run when the Work
bench disk is inserted, and it in turn loads the Workbench program and runs it. If
the Workbench 1.3 Shell has been installed, script files can be run directly,
without using the EXECUTE command, if the s bit of the file protection flag is
set. When you run them that way, however, AmigaDOS searches for them as if
they were commands, and not scripts. See the description of the logical device
named C:, below, for more information on command searches.

L:
If the boot disk contains an L subdirectory in its root, AmigaDOS automatically
assigns it the L: logical device name. This is where AmigaDOS looks for handler
software that controls communication with various hardware and software
devices, such as the Ram-Handler file which controls the RAM: device. The
most necessary of these is the disk- Validator, which is used to check if disks are

68

DEVICES

in the proper AmigaDOS format. Many of the MOUNTable devices, such as
NEWCON: and SPEAK:, have their device handlers stored in the L: directory
also.

c:
The command device C: is assigned to the C directory on the boot disk, or to the
root directory if no C directory exists. This is one of the most significant logical
devices, especially to CLI users. Whenever you issue a command to the CLI,
DOS first looks in the current directory for a filename matching the first word of
the command line. If it doesn't find the command in the current directory, it then
searches the C: device directory. Although C: is in the default search path for
commands, you can extend this search path with the PATH command. For
example. the command PATH RAM: Sys:System ADD will cause the two directo
ries named to be searched for commands after the current directory, and before
the C: directory.

Since the C: directory is always in the command search path, if you don't
keep the disk that contains it in one of your drives, you may be in for a lot of disk
swapping. Every time you issue a CLI command not found in the current directo
ry, you'Jl be prompted to insert the volume which contains the C: directory. One
way around this dilemma (if you have sufficient RAM) is to transfer the com
mand files to the RAM: disk and assign the C: device to it. The easiest way to do
this is

COpy C: RAM:
ASSIGN C: RAM:

This copies all the command files to the root directory of the RAM: device.
If you'll be using the RAM: device for other files as well, you may wish to create
a c subdirectory first, move the files to this directory, and then assign C: to it
with

MAKEDIR RAM: c
COpy C: RAM:c
ASSIGN C: RAM:c

You may find it convenient to place this sequence of commands in the
batch file startup-sequence on your boot disk. (Remember that this file automati
cally executes every time you turn the computer on.) Notice, however, that there
are 64 command files in the c directory of the Workbench 1.3 disk. If you copy

69

DEVICES

all of them, the RAM: disk takes up well over 240K of memory. That's most of
the free memory available on a 512 Amiga system.

This doesn't mean that you can't have AmigaDOS search for commands in
RAM: if you only have 512K in your Amiga. It just means that you'll have to be
a little more selective. Move only the most frequently used command files, like
COPY, DELETE, DIR, and LIST to RAM:, and use the PATH command to add
RAM: to the search path, so that AmigaDOS will look there before assigning the
C: device name. This way, you can create a custom-tailored list of intrinsic
commands which are always available. A sample script to accomplish this task
would look like this:

COpy c: (listldirldeletelcopy) ram:C
PATH ram:c ADD

Users of version 1.3 or higher may save memory by making a subset of CLI
commands RAM-resident, using the s. This command only works in the Shell, so
make sure that you're working from a Shell window, and not a normal CLI
window. To make the DIR command resident, you'd type RESIDENT DIR. This
command loads the DIR program into memory, and keeps it there. From then on,
whenever you give the DIR command, the Shell executes that command from the
copy that is already in memory. This eliminates the need to read the command in
from disk, eliminates the duplication that occurs when you keep a command in
the RAM disk (the "disk" copy in RAM: is loaded into memory a second time in
order for the program to execute), and allows command programs to run instant
ly.

There are, of course, some drawbacks to making commands resident. First,
just as with storing commands on RAM:, each command that you make resident
reduces the amount of free memory that you have. Second, not every program
can be made resident. Each time the program is executed, it is run from the same
copy that was initially loaded into memory. Therefore, only programs that are re
executable (can be run a second time without being unloaded and loaded again)
and re-entrant (can be executed from separate Shell windows at the same time)
qualify as resident programs. Because of this, the RESIDENT command will
only load programs with the P bit set on the their file protection flag. You will
find that most of the CLI commands in the C directory of the Workbench disk
have the pure bit set, and can be made resident.

70

DEVICES

FONTS:
This device is usually assigned to the FONTS directory of the boot disk, and
contains the files for the various text fonts for the Amiga. These are the disk
loaded fonts that can be used from programs like Notepad, painting programs,
and desktop publishing programs. When a program calls the system routine
OpenFonts, which must be done whenever a new font is used, the operating
system tries to find the new font in this directory if it's not already loaded into
memory.

Release 2 of AmigaDOS adds support for the Compugraphic system of
outline fonts, which can be scaled to any size on the screen. This font system
requires Compugraphic font information to be copied to the _Bullet and
_BulleCOutlines directories of FONTS:, and a new diskfont.library file to be
copied to the LIBS: directory. Because of the rather large size of these files,
outline fonts are practical only on a system that includes a hard drive and lots of
memory. The outline font installation procedure is performed automatically by
the AmigaDOS Release 2 hard drive installation software. Release 2 also in
cludes support for Colorfonts, which use multiple colors to give a "textured"
look to the type face.

DEVS:
The DEVS: name is normally assigned to the DEVS directory of the boot disk. It
contains device drivers for of the devices we've already discussed-the serial
device, the parallel device, and the printer device, as well as the recoverable
RAM disk device that we'll be covering a bit later. It also contains drivers for
devices which the CLI commands do not use directly, like the narrator (speech
synthesizer) and the clipboard. The first time that a program tries to open a
device using the system routine OpenDevice, AmigaDOS looks in the DEVS:
device directory for the device driver if it's not already loaded. In addition to
device drivers, DEVS: also contains the system-configuration file containing the
1.3 preference settings, the Mountlist file used by the MOUNT command, and
the printer drivers for the various printers supported by the system (these latter
files are within the printers subdirectory).

LIBS:
The logical device where system library files can be found, LIBS:, is usually
assigned to the LIBS directory of the boot disk. System library files hold the
"extra" operating system function libraries that don't fit in the Kickstart ROM.

71

DEVICES

AmigaDOS Logical Device Assignments

Device
Name
S

L

C

FONTS

DEVS

LIBS

SYS

Assignment
Assigned to directory s of the boot disk. AmigaDOS looks
for sequence files to EXECUTE here if not found in the
current directory. Some application programs store their
configuration files here.
Assigned to directory I of the boot disk. AmigaDOS looks
here for its own extensions, like the Ram-Handler, if
they're not already loaded. Some expansion devices (typi
cally software devices) require their device handlers to be
stored here.
Assigned to directory c of the boot disk. AmigaDOS looks
for CLI command files here if not found in the current
directory.
Assigned to directory fonts of the boot disk. The OpenFonts
operating system routine looks here for fonts if they're not
already loaded. Some application programs require their
own fonts to be stored here.
Assigned to directory devs of the boot disk. The
OpenDevice operating system routine looks here for device
drivers if they're not already loaded. Some expansion
devices (typically hardware devices) require their device
drivers to be stored here.
Assigned to directory fibs of the boot disk. The
OpenLibrary operating system routine looks here for
system library extensions if not already loaded. Some
application programs require their own shared library files
to be stored here.
Assigned to the root directory of the boot disk. Can be used
as a short way of referring to the system disk.

These include the function libraries which support features such as text-to-speech
conversion (the translator. library file), disk-loaded text fonts (disVont.library),
and floating-point math calculations (mathtrans.library.
mathieeedoubbas.fibrary. etc.). Whenever a program calls the OpenLibrary

72

DEVICES

routine, the operating system looks to this device for the library file, if the library
is not already resident. Although the system software libraries are the ones used
most frequently, some applications programs require their own shared library
files to be installed here.

SYS:
The final assignment which DOS makes is the SYS: device. This is assigned to
the root directory of the disk which was used to boot up the system. Since it's a
reasonable assumption that you'll use a disk which includes all the system files
when you boot up, it gives you a handy way of referring to that system disk. In
the example above, after you'd transferred only some of the CLI command files,
and then assigned C: to RAM:, you used the volume name of the Workbench
disk to access a command located in Workbench/c. You could also have speci
fied the command directory as SYS:c, without having to know the volume name
of the boot disk. Even if you did know the volume name of the boot disk, the
device name of SYS: is shorter. The assignment of SYS: has some impact on the
Workbench, since the program that is run when one disk icon is dragged over the
other has the default path SYS:System/DiskcoJlY.

The logical device assignments made by AmigaDOS are summarized on
page 72.

CLIPS:, ENV:, and T:
In addition to the logical device names that are created by the system at power
up time, there are some other logical device names that are assigned by the the
startup-sequence script to various directories which that script creates on the
RAM: device. They are CLIPS:, which is assigned to RAM:Clipboards, T:,
which is assigned to RAM:T, and ENV:, which is assigned to RAM:Env. The
CLIPS: directory is created for use by the Clipboard, a low-level device that is
used by programs to exchange information with one another, and not directly by
the end user. The Clipboard wasn't used much by programmers before its
functions were expanded in Release 2, but Release 2 uses it to provide "copy
and-paste" operations in console windows.

ENV: is another logical device whose role increased in Release 2. Previous
ly, it was used primarily by script files (see Chapter 5) as a means of passing data
between script commands. In Release 2, ENV: started to be used more as an
"environment" device, where information that might be used by several pro-

73

DEVICES

grams could be stored. One example is Release 2 preference files, which are
stored in the ENV:sys drawer. You can find more information about environment
variables in the Reference section under the SET and SETENV commands.

T: is used by a few programs for temporary storage. For example, the
system screen editor, ED, stores a backup of the original text file that's being
edited in this directory.

New ASSIGN Options for Release 2
Several important new options were added to the ASSIGN command in
AmigaDOS Release 2. The first of these is the ability to assign several directo
ries to one logical device name. In the past, only the command path could be
assigned to several different directories via the PATH command (which in effect
expanded on the function of the C: assignment). In Release 2 and 3, however,
you can assign multiple directories to any logical device simply by listing the
directories in the ASSIGN command:

ASSIGN FONTS: sys:[onts sys:color:onts sys:videofonts
sys:DTPfonts

This capability is quite handy for hard drive owners, who may, as the above
example indicates, accumulate so many fonts that they may wish to store them in
separate subdirectories. AmigaDOS Release 2 also gives you the capability to
add directories to an existing logical device assignment, using the ADD option:

ASSIGN FONTS: sys:colorfonts sys:videofonts ADD
Another option that Release 2 owners have is to defer AmigaDOS' search

for the directory that is being assigned. Normally, when you try to assign a
logical device name to a directory, AmigaDOS immediately checks to see if the
volume is mounted and the directory is present. If the volume is not mounted, it
prompts the user to mount it. If the volume is present but the subdirectory does
not exist, the assignment fails immediately. With Release 2, you can defer this
verification process until a program actually tries to access the logical device, by
using the DEFER option:

ASSIGN Dictionary: lI]ordPro/Dictionary DEFER

Using this example, you could make the necessary assignment to run your
Word Pro program from the startup-sequence file on your Workbench, without
having the WordPro disk actually mounted in the drive.

Like the DEFER option, the PATH option does not look for the assigned
volume until the logical device name is used. PATH goes one step further,

74

DEVICES

however, by re-evaluating the assignment every time a program tries to use a file
on that logical device. For example, the command ASSIGN C: dfO: c will assign
the C: device name to the c directory of whatever disk happens to be in the
internal drive when you make the assignment. The command ASSIGN C: dfO: c
DEFER will assign the c directory of whatever disk is in the drive when the C:
device is next used (typically, the next time that you type the name of a com
mand file that isn't in the current directory). The command ASSIGN C: dfO: c
PATH, however, looks for dfO:c each time a program tries to use a file on the C:
device. That means as long as the disk in the internal drive has a command
directory on it, AmigaDOS will never ask you to insert the Workbench disk if it
needs to find a command. The one drawback to the PATH option is that it cannot
be used as part of a multiple assignment for a single device. In the case of C:,
however, you can use the PATH command to assign other directories to the
search path.

File Assignments
Not only can you ASSIGN a device name to volumes and directories, but you
can also ASSIGN a device name to program files. This allows you to create short
"aliases" for program names, if you are using a version prior to 1.3 that does not
include a Shell. While names like EXECUTE and DELETE may not seem so
hard to type, it's more convenient to type names like X: and D:. If you ASSIGN

X: EXECCTE:, then you can type

X: program

instead of

EXECUTE program

It may seem like a small savings in keystrokes, but time saved by ASSIGNs
and Shell ALIASes can add up (particularly if you're not a crack typist). If you
place these ASSIGN statements in the slstartup-sequence file, the logical device
names which you ASSIGN will always be available to you.

Notes
Before leaving the subject of logical devices, there are a few final points to note:
I The logical device assignments apply to all CI -Is, regardless of which was used

to make the assignment (as opposed to Shell AI JASes, which apply only to
one Shell).

75

DEVICES

• The ASSIGN command can be used to remove an assignment. The form for
this is ASSIGN devicename. Note that it's possible to delete the assignments
which the system makes. ASSIGN C:, for example, removes the command
directory assignment so that commands must be located in the current directo
ry in order to be executed. Obviously, some caution should be exercised in
removing the assignments that AmigaDOS has made.

• It's not possible to use the ASSIGN command to change the names of physical
devices like SER:.

• You cannot delete a file or directory to which a logical device name has been
ASSIGNED without first removing the assignment.

MOUNTable Device Drivers and Handlers
One of the most important features added to the 1.2 version of the Workbench
was the MOUNT command. The MOUNT command allows almost any type of
hardware or software device imaginable to be added to the system by reading
information that describes the device and its driver or handler software from a
text file in the DEVS: directory called Mountlist (see the MOUNT entry in the
reference section for more information on the Mountlist file). Mountable device
drivers can allow AmigaDOS to communicate with external hardware devices
like a hard drive. "Devices" may also consist merely of software drivers that use
existing system resources in a new way, as with the RAM disk device.

The 1.2 Workbench contained only one Mountlist entry for adding the
AI020 5'4-inch drive as an AmigaDOS device. Workbench 1.3 added many
more new standard devices to the system.

RAD:
Perhaps the most interesting of the new devices is one called RAD:. RAD: is a
RAM disk device, which, like the familiar RAM: device, uses part of the com
puter's working memory as an electronic disk drive. RAD: is an additional
device, not a replacement for RAM:, as there are many important differences
between the two.

RAM: is an integral part of the AmigaDOS system; you create the RAM:
device merely by referring to it in an AmigaDOS command. RAD:, on the other
hand, must be added to the system with the MOUNT command, and its device
driver, which is contained in a file called RAMDRIVE.DEVICE, must be
present in the DEVS: directory.

76

DEVICES

RAM: automatically adjusts its size according to its contents. As you add
more files to it, it grows in size, and that size is limited only by the amount of
memory that's available. RAD: has a fixed size, which is determined by the
Mountlist entry used to MOUNT it.

Because it is of a fixed size, RAD: acts more like the Amiga's floppy disks
than its RAM disk. Like the standard 3Y2-inch floppies, RAD: is set up as a
double-sided drive, with 512 bytes per sector, and II sectors per track. This
means that each track (or cylinder as it is sometimes called) uses II K of memory
(512 * 2 * 11). The number of tracks used for RAD: is determined by the
LowCyl and HighCyl entries in the mountlist. An entry of = 0 ;

= 21, for example, allocates 22 tracks, at 11 K per track, for a total
memory usage of 242K. This is enough to store all of the files in the C directory
on the 1.3 Workbench disk. If you have a couple of megabytes of fast memory
on your Amiga, you might even set the HighCyl value to 79, for an 880K RAD:
drive, the exact same size and layout as a floppy disk. When the RAD: drive is
the same size as a floppy, it's possible to use the Diskcopy command to copy an
entire floppy to RAD:, or vice versa. It's even possible to format the RAD: drive,
something that can't be done with RAM:.

The most important difference between RAD: and RAM:, however, is their
duration. Since both use the computer's memory to simulate disk storage, the
contents of both devices is lost when the computer is turned off. A warm boot
situation is a different story, however. While RAM: loses its contents whenever
you press the Ctrl-Amiga-Amiga key combination, or your computer takes a trip
to the Guru, RAD: is a recoverable RAM: disk. As long as the error which
caused the Guru Meditation didn't scramble the contents of memory as well,
with the 1.2 Kickstart ROM you can MOUNT RAD: again, and it will re-appear
with its contents intact. If you are using version 1.3 or higher of Kickstart, you
can not only recover the contents of the RAD: drive after rebooting, but you can
even reboot from the RAD: device itself, so long as you've assigned it a boot
priority higher than any other devices that are present (such as a hard drive).
Even if a boot disk is used for a warm start, Kickstart 1.3 automatically restores
RAD: upon warm boot, with no need to re-MOUNT it. Sometimes, RAD: can be
a little too persistent. Since it doesn't disappear when you warm boot, like RAM:
does, the only way to remove it short of turning off the power is to use the
REMRAD command. This deletes the contents of RAD:, shrinks it down to the
smallest possible size, and makes it non-recoverable, so that it disappears at the
next warm boot.

77

DEVICES

Since RAD: is a MOUNTable device which can be formatted, 1.3 users can
format it for the Fast File System (FFS) by adding two items to the RAD: entry
in the DEVS:MOUNTLIST file. These two lines are:

GlobVec = 1
FileSystcm = l:FastFileSystem

These lines can be added anywhere after RAD: and before the # which ends
the entry. In addition. the FastFileSystem file mentioned in the second line must
appear in the 1: directory on your Workbench disk. After you've changed the
Mountlist entry, you may use the command MOUNT RAD: to mount the drive.
Because you're using a different file system than the default one, you must
format the drive before you use it. You can, however, use the new QUICK
option of the FORMAT command, which shortens the process:

:SYSTEM/FORMAT drive RAD: name Speedy QUICK

Using the FFS on the recoverable RAM disk does speed up operations
somewhat, though since it is a RAM drive, those operations are fairiy quick
without it. But in versions prior to Release 2, you lose the ability to reboot from
the RAM drive if you format it with the FFS (you should add the line BootPri
-129 to the 8J,D: entry in the Mountlist file to tell AmigaDOS not to try
rebooting from this device). In fact, with the 1.3 ROM, you can't even recover
the contents of the RAM drive when you reboot if you have it formatted with the
FFS. since the drive is automatically mounted on wannstart as a normal DOS
filesystem device. Since Kickstart is expecting the RAM drive to be in the old
AmigaDOS format, it thinks that it is not a DOS disk. Using the 1.2 Kickstart,
however, you must MOUNT the drive again after a warmstart, and so even
though you can't reboot from the RAM drive, you can recover its contents even
if it is formatted with FFS.

AmigaDOS Release 2 allows you to create multiple recoverable RAM disks
at a time. To create a second unit, edit the DEVS:Mountlist file with a text editor
such as ED (see Chapter 6). First. make a duplicate copy of the RAD: entry
(everything from the name RAD: to the first #). Then. change the name to
something like RADI:, the unit number (in the line Unit =) to I instead of zero,
and the HighCyl to the appropriate number for the size you have selected. Now,
you can MOUNT RAD I: after you have MOUNTed RAD:. To remove the new
unit, use the unit number after the REMRAD command, like PEY!RAD l.

78

DEVICES

PIPE:
Next on the list of device handlers added by Workbench 1.3 is one called PIPE:,
which is mounted during the standard startup-sequence. This device emulates the
pipes feature of UNIX and MS-DOS, which allows the user to transfer the output
of one program directly to the input of another. Let's say, for example, that you
wish to display a large disk directory on screen. The DIR command may not be
suitable, since it outputs filenames in a continuous stream, and doesn't pause
when the screen fills up. By piping the output of DIR to the MORE program,
which displays text a screen full at a time, you get the information you want, in
the format you prefer. In UNIX or MS-DOS, this can be accomplished with a
command like DIR I MORE. Unfortunately, the Amiga command shell doesn't
recognize the I operator, so it's necessary to simulate pipes to achieve the same
result.

Amiga owners have always been able to get similar results by using file
redirection to a temporary storage area on the RAM: disk. In the case of the
example discussed above, you could use the command sequence

DIR >ram:temp
MORE ram: temp
DELETE ram: temp

to achieve the same result. Still, there are instances in which you may not have
enough room on the RAM: disk to create the intermediate file. For example, if
you create a hex dump of a 25K program file using the TYPE OPT H command,
you may end up with a text file that is 100K or longer. In such a case, you may
wish to MOUNT PIPE:, whose handler is found in the file l:pipe-handler.

The PIPE: devices acts as a conduit, directing the output of one program to
the input of another. One process writes to the pipe, assigning it an arbitrary file
name (such as pipe:temp). Each pipe name uses a 4K buffer, which means only
that much may be written to the pipe before the writing process is blocked. When
the second program reads that 4K buffer (by accessing the same file name as was
written), the first program can write 4K more of data, until all of the output is
transferred. In the example above, you could pipe the output of DIR to more
using the command sequence

RUN DIR >pipe:temp
MORE pipe:temp

79

DEVICES

assuming, of course, that you had first used the MOUNT PIPE: command (the
normal Startup-Sequence file on Workbench 1.3 mounts this device automatical
ly). Note that in the above example we used RUN to spin off a separate process
for DIR. Both commands can' t usc the same CLI process because if the directory
output is larger than 4K, DIR won't terminate and give back the eLI prompt
until MORE has read all of its output.

The roundabout method that PIPF: uses to simulate pipes may not be as
simple as that available on other systems. but it does have some unique advan
tages. In addition to the traditional pipe situation described above, PIPE: can be
used for its buffering capabilities alone. \;lany terminal programs, for example.
download files in a synchronous fashion. This rncans that they receive a block of
data, send it to the disk. wail until the disk write is finished. and then ask to
receive the next block. Each interrnediate disk write causes a slight delay in the
transmission. You can al ways avoid this delay by dO\vn loadi ng to a file in
RAM:, but in doing so you run the risk of filling up the RAM disk before the file
transfer is completed, or of forgetting to copy the file to a floppy before turning
off your computer. A bettel solution is to use the command:

:temp 'TO dfO:':

before running your terminal program. and then downloading to the file
pipe:teIllP. That way. large amounts of data are butTered before any writes
actually take place, which means fevv'er delays. At the same time, you avoid the
risks associated with downloading to RAM:. since when the download process is
terminated. your file is stored safely on disk.

AUX:
AUX:, another device handler introduced in AmigaDOS 1.3. is also mounted
during the startup-sequence. The AUX: device, whose handler is located in the
file L:Aux-Handler, transfers data through the serial port, much like the SER:
device. While SER: buffers its output, however, sending it out only after a 512-
byte block has accumulated, A UX: provides unbuffered communication with the
serial port. The main use for an unbuffered serial device is to create a CLI
window that uses the serial port for its input and output. Such a window can be
set up by MOUNTING the AUX: device (this is normally done automatically by
the S tartu p-Seq lienee fi Ie), and typi ng thl' corn mand:

'J-X:

This procedure lets you hook up another computer or terminal to the
Amiga, and give AmigaOOS commands from that machine over the serial port,

80

DEVICES

or even over a modem. While you can not, of course, run Intuition-based
windowing programs on your remote terminal (at least not yet), you call usc CLl
commands like DrR and INFO to gain information about the Amiga disks, and
the TYPE command to selld files to the remote screen (where they can be
captured to a buffer file). There is evell a public domain program called CAN
CEL! which automatically hits the Cancel button whenever a system requester
pops up. While serial-port CLls don't exactly make the Amiga a multi-user
system, they do come pretty close to it.

SPEAK:
Tn an effort to make the huilt-in speech synthesis feature of the Amiga even more
accessible, Commodore has added the SPEAK: device handler to the 1.3 Work
bench. SPEAK: is similar to the SAY program in the Utilities drawer, in that it
converts text input into speech which is output through the audio channels. Like
SAY, it uses the translator.library file from the LlBS: directory to convert the
text to phonemes, and the narrator.device from DEVS: to output the phonetic
speech. While SAY takes input only from the keyboard, however, SPEAK: is
mounted as a device, which means that it can take its input from any source that
can write to a disk file. For example. you can COpy a file to SPEAK: from the
CLI, save a file to SPEAK: from a text editor or word processing program like
MicroEMACS or Notepad, or even open SPEAK: as a capture file for a terminal
program, so that text is spoken as it is received from the modem.

As vvith the SA Y program, it is possible to adjust SPEA K: in order to vary
the spoken output. You may change the pitch and speed of the speech, choose
male or female voice characteristics, and select natural or robot (monotone)
speech inflection. To add a voice setting, you include it as part of a SPEAK:opt/
path name when you access the device. For example, to listen to a file with a
kmale voice at a pitch setting of 200, you could usc the command:

The full list of voice options which can be added to the SPEAK:opt/
pathname is shown below:

P### Set Pitch. (### is:1 number from 65 to 320)
S### Set Speed. (### is a number from 30 to 4(0)

M Use male voice characteristics
F User female voice characteristics
R Robot speech (uninflected monotone)

81

DEVICES

N Natural speech (natural inflection)
00 Do not allow option settings in input stream
01 Allow option settings in input stream
AD Tum off phoneme input mode
A 1 Tum on phoneme input mode
DO Determine sentence breaks by punctuation alone
D 1 Determine sentence breaks from Carriage Return and Line Feed, as

well as punctuation

When option settings are allowed in the input stream, you can change the
voice characteristics with commands given in the data that is sent to the device.
For example, if you give the command

COpy * to Speak:opt/Ol
and then type This is a test, the phrase is pronounced in the default voice. If
you then type the lines

opt! fip200
This is a test

the phrase is pronounced in a high female voice. When option settings are not
allowed in the input stream (the default), the options settings are read aloud (Opt
slash eff slash pea two zero zero).

NEWCON:
One of the major complaints that users always had about the CLI command
environment was that it didn't support command line editing. If you made a
typing mistake in the first word of a command line, you had to erase the whole
line and start over again. A device that was added in 1.3 called NEWCON:
finally provided a console window that not only allowed editing with the cursor
keys, but also added a 2K command history buffer. After mounting the
NEWCON: device, (whose handler is located in the file L:newcon-handler), 1.3
users may open a CLI window that uses this new console device with the com
mand:

NEWCLI NEWCON:x/y/w/h/name
where x and y specify the position of the upper left comer of the window, wand
h specify its width and height in pixels, and name designates an optional window
name. With a NEWCON: window, you can edit a command line by using the left
and right arrow keys to move the cursor back and forth across the line one space

82

DEVICES

at a time, or in combination with the Shift key to take you to the beginning or
end of the line. The up and down arrow keys implement a command history
feature. Each time you enter a command line, that line is stored in a 2K circular
buffer. Pressing the up arrow key retrieves the previous entry in the buffer, which
appears at the command prompt. Pressing the down arrow key moves you
forward through the buffer (Shift-down arrow takes you to the bottom of the
buffer). If you don't want to cursor through each previous command, you can use
the command history's search feature. Typing a partial command line, and then
pressing Shift-cursor up, initiates a search for the last command line that matches
the partial string.

With Release 2, all of the features of the NEWCON: device (and then
some) were integrated into the standard CON: device. This means that all
console windows in Release 2 have the advanced editing capabilities of
NEWCON:, without having to load an additional handler.

Redirection of Input and Output
Ordinarily, AmigaDOS accepts input from the keyboard and outputs it to the
current console window. These are known as the standard input and standard
output devices. In some cases, you may redirect input to a program so that it
comes from a device other than the console keyboard. and you may redirect
output from the program so that it goes to a device other than the console dis
play. Redirection of command input/output (I/O) is accomplished through the
use of the redirection operators < and> (the angle brackets-you may be more
familiar with them as the less than and greater than signs-which are entered by
pressing a SHIFTed comma and SHIFTed period, respectively). The left angle
bracket «) is used to redirect input, and the right angle bracket (». to redirect
output. You can easily remember which is which, because the direction in which
the angle bracket is pointing indicates the direction in which the information is
going (from is left, to is right).

You use a redirection operator, followed by the name of the device or file
which you wish to use for input or output, directly after the command name. For
example, if you wish to send a directory listing to the printer. you could type

DlR >PRT:

You can use one redirection operator or both for a particular command, but
in versions prior to 2.04, the operator(s) must come right after the command
name, not after the command parameters:

83

DEVICES

DIR >PRT: OPT A
is correct, but

DIR OPT A >PRT:
is incorrect because DIR will interpret >PRT: as the root directory of a volume
named >PRT. In versions 2.04 and higher, however, even this latter format is
acceptable.

Note that several commands, such as COPY and LIST. allow you to specify
a destination device to which output is directed. Therefore, you don't have to use
the redirection operator to specify the output for those commands.

Redirection of input is a little trickier than redirection of output, since the
CLI commands generally take all their input directly from the command line
rather than waiting for someone to type it in at the keyboard. One way of getting
around this is to use the question mark (?) as a command parameter. When you
put a question mark after the command name as its only parameter, AmigaDOS
prints out a command template and waits for you to enter the command parame
ters. For example, if you first redirected the output of ECHO to a file named
textfile:

ECHO >textfile "*"This is a test*""
you'd end up with a one-line text file which starts and ends with double quota
tion marks. Then, you could use ECHO to print the contents of the file by typing

ECHO <textfile ?

ECHO first prints out a colon (:)-its command template-then gets the
input to print from textfile. Notice that this works only with short files, since
ECHO can only take a character string shorter than 256 characters. Another
handy use for input redirection is with commands that require a carriage return to
continue. If you wish to use the DISKCOPY command to automatically copy
your boot disk to the recoverable RAM disk on startup, you'll find that
DISKCOPY prompts you to hit Return to start the copy. To avoid having to
manually enter a Return (and thus defeating the automatic nature of the script),
you could use the command:

DISKCOPY <N:;:L: DFO: to RAD:

The input from NIL: will satisfy DISKCOPY's desire for a carriage return.
Redirection applies only to the command in which the operators are used.

Subsequent CLI commands will use standard input and output.

84

DEVICES

The 1.3 Workbench Shell provides an additional output redirection opera
tion, which uses two angle brackets (») instead of one. If you use the standard
operator to direct output to a file that already exists, the existing file will be
replaced by a file consisting of the new output. If you use the new redirection
operator on an existing file, however, the new material will be added to the end
of the current file (appended). If you try to use the append redirection operator
on a file that doesn't exist, the command will fail under version 1.3. Under
Release 2. however, AmigaDOS will create the file if it doesn't already exist.

85

Chapter 5

Command Sequence Files

Running individual command programs from the CLI is easy-you just enter the
name of the command. You may find, however, that some tasks require you to
enter several CLI commands, one after the other. You may find that you even use
a particular sequence of commands again and again. AmigaDOS offers a way to
simplify this process-it allows you to enter each of the commands into a text
file and to use the EXECUTE command to execute that sequence of commands
whenever you want. Such a text file is known as a sequence file, a batch file, or a
script file. When EXECUTEd, a batch file will run a sequence of commands, one
after the other, just as if it had been typed at the console keyboard. The sequence
will continue to run until all of the commands have been carried out, or until a
command fails, or the user manually breaks out of the sequence by pressing the
CTRL-D key combination.

Sequence files can do more than just execute a fixed series of commands.
There are provisions for testing certain conditions and for issuing alternative
series of commands depending on the outcome of those tests. They also allow
you to substitute text within the command file so that the commands operate with
options you specify in the EXECUTE command, not just with a fixed set.
Finally, the special command file named startup-sequence (or the user-startup
file in Release 2) lets you automatically execute a number of commands whenev
er you turn on the computer.

Batching Simple Commands
In order to use the EXECUTE command, you must first create a text file contain
ing the command statements you want to execute. You may use either of the
system editors, ED or EDIT, to create the command file (see Chapters 6 and 7,
which explain the use of the editors), or the Memacs editor in the Tools drawer
on the Extras disk. You may also use any word processor or text editor which
can save a text-only file, one without imbedded command characters in the text.
(To create such a file using WordPerfect, for instance, you must choose the Save

86

COMMAND SEQUENCE FILES

Text File option on the Project menu.) Another handy method of creating short
command sequence files is to use a console window as a mini text editor. Chap
ter 4 showed you how to do this.

The file you create should contain one or more lines of CLI commands, one
command to a line, with a RETURN character at the end of each line. The format
should look like this:

ECHO -The current date and time settings are:
DATE
ECHO -*N*E[3mThe current device assignments are:*E[Om"
ASSIGN SAY All, done.
This file contains the ECHO command, with which you may not be famil

iar. ECHO prints out the text string enclosed in quotes (in Release 2, the quotes
aren't always necessary). It's really only useful when included in command
sequence files. By placing ECHO statements in command files, you can let the
user know what the command file is doing. ECHO uses the asterisk (*) as a
special escape character. The asterisk causes ECHO to treat subsequent charac
ters as formatting commands, rather than as text that it should print. In the
example above, the *N combination causes ECHO to skip a line. The *E combi
nation is used for the ESC character, so that console escape sequences, like the
one that changes to italic print, can be used (see Chapter 2 for more on console
escape sequences). The AmigaDOS Release 2 ECHO only treats the asterisk as
special if the text is enclosed in quotes.

The SAY command, found in the last line above, is similar to the ECHO
command except that it uses the Amiga Narrator device and Translator library to
actually speak the words typed on the command line. Unlike the ECHO com
mand, you can't use quotation marks around the text with SAY-if you included
them, your Amiga would try to speak them. The comma after the word All isn't a
typo, either. Punctuation marks like the comma and period can change the timing
and inflection of the speech that SAY produces.

Let's assume that you've created a disk file in the current directory named
Report, which contains the lines of text listed above. You could then type
EXECUTE Report, and each of the commands in the file would be executed in
sequence, producing the following screen output shown on page 88.

In this example, it's assumed that the file Report was in the current directo
ry. If it were in another directory, you could have used the full path name to
identify its location (EXECUTE djl:UtilitiesIReport). But there's another way to

87

COMMAND SEQUENCE FILES

Output of the Report Sequence File

The current date and time settings are:
Saturday 15-Nov-86 18:27:01
The current device assignments are:
Volumes:
Extras [MountedJ
Workbench1.3 [Mountedl

S Workbenchl.3:s
L Workbenchl.3:l
C Workbench1.3:c
FONTS Workbenchl.3:fonts
DEVS Workbenchl.3:devs
LIBS Workbenchl.3:libs
SYS Workbench1.3:Workbench

Devices:
PIPE

. DFO
AUX
PRT

SPEAK NEWCON OFI
PAR SER RAW

make the EXECUTE command execute a sequence file that isn't located in the
current directory. As you may remember from the previous chapter, the system
assigns the logical device name S: to the s directory on the boot disk when you
tum on the computer. The EXECUTE command first looks for the command file
in the current directory, but if it doesn't find it there, it looks in the S: directory.
By saving your command files to the S: device, therefore, you can be sure that
EXECUTE will always be able to find it, regardless of which directory is current.

If you are using the 1.3 Shell window instead of an ordinary CLI, ifs
possible to execute script files without using the EXECUTE command. If the
script file has the S protection bit set, you may execute the sequence just by
typing the name of the file. To do this with the file in the example above, you
would first set the file's S bit with the command:

PROTECT Report +S

Afterwards, you could execute the sequence just by typing Report. Since
the Shell executes script files as if they were CLI commands, it doesn't use the
normal sequence file search path to find them. Instead, it looks for them in the
normal command file search path. If you use a lot of script files from the shell,

88

COMMAND SEQUENCE FILES

and these scripts are stored in the S: directory, you may want to be sure that S:
has been added to your command search path (as it normally is by the default
startup-sequence) .

Startup-Sequence:The Autoexecuting Command File
As has been mentioned several times already, AmigaDOS recognizes a special
command sequence file located in the S: directory called startup-sequence. The
sequence of commands contained in the startup-sequence file is executed
whenever you turn on the machine or reset it by holding down CTRL and both
Amiga keys. To see the standard command file which comes on the Workbench

Workbench 1.3 Startup Sequence File

c:SetPatch >NIL: r ;patch system functions
Addbuffers dfO: lO
cd c:
echo "A500/A2000 Workbench disk. Release 1.3.2 version 34.28*N"
Sys:SystemlFastMemFirst ; move COOOOO memory to last in list
BindDrivers
SetClock load ;load system time from real time clock (A 1 000 owners

;should
;replace the SetClock load with Date

FF >NIL: -0 ;speed up Text
resident CLI L:Shell-Seg SYSTEM pure add; activate Shell
resident c:Execute pure
mount newcon:

failat 11
run execute s:StartupII ;This lets resident be used for rest of script
wait >NIL: 5 mins ;wait for StartupII to complete (will signal when done)

SYS:SysternlSetMap usal ;Activate the 0/* on keypad
path ram: c: sys:utilities sys:system s: sys:prefs add ;set path for Work
bench
LoadWB delay ;wait for inhibit to end before continuing
endcli >NIL:

89

COMMAND SEQUENCE FILES

disk, enter TYPE S: startup-sequence. For Workbench 1.3, the displayed file
should look like the display on page 89.

The first command installs software fixes for Kernel ROM bugs
(SETPATCH is the standard method used to make updates between ROM
revisions, and should always be run first to insure those fixes take place immedi
ately). The second allocates additional disk buffers to speed up floppy disk
access, and the third makes C: the default directory. The next command uses
ECHO to send a message to the screen. The FASTMEMFIRST command is run
to give priority to external expansion memory if any is present.

Next, the BINDDRIVERS command adds in any device drivers that are in
the expansion drawer, such as the one needed to integrate the PC Bridgeboard
into the system. SETCLOCK is used to set AmigaDOS' system clock from the
hardware clock in the 2000 and 500's and 600's equipped with the clock option.
Next, the FF command is used to speed up text printing. The first RESIDENT
command loads the program needed for the 1.3 Shell, and the next makes the
EXECUTE command resident, after which the NEWCON: device is mounted to
add enhanced console functions to Shell windows.

The FAILATcommand is used to set the failure level higher, so that the
script won't end abruptly if one of the subsequent commands should fail. Next,
RUN is used to EXECUTE a separate batch file which does some ASSIGNS and
other startup tasks. A WATT command is used after this to stop the current script
until the other script is done. This prevents the two scripts from trying to access
the same disk at the same time, a situation which slows down disk access, and
causes a lot of unnecessary disk seeks. This WALT command will wait for five
minutes, or until the other script sends it a Break, whichever comes first. After
the other script has signalled that it is done, the SETMAP command is used to
install a new keymap, one which recognizes the extra keypad keys on the 500/
2000 that weren't on the 1000. The PATH command is used to set some extra
default search paths for commands. LOADWB is used to start the up the Work
bench environment, and ENDCLI is used to terminate the initial CLI window.

Although the sequence of commands is somewhat different in the Release 2
startup file the process is much the same (there is a line-by-line explanation of
Release 2 startup file starting on page 7-56 of the "Using the System Software"
manual that comes with Release 2). The Release 2 startup-sequence, however,
automatically executes another script called User-startup if it is present. If you
plan to make any additions to the startup-sequence, you should always put those
additional commands in the User-startupJile instead. That way, you'll know
which commands are the ones normally required by the system, and which
you've added.

90

COMMAND SEQUENCE FILES

The startup-sequence command file is a powerful tool because it lets you
specify what happens every time you tum on your Amiga. For instance, you can
choose to load the Workbench every time or stay in CLI mode, or have both
interfaces available at the same time. You've already seen that to stay in CLI
mode, all you have to do is leave out the last two lines of the standard file. But if
you want to load the Workbench and keep a CLI window, you can insert the line

NEWCLI con:20/20/200/100/

or for 1.3 users

NEWSHELL Newcon:20/20/200/100/

right before the LoadWb line. This starts up a smaller CLI window that will stay
on the Workbench screen after the Workbench is loaded. (See Chapter 6 for
details on how to edit a file such as startup-sequence. Briefly, though, to add this
line, type ED s/startup-sequence, which puts you in the screen editor. Use the
cursor keys to move to the LoadWb line, press RETURN, cursor up to the empty
line, and enter what you see above. Press ESC, then enter X, and press RETURN.
The new startup-sequence file will overwrite the old. Wait until all disk activity
has ceased, then warm start your Amiga by pressing the CTRL key and both
Amiga keys at the same time. The Workbench should appear, along with a CLI
window.)

There are a number of other things you may want to do automatically at
startup time. If you're using a hard disk or other other external peripheral device,
you may need to run a program to integrate them into the system. One of the
most useful sequences of commands to include in the startup-sequence file is one
that sets up a RAM disk directory containing a collection of your most frequently
used commands and ASSIGNs it as the default command directory. The simplest
sequence to use is

MAKEDIR RAM: c
COpy SYS:c ram:c ALL
ASSIGN c: RAM:c

This is faster than copying each individual file since DOS doesn't have to
read the COpy program from disk each time. The disadvantage is that you end
up using a lot of RAM to hold command programs you seldom, if ever, use.
Taking up over 128K of RAM for command programs is wasteful on a SI2K
system and prohibitive on a 2S6K system. The alternative is to copy files selec
tively, like this:

91

COMMAND SEQUENCE FILES

C:CD C:
MAKEDI R RAM: c
COpy C:copy RAM:c
RAM:c/copy assignlcdldeleteldirldiskcopy RAM:c:
RAM:c/copy echoledlendclilinfoljoinllist RAM:c:
RAM:c/copy Makedirlnewclilrunltype RAM:c:
PATH RAM:c Add
This script copies the COPY program to RAM:, then uses that version to

copy the rest of the files. This reduces the time spent reading the COPY program
from disk. Some other steps are taken to shorten the time required to execute this
script. Another shortcut is to change the current directory to C:, to make the CLI
look there first for each command, instead of wasting time looking in some other
default directory. When a command in another directory is needed, we use the
complete pathname. To avoid loading the COPY command for each operation,
we use the "OR" wildcard operator (the vertical bar) to move several files at a
time. When all the required files are copied, we add the RAM:c directory to the
default command search path with the PATH command.

Shell users will find it more beneficial to use the RESIDENT command to
keep often-used commands loaded in memory than copying those files to the
RAM disk. A resident program is always loaded in memory, ready to go, and
Shell windows search the Resident list before looking in any of default search
paths. Resident commands may also be given new, shorter names, like DEL for
Delete, and MD for Makedir. The RESIDENT command doesn't allow the use of
wildcards, however, so you would have to change the above example to include
a separate line for each command that you wish to make resident.

Another common task you can perform at startup time is setting the system
clock and calendar. If you've purchased an optional hardware clock/calendar for
the 1000, it probably came with a program for setting the system clock from the
hardware clock. The command to run this program should be part of your
startup-sequence file (A SETCLOCK command for 500 and 2000 owners is
already in the default startup file). If you don't have a hardware clock for your
1000 or 500, you should set the time and date manually each time you start the
system. The original startup-sequence file on older Workbench disks print a
message telling you to set the date and time from the Preferences program. If you
prefer, you can give yourself the opportunity to set the time and date as part of
your startup-sequence file. The following example demonstrates one technique
for doing this:

92

COMMAND SEQUENCE FILES

ECHO /I 1/

ECHO HThe current setting of the date and time is:H
DATE
ECHO II IJ

ECHO HEnter the correct date and/or time now."
ECHO HUse the form DD-MMM-YY for the date (format as

09-Sep-86) ."
ECHO HUse the form HH:MM:SS or HH:MM for the time (for

ma t a s 14: 5 5) . "
ECHO H H

The next command is tricky. It uses the question mark form of DA TE to
prompt you with the command template and wait for input. It uses redirection to
send the prompt text down a black hole. The result is that it accepts input and
sends it to DATE.

DATE >nil: ?

ECHO H H

ECHO HThe new date and time settings are: "
DATE
DATE >now
As the comments in italics explain, this example uses the question mark

form of DATE. Normally. when you type D.i\TE ?, the DATE command prints
out its command template and waits for you to enter input in that format. By
redirecting the output of the command to NIL:, which does nothing with it, you
suppress the command template and instead provide more detailed instructions as
reminders to yourself. Redirecting the output to NIL: performs an additional
function as well. If you decide that you don't want to change the date and just
press RETURN, the DATE command doesn't get any instructions about what
date or time is to be set. In such a case, the command normally prints out the
current date or time. Here, that would be inappropriate and would confuse the
display. Luckily, the redirection to NIL: prevents this text from being displayed
so that if you just press RETURN, nothing happens.

Notice that the last command in the new startup-sequence file redirects the
output from DATE to the file now. This kind of date stamping can be helpful, for
the Amiga looks to the most recently modified or created file to set the time (if
you don't do it yourself manually). Thus, if you haven't altered or created any

93

COMMAND SEQUENCE FILES

files since the last time you booted the computer up, it looks to now for the
current date.

Passing Instructions to Commands
As convenient as it may be to EXECUTE a sequence of fixed commands stored
in a file, it limits you to working with the same specific files and directories
every time. That's why AmigaDOS has a mechanism for passing words from the
EXECUTE command line to the command file and substituting them in the
commands. This lets you create command files which do different things,
depending on what you type in the EXECUTE command line.

Since this concept is much easier to demonstrate than to explain, let's take a
very simple example. Suppose you want to create a command file which makes a
backup copy of a file. You need some way of specifying the name of the file so
that you won't be continually backing up the same file. The following short
command file, named Backup, does just this:

. KEY f i 1 ename: (.K filename is also acceptable)

COPY <filename> TO :Backups

To use this command file, type EXECUTE Backup Mydata. The result is
that the file named Mydata is copied to the Backups directory (this assumes that
the Backups directory already exists in the root directory of the current disk). If
you typed EXECCTE Backup Prog:t:am, the file named Program would be copied
to Backups. The key to this process is in the first line of the file. The line starts
with the word. KEY, which is not a normal CLI command, but rather a sequence
file directive which tells the EXECUTE command how to operate. The .KEY
directive tells EXECUTE that the command template which follows should be
used to determine what commands can be passed to this command file. In this
case, .KEY tells EXECUTE that if a word is entered on the EXECUTE com
mand line after Backup, that word is to be referred to as filename. Anytime
<.filename>appears in the Backup file, the word appearing on the command line
after Backup is substituted. So when you type EXECU'rE Backup Myna ta,
EXECUTE takes the command line COPY <.filename> to :Backups and substi
tutes Mydata everywhere that <filename>appears. The result is the command
line COpy Mydata TO :Backups.

If you don't enter any command words after the name of the command
sequence file, there's nothing to substitute for the keyword specified by the
.KEY (or .K) directive. In the above example, the command EXECUTE Backup
translates to the command line COpy TO :Backups, which copies everything in

94

COMMAND SEQUENCE FILES

the current directory to the Backups directory. This may not be the result you
wanted. Fortunately, AmigaDOS provides a way to prevent this from happening.
It allows you to specify a default text string to be substituted for the keyword if
the user (yourself, more than likely) doesn't enter a substitution value. There are
two ways of specifying the default value.

The first way to provide an alternative text string is to use the .DEF direc
tive, followed by the substitution value. When you use this directive, the default
value is substituted wherever the keyword appears in the absence of a normal
substitution. Let's change the Backup command file to look like this:

KEY filename
.DEF filename #?bas
ECHO "copying <filename> to the Backups directory"
COpy <filename> TO :Backups

Now, if you type EXECU'I'E Backup, the pattern expression #?bas is
substituted for the keyword, and the command becomes COPY #?bas TO
:Backups. The pattern matches any file whose name ends in the characters
. bas, so any file fitting that description is copied to Backups. An ECHO command
was added to tell you what's happening. The default value is substituted in that
command as well, so ECHO prints the message Copying #?bas to the Backups
directory.

While the .DEF directive substitutes every instance of the keyword in the
file with the default value, another directive, the dollar sign ($), causes the
substitution to be made only in the line in which it appears. Using this directive,
we can create a Backup file which looks like this:

.K name
ECHO "Copying <name$all BASIC program files> to the

Backups directory"
COpy <name$#?bas> to :Backups

Using this version of the Backup command file, the command EXECUTE
Backup still copies all files ending in .bas to the Backups directory. This time,
however, the default value is only substituted in the COPY command. A differ
ent value is substituted in the ECHO command. The message printed by ECHO
is Copying all BASIC program files to the Backups directory. Notice that you
didn't have to put quotation marks around the phrase all BASIC p rof? ram files.
even though it contains spaces. The substitution value replaces the keyword with

95

COMMAND SEQUENCE FILES

the exact string of characters which appears in its definition. Also, don't confuse
the $ substitution character which always appears between angle brackets (or
other BRA and KET characters), with the $ which is used to retrieve the value of
an environment variable (which doesn't appear in brackets).

As of 1.3, the EXECUTE command recognizes one additional substitution
directive. Two dollars signs together ($$) within brackets are substituted by the
number of the current CLI. For example, the string file_number<$$> would be
interpreted asfilenumberl in a batch file that was executed from CLl 1. This
substitution is useful for creating temporary files with unique names, that won't
be overwritten if the same batch file is run from two separate CLls at the same
time.

The EXECUTE command doesn't limit you to substituting a single word
on the command line. The .KEY directive can specify a template which contains
as many keywords as you like (up to a total of 255 characters). The only restric
tion is that the template must be in the same format as the command template
which prints when you type a command name followed by a question mark (see
the beginning of the "AmigaDOS Command Reference" section for more
information on command templates). This means, among other things, that the
keywords must be separated by a comma, with no spaces between them. It also
means that you can use / A after the name to show that this argument is required.
For example, let's say you wanted to be able to back up two named files each
time you executed Backup. The following command file shows how you can
substitute both filenames:

.K narnel/a,narne2/a
COpy <narnel> to :Backups
COPY <narne2> to :Backups
Using this Backup command file, if you type EXECUTE BacKup document

let ter, both the document and letter files will be copied to the Backups directo
ry. If you do not specify at least two files on the command line, however, the
command will fail.

As you've seen from earlier discussions of filenames and pattern matching,
the use of special characters can cause some problems. The EXECUTE direc
tives are no exception. What if you want to use the default message Copying files
-> thisaway in the above example? Because there is a right angle bracket
imbedded in the text, EXECUTE will interpret the entered command ECHO
"Copying <name$files -» thisaway> to the BacKups Directory,and

96

COMMAND SEQUENCE FILES

print Copying files -> thisaway> to the Backups Director}', not Copying files -
» thismvay to the Backups Directory, as you wanted.

A similar problem may occur when you try to use the redirection operators
(< for input redirection and> for output redirection) in a script file that contains
keyword substitutions. To avoid these problems, AmigaDOS provides directives
that let you redefine the directive characters. For example, you can change the
left angle bracket character to a left square bracket character with the directive
.BRA {. (the final period after the bracket character is necessary). Likewise, to
change the right angle bracket to a right square bracket, use the directive .KET].
(again, the period after the bracket is mandatory). The .DOLLAR or .DOL
directive is used to change the character which introduces the default substitution
value. The directive .DOL # changes the dollar character to a pound sign, for
example. And finally, the .DOT directive allows you to redefine the period
character that appears in front of most of the directives.

Testing Conditions with IF
A command sequence file which always does the same thing can't cope very
well with unforeseen conditions. For example, the Backup file described above
assumes that a directory named Backups exists in the root directory of the current
disk. If it doesn't exist, the COpy command will copy all of the files to a single
file named Backups. One solution would be to insert a MAKEDIR command to
create the directory. But if the directory already exists, then the MAKEDIR
command will fail. and the script will terminate unexpectedly.

The solution is to let the command sequence file test whether or not the
directory exists, then act accordingly. If the directory exists, the copy can take
place. If it doesn't exist, then MAKEDIR can create it before the copy takes
place. EXECUTE uses the IF command to make such decisions. IF can be used
to test a number of conditions. If the condition it tests is true, then the subsequent
commands will be executed. If the condition is not true, then none of the subse
quent commands in the file will be executed (until the ENDIF command is
given).

One of the conditions which you can test with IF is whether or not a
directory or file exists (the EXISTS option added in 1.3 to the ASSIGN com
mand is better for testing volumes, since no "Insert Volume xxx in any drive"
requester appears if the volume doesn't exist). The form of this command is

I? EXISTS name

97

COMMAND SEQUENCE FILES

You can use the keyword NOT to reverse any test. The condition EXISTS
name is true if the object called name exists, and NOT EXISTS name is true if it
doesn't exist. Applying these facts to the problem raised at the beginning of this
section, you can come up with this new, improved Backup command file:

.KEY filename
IF NOT EXISTS :Backups
HAKEDIR : Backups
ENDIF
COPY <filename$#?bas> to :Backups

Now when you EXECUTE Backup (by typing F:XF:CUTF: Backupjilename),
the command file first checks whether the :Backups directory exists. If not, it
creates the directory. But if it does exist, the command file skips the MAKEDIR
command and copies the file. Users of Workbench 1.3 and higher should note
that this process isn't always necessary using the newer Copy command; it
creates the target directory automatically when you copy a directory.

The IF-ENDIF sequence also allows for an ELSE clause. Commands which
come after the ELSE command will be executed ol1ly when the IF clause is not
true. Let's look at the following sample command file:

.Key fro:n/a,to/a
IF NOT EXISTS <to>
COpy <from> AS <to>
ELSE
ECHO "Sorry, there's already a file named <to>."
ECHO "If I copy <from> to <to>, it will wipe out

<to>."
ENDIF
Call this command file sajecopy. It's a cautious version of the COpy

command. The COPY command is pretty reckless-if you tell it to copy the file
ordinary to another file called important, and there' s already a file important,
then the contents of ordinary replaces the important file. You've just lost impor
tant's contents. This version first checks to see if there's a file with the target. If
not, it executes the COpy command and then skips from ELSE to END IF. But if
the file already exists, it skips the COPY command and instead executes the
command sequence starting with ELSE, which politely explains why it can't
make the copy. Note the use of the command template characters "fa" after the

98

Directive
.KEY valuel. value2
or
.K valueI, value2

.DEF value! default

.BRA character

. KET character

.DOLLAR character
or
.DOL character
.DOT character

COMMAND SEQUENCE FILES

Function
Uses the command template (value 1 ,value2) for
substituting command values

Substitutes the first command value here
Substitutes the first command value here, but if
none is given, substitutes default
Substitutes the current CLI number (Workbench
1.3)
rr the command value was not entered, substitutes
defaul~for <value l>everywhere
Replaces the left angle bracket «) with character
Replaces the right angle bracket (» with character
Replaces the dollar sign ($) with character

Replaces the dot (.) with character

keywords. These characters indicate that both keywords are required. If you try
EXECUTing the file without specifying a "from" and a "to" file on the command
line, the sequence will fail.

Another condition that IF can test is whether two text strings are the same.
The keyword used for this test is EQ. The format of the test is IF string 1 EQ
string2. One use for this test is to determine what string was substituted for a
word designated by the .KEY directive. You can even test it to see whether any
substitution was made. Let's look at an example:

99

COMMAND SEQUENCE FILES

.KEY name
IF <name>q NOT EQ "q"

IF EXISTS <name>

RUN EXECUTE Backup <name>
ELSE

;if name was entered, this IS

true
;check to see if the file
exists
;you can nest EXECUTEs
;matches IF EXISTS <name>

ECHO "I can't find a file called <name> "
ENDIF ;matches IF EXISTS <name>
ELSE ;matches IF <name>q NOT EQ"q"
ECHO "You did not enter the name of a source file"
ENDIF ;matches IF <name>q NOT EQ"q"

As you can see, this is a bit more complicated than the previous examples.
There are two IF statements, one nested within the other. The first IF tests
whether any value was entered on the command line to be substituted for the
keyword name. It does this by seeing if what was substituted for name, plus the
letter q, is equivalent to the letter q alone. If any substitution was made, the two
strings will not be equal, and the condition is true. If no substitution was made,
the EXECUTE command branches to the ELSE clause, which prints You did not
enter the name of a source file.

After the command file has tested to see whether the name of a source file
was entered, it must still test to see whether that file exists. The second IF
statement takes care of that, using the EXISTS keyword as the test. If the file
exists, the EXECUTE Backup command is run as a background process to back
up the file. This demonstrates that you can both run an EXECUTE sequence as a
background process and that you can use one command file to EXECUTE
another. If the file doesn't exist, execution skips to the ELSE clause, which prints
the message I can 'tfind a file called <name>.

Several new comparison operations were added to IF in Workbench 1.3. It
can test for all possible string comparison cases, with the addition of GT (greater
than) and GE (greater than or equal) keywords. To test for less than or and less
than or equal conditions, use NOT GE and NOT GT. These string comparisons
normally use alphabetical order to test whether the value of one string is greater
than or less than another. Using the new VAL keyword, however, it is possible to
test the strings by numeric order instead. For example, when you execute the
script

100

IF 1/44" GT "J4"
ECHO "44 is greater"
ELSE
ECHO 1/14 18 greater"
ENDIF

it prints 14 is greater. If you change the script to read

IF VAL 1/44" GT "14"
ECHO "44 is greater"
ELSE
ECHO 1/14 is greater"
ENDIF

COMMAND SEQUENCE FILES

however, you come up with the correct answer. Another change to the IF com
mand in Workbench 1.3 is the use of the dollar sign ($) as a substitution charac
ter. A string that starts with a dollar sign will be replaced by an environment
variable of the same name (in the Release 2 environment variables are substitut
ed anywhere within a Shell command line). An environment variable is a string
that is stored with the SETENV command. and can be retrieved with the
GETENV command (local strings that are recognized only by the current Shell
can be created with SET and retrieved with GET under Release 2). For example,
the command "SETENV name Fred" stores the value "Fred" in an environment
variable called name. If this is the case, the statement

IF $name EQ I/Fred"

will be true.
The last condition which IF tests is the return code left by the previous

command. The return code is a number passed to the CLI by a program when it
finishes. The code indicates whether the program was successfully completed or
whether an error occurred. Programs normally use a return code of 5, 10, or 20 to
indicate that an error happened. The higher the return code, the more serious the
error. IF lets you test for each of these codes with the keywords WARN, ER
ROR, and FAIL. IF WARN is true if the last return code was 5 or greater, IF
ERROR is true if the code was 10 or greater, and IF FAIL is true if a code of 20
or greater was returned.

Some CLI commands are designed almost exclusively to set return codes
for scripts. The ASK command, for example, allows a script to print a question,
and then obtain a yes or no answer from the user. If the user responds with a Y,

101

COMMAND SEQUENCE FILES

the return code is set to 5, and WARN is true. If the user responds with a Nor
carriage return, the return code is 0, and WARN is false. Similarly, the VER
SION command can be used to test the current version of the operating system.
This makes it possible to have a script perform one way if running under 1.3, and
another if running under Release 2:

VERSION >nil: graphics.library 36 ;Is OS version 36 or
greater (2)?

IF WARN

EXECUTE s:1.3.script

ELSE
EXECUTE s:2.0.script

ENDIF

; No, so it must be 1.3
or lower
i Execute the 1.3
script
i Yes, 2.0 or higher
; Execute the script
appropriate for 2.0

Normally, if a serious error occurs during a command sequence, the entire
sequence is immediately terminated. The default cutoff point is a return code of
10 or higher. Using this default setting, it's impossible to test for a FAIL or
ERROR condition, since the sequence terminates before the test can take place.
It's possible to change the point at which a command sequence fails, however,
using the FAILAT command. Entering the command FAILAT 25, for instance,
insures that the sequence doesn't terminate unless a program returns an error
code of 25 or higher. The new failure threshold applies only to the current
command sequence. Once it has finished executing, the default value is restored.

In most circumstances, you'll want to terminate the command sequence if a
serious error is encountered. Changing the FAILAT threshold and testing for the
error yourself gives you an opportunity to present the user with a message that
clearly explains what happened. For example, you could change the command
file allowing the user to input the date and time to read:

102

COMMAND SEQUENCE FILES

ECHO" "
ECHO uThe current setting of the date and time is:"
DATE
ECHO /I II

ECHO uEnter the correct date and/or time now."
ECHO "Use the form DD-MMM-YY for the date (09-Sep-

86) . "
ECHO "Use the form HH:MM:SS or HH:MM for the time

(14: 55) . "
ECHO U U

FAILAT 25
DATE> nil: ?

IF ERROR
ECHO "You did not enter a correct date and/or time

setting."
ECHO uThe current settings remain In effect."
ELSE
ECHO "The new date and time setting are:"
DATE
DATE >now
ENDIF
If this example was part of a larger Startup-Sequence file, there's a good

chance that you would not want the entire sequence to terminate if the user didn't
enter the date or time correctly. Using FAILAT to reset the failure threshold and
IF ERROR to test for errors, you can tell the user that the attempt was not
successful and continue with the rest of the sequence.

Even if you've used FAILAT to change the failure threshold. you may exit
from a command sequence at any time by using the QUIT command. QUIT also
allows you to leave a specific return code. The command QUIT 20, for example,
terminates the command sequence immediately and leaves a return code of 20.

103

COMMAND SEQUENCE FILES

To summarize, the IF command uses the following keywords for making its
test:

Keyword

EXISTS name
stringlEQ string2

stringlGT string2

stringlGE string2

VAL stringlGT string2

WARN

ERROR

FAIL

NOT

Function
Is true if the volume, directory, or file exists
Is true if the text of the two strings is the same
(ignoring uppercase and lowercase)
Is true if the ASCII value of string 1 is greater than
the ASCII value of string2 (Workbench 1.3)
Is true if the ASCII value of string I is greater than
or equal to the ASCll value of string2 (Workbench
1.3)
Is true if the numeric value of numeric stringl is
greater than that of numeric string2 (Workbench
1.3)
Is true if the previous program left a return code of 5
or greater
Is true if the previous program left a return code of
10 or greater
Is true if the previous program left a return code of
20 or greater
Reverses the result of the test

Note: Under Workbench 1.3 and higher, IF evaluates $V AR as the string contained
within the environment variable named V AR. If there is no environment variable of that
name, its value is the text string "$V AR".

Branching and Looping with SKI P
For most simple cases, IF-ELSE branching is sufficient. But if you're making a
number of tests, the SKIP command can make things easier. It allows you to use
the results of the IF test to jump to a subsequent command line. The LAB
command is used to designate the line at which you wish execution to resume.
This is the general format:

104

IF test
SKIP Next
ENDIF
command
command
command
LAB Next
command

COMMAND SEQUENCE FILES

;If the results of test are true;
;Executition jumps

;to here .--------------'

An ENDSKIP command was added in Workbench 2.0 to designate the end
of a SKIP block.

SKIP is particularly useful where you may wish the same thing to happen
after a number of tests are completed, regardless of their outcome. Rather than
writing the commands over and over in the body of the IF-ELSE-ENDIF clause,
you can have each command jump to the same labeled line. The following
command file demonstrates this principle. It copies both a file and its associated
icon file to another volume or directory:

105

COMMAND SEQUENCE FILES

.Key from,to
IFdrom>q EQ "q"
SKIP Missing
ENDIF

IF <to>q EQ "q"
SKIP Missing
ENDIF

IF NOT EXISTS <from>
SKIP Missing
ENDIF

COpy <from> <to>
IF EXISTS <from>.info
COpy <from>.info <to>
ENDIF
SKIP Done

LAB Missing
ECHO "You must enter the name of an existing file to

copy, "
ECHO "and the volume or directory to copy it to."
LAB Done
Prior to Workbench 1.3, it was not possible to use SKIP to move backward

within the command file. With version 1.3, a new option, BACK, was added.
When the BACK option is used, SKIP starts searching for the LABEL at the
beginning of the file, instead of at the current line. Although you can not use
BACK to SKIP past a prior EXECUTE command, it is still useful in many cases
for executing instructions in a loop. You can even use an environment variable as
a loop counter, as the following example shows:

106

COMMAND SEQUENCE FILES

SETENV Count 1
LAB Loop
ECHO "This is pass number " NOLn~E
TYPE ENV: Count
EVAL <ENV:Count >NIL: to=T:Temp<$$> value2=1 op=+ ?
COpy T:Temp<$$> ENV:Count
IF VAL $Count NOT GT 10
SKIP Loop BACK
ENDIF
DELETE >nil: T:Temp<$$> ENV:Count
ECHO "All Done!"
When you execute this script, the output looks like this:
This is pass number 1
This is pass number 2
This is pass number 3
This is pass number 4
This is pass number 5
This is pass number 6
This is pass number 7
This is pass number 8
This is pass number 9
This is pass number] 0
All Done!
Due to Workbench 1.3 limitations, this script is somewhat clumsy. It takes

two commands to print each line, for instance, because ECHO has no way of
including the environment variable in its output. It also takes two commands to
increment the environment variable Count. The EV AL command takes the
contents of the ENV:Count file, adds one to its value, and copies the result in the
temporary file T:Temp<$$>. Then, we must copy this value back to the environ
ment variable, Count, in order to have it evaluated by the IF command. With
version 2.0 enhancements, this script becomes much simpler:

107

COMMAND SEQUENCE FILES

SET Count J.

LAB Loop
ECHO This is pass number $Count
SET Count 'EVAL $Count + 1 '
IF VAL $Count NOT GT 10
SKIP Loop BACK
ENDIF
UNSET Count
ECHO All Done!
Under Release 2, ECHO can include the value of the environment variable

in its message. And using the backtick feature, we are able to combine the three
lines the 1.3 version of the script requires to increment the value of Count into
one line. This line takes the result of the streamlined EV AL command, and feeds
it directly to SET.

EXECUTEing from a Command Sequence File
It is possible, and sometimes quite useful, to use the EXECUTE command from
within a command sequence file. A command file can even EXECUTE itself.
This permits a limited form of looping. For example, let's say that you have a
number of disks to copy, and you want to write a command sequence file that
continuously prompts you to insert source and destination disks, and then copies
one to the other. To avoid having to swap in the Workbench disk when DOS
wants to read the commands, let's copy them to RAM:

COpy Sys: system/DiskCopy to RJI,Yi:
COpy c:Execute to RAM:
MAKEDIR RAYI:T ;Only necessary if the startup script

hasn't done it already
CD RAM:
Now let's create a file called RAM:ConCopy that continuously executes the

DISKCOPY command:

108

COMMAND SEQUENCE FILES

DiskCopy dfO: to df1:
ASK "Copy another disk? (YIN)
IF WARN
EXECUTE ConCopy
ENDIF
When we EXECUTE ConCopy, it runs DISKCOPY once, then ASKs if we

want to make another copy. If the user types in a "Y" reply, the script
EXECUTEs itself allover again. Note that we created a directory :T in RAM:.
The EXECUTE command often needs to create a temporary file, and tries to
store this file in the :T directory. If there is no :T directory, the error message
EXECUTE: Can't open work file" :TICommand-O-TO 1 "appears and the com
mand fails. As of Workbench 1.3, however, EXECUTE will first try to create its
temporary files in T: if it is assigned, and if not, will then go to :T.

With some of the new options added in Workbench 1.3, it's even possible
to use scripts to build other scripts and execute them. Prime examples are the
SPAT and DPAT scripts that come in the S: directory, which allow you to apply
commands to any files which meet your wildcard substitution criteria. Let's look
at SPAT, which you use with commands that take a single command parameter:

.key com/a,pat/a,opt1,opt2,opt3,opt4

.bra {

.ket }
fai1at 21
list >t:q{$$} {pat} lformat="{com} *"%s%s*" {opt1}

{opt2} {opU} {opt4}"
IF NOT FAIL
execute t:q{$$}
ELSE
echo "{pat} not found"
ENDIF
failat 10
;do wildcards for single arg command

SPAT uses the LFORMA T option of the LIS T command to create a tempo
rary file called T:q { $$ }, where {$$} represents the process number of the Shell
from which SPAT was run. This temporary file contains a command line for

109

COMMAND SEQUENCE FILES

each file that matches the pattern. Therefore, if you give the command "EXE
CUTE SPAT PROTECT Sys:System -d" from a Shell whose process number is
1 , SPAT will create and execute a command file called q 1 whose contents look
like this:

PROTECT HSys:System/Fountain H -d
PROTECT HSys:System/Fountain.info H -d
PROTECT HSys:System/.info H -d
PROTECT HSys:System/Setmap.info H -d
PROTECT HSys:System/SetmapH -d
PROTECT HSys:System/RexxMast.infoH -d
PROTECT HSys:System/RexxMastH -d
PROTECT HSys:System/NoFastMem.infoH -d
PROTECT HSys:System/NoFastMem H -d
PROTECT HSys:System/Format.infoH -d
PROTECT HSys:System/FormatH -d
PROTECT HSys:System/FixFonts.infoH -d
PROTECT HSys:System/FixFontsH -d
PROTECT HSys:System/DiskCopy.infoH -d
PROTECT HSys:System/JiskCopyH -d
PROTECT HSys:System/CLI.infoH -d
PROTECT HSys:System/CLIH -d
PROTECT HSys:System/BindMonitor.infoH -d
PROTECT HSys:System/3indMonitorH -d
PROTECT H Sys: System/ ?"ddMoni tor. infoH -d
PROTECT HSys:System/Addmonitor H -d

This makes it possible to protect every file in a directory from deletion with
one command from Workbench 1.3 (since the Workbench 2.0 PROTECT has an
ALL option, it can perform the same task without a script).

Debugging a Script
Under Workbench 1.3 and below, debugging a long script can be difficult,
because you can't be certain what command the script is executing when it fails.
About the best you can do to pinpoint the problem is to add ECHO command

110

COMMAND SEQUENCE FILES

along the way, saying things like "Got to point I" and "Got to point 2 without
problems."

Release 2 adds a handy new feature, however, that makes debugging a
snap. The Release 2 Shell recognizes an environment variable called ECHO. By
default, ECHO is set to OFF, but when you set ECHO to ON, each command
line is typed out before it is executed. This makes it easy to see which commands
in a script are executing without problem, and which cause the script to fail.

Executing a Script from Workbench
If you've written a script that you find useful, you may want to share it with
others. Unfortunately, the novice users who would be most helped by such a
script often do not know how to execute a script from the CLI. It would be nice if
you could assign an icon to the script, and have the user execute it just by
clicking on the icon. You can't do that with the normal EXECUTE command,
because it only works from the CLI or Shell. Workbench versions 1.3 and higher,
however, include a variation of EXECUTE called ICONX (short for Icon
eXecute) that is made to run scripts from the Workbench.

To create an icon for ICONX to use, you must copy a Project icon to a file
whose name is the same as the script plus the letters. info. Any old icon won't
do-it must be of the proper type (the Shell icon is a good one to use, since it is a
Project icon). If the pathname of your script file was DF I:Script, for example,
you could use the command COpy Sys: Shell. info DFl: Script. info to copy
the icon file from the Shell to the script. Next, you must change the default tool
of the Project icon to c:Iconx. You can do this by clicking once on the icon to
select it, and choosing Information from the Workbench menu. Don't be sur
prised if you can't find the new icon you created right away. If the window into
which you copy the icon is open on the Workbench, it will not update its display
to show changes that you make with the CLI until you close it and open it again.
Once you have the Information window for the icon displayed, you will see an
entry for Default tool somewhere in the left middle part of the window. If you
had copied the Shell icon, the default tool will read Sys:SystemiCLI. Click in the
text window. and change the text to read C:Iconx, then click on the Save button.
You will now have a Project icon assigned to your script file, whose default tool
is ICONX. By double-clicking on the icon, you will execute the script as if it had
been run from a CLI whose current directory is the one in which the icon resides.
For more information, see the ICONX listing in the reference section.

111

COMMAND SEQUENCE FILES

Some Common Script Commands
Certain CLI commands are used more frequently in scripts than outside of them
while other commands can only be used in scripts. Keep the following com
mands in mind while writing your scripts.

ASK

ECHO
TYPE
FAILAT

IF

ELSE

ENDIF
LAB
SKIP
ENDSKIP
LIST

EVAL

. VERSION

AVAIL

CPU

BREAK
STATUS

SET
GET
UNSET

112

Asks a question and receives a yes or no response from the
user that can be used by the IF command.
Prints a single line of text.
Prints multiple lines of text from a text file.
Temporarily changes the failure threshold to allow testing of
ERROR and FAIL conditions.
Tests a condition and executes a sequence of commands if
true.
Executes an alternate command sequence if the condition is
false.
Ends a conditional sequence of commands.
Labels a section to SKIP to.
Diverts execution to the LABeled sequence of commands.
Ends a SKIP sequence (2.0 and up only).
Lists a set of files. Can produce command lines with embed
ded file names for automatic script building.
Evaluates numeric expression. Can be used to do math in
scripts.
Used to test the version number of libraries and devices. Sets
WARN flag if lower than specified version.
Gives the amount of free RAM. which can then be tested by
script conditions.
Can be used to test whether the computer is running a 68000,
or an advanced processor like the 68030 or 68040. Can also
test whether a math co-processor is present (2.0 only).
Used to stop another program from a script.
Can find the process number of the program BREAK wants to
stop.
Sets a local environment variable (2.0 only).
Retrieves a local environment variable (2.0 only).
Removes a local environment variable (2.0 and higher).

SETENV
GETENV
UNSETENV

AREXX

COMMAND SEQUENCE FILES

Sets a global environment variable.
Retrieves a global environment variable.
Removes a global environment variable (2.0 and higher).

Release .2 of the Workbench incorporates a powerful new command language
called AREXX. which is based on the IBM command language called REXX.
AREXX can be used not only to run commands from the ShelL but to send
messages to programs while they run. providing those programs include AREXX
message ports. Many of the newer programs on the Amiga permit you to perform
almost any function from an AREXX script that you could normally perform
with a keyboard or mouse.

In addition to its inter-process communication capabilities. AREXX is a
complete programming language in its own right. Because of its sophisticated
input and output functions, conditional execution functiol1',. and looping.
AREXX can be used to create truly complex script functions that would be
impossible to duplicate with EXECUTE scripts. The AREXX language is far too
complex to be covered even briefly in this chapter. Indeed. there are several large
books devoted exclusively to AREXX. For our purpose:-. it is enough to say that
if you are trying to create a large script that appears to strain the abilities of the
EXECUTE command. you should consider writing it in AREXX instead.

113

Chapter 6

ED, the System Screen Editor

The screen editor program, ED, is located in the c directory of the Workbench
disk, but it has nothing to do with disk or file management like the other CLI
commands. Rather, it is a full-screen text editor which can be used to create or
edit a text file, such as the script files we discussed in the previous chapter.

ED differs from the other text editor program included on the Workbench
disk, EDIT, in a number of ways. EDIT is a line-oriented editor, which means
that you must first select the line you want to change. ED, however, is a screen
oriented editor, which displays a whole screen of text at a time and lets you move
the cursor around the screen, adding or deleting text as you see fit. While EDIT
can be used to alter files which contain binary code (such as program files), ED
is designed to edit text-only files. And, finally, ED files always end with a
linefeed character, which ED adds if it doesn't find one already present.

To start ED, type ED, followed by the name of the file you wish to edit. If
the filename doesn't describe an existing file, ED assumes that you want to
create a new file. To exit the ED program, type ESC-Q to quit or ESC-X to save
the current file and exit.

ED starts with a maximum workspace of 40,000 characters, which is
normally plenty of room for script files and the like. Unless you change the size
of the workspace, you're limited to editing files of that size. To change the size
of the workspace, use the keyword SIZE on the command line which you use to
run ED, followed by the number of characters you want in the workspace. For
example, entering the command ED Windbag SIZE 100000 lets you edit a file
called Windbag which can contain up to 100,000 characters. It's a good idea
always to specify a size somewhat greater than the exact size of the file.

Release 2 of ED provides a few more startup options. The WINDOW
option allows you to specify the characteristics of ED's console window, using
the standard window description format described in previous chapters:

114

CON:hpos/vpos/width/height
/windowtitle/optionl/option2 ...

ED, THE SYSTEM SCREEN EDITOR

You can also usc the WINDOW option to specify an alternative console
device to use, other than opening a new console. For example, the command E0

Ram: Temp i'JINDOW * will use the current CLI console window as ED program
window. The Release 2 version of ED recognizes the keywords WIDTH and
HEIGHT as specifying the number of characters to display horizontally and
vertically, which can be helpful when using an alternative console type with
which ED is not familiar. The keyword TAB can be used to set the tab stops.
When you press the TAB key, the cursor will be advanced to the position past
next column that is an even multiple of the TAB setting (the default is three).

There are two ways of issuing commands to ED-immediate mode and
extended command mode. In immediate mode, you give ED its commands by
pressing nonprinting key combinations. In extended command mode, you first
type the ESC character, which places your cursor on the command line at the
bottom of the screen. You may then type in one or more command strings.
Command strings are not executed until you press RETURN.

Release 2 of ED is able to read and execute a series of extended commands
that are saved in a text file with one command per line of text. The WITH option
lets you name a command file for ED to execute as soon as it starts. The com
mand ED Ram: Temp WI TH s: Commandfi 1 e, for example, causes ED to execute
all of the commands in s:Commandjile at the beginning of the program. Addi
tionally, ED will execute the command file S:Ed-Startup if such a file exists.
This file can be used to set up custom menu and function key assignments, as we
will see later on. If no S:Ed-Startup file exists, ED 2.0 will open up with a default
set of menus.

Immediate Mode
The ED program starts in immediate mode. Here, the characters you type are
inserted into the text document. To edit, just move the cursor to the appropriate
place and either erase existing text or add new text. In versions prior to 2.0, you
can only move the cursor by using the arrow keys, or commands. Release 2 lets
you place the cursor by moving the mouse pointer to the desired position and
clicking the left button. In addition to text characters, there are a number of
control commands which can be entered from immediate mode. These com
mands are executed by holding down the CTRL key, then pressing another key.
(The notation CTRL-x will be used to refer to these commands. This indicates
that you're to hold down CTRL and press the key specified by x.) All CTRL
character commands are executed as soon as you press the key combination.

115

ED, THE SYSTEM SCREEN EDITOR

Cursor Commands
The cursor is a colored block which indicates the position where additional
characters will enter the text buffer. If you're using the default set of colors, it
appears as a blue block highlighting the current character in Release 2, and as an
orange block in all other versions. You can move the cursor in any direction by
pressing one of the cursor arrow keys to the right of the RETURN key. If there's
more text in the buffer than appears on the screen, moving the cursor to any edge
of the screen and pressing the corresponding cursor arrow key shifts all text
(scrolls) to show part of the hidden text. For example, if you move the cursor to
the bottom line of the first screen of a long document, then press the down-arrow
key, the cursor moves down to the next line and reveals the hidden first line of
the next screen. What was formerly the top line scrolls up and out of sight. By
using the down and up arrows, you can move forward and backward through the
text file.

Other immediate commands allow you to move the cursor in larger incre
ments. The CTRL-T combination moves the cursor right to the first character of
the next word. CTRL-R moves the cursor back to the space at the end of the
previous word. CTRL-] moves the cursor to the end of the current line, scrolling
the screen if the line is longer than the screen width. If the cursor is already at the
end of the line, CTRL-] moves it back to the beginning of the line. If you press
CTRL-] a number of times, the cursor alternates between the first and last
characters of the line. Likewise, CTRL-E moves the cursor to the beginning of
the first line on the screen. If, however, the cursor is already at the start of the
first line, CTRL-E moves it to the end of the last line on the screen. In Release 2,
you can hold down the Shift key to increase the range of the arrow keys. Shift-up
and Shift-down take you to the top and bottom of the file respectively, while
Shift-left and Shift-right take you to the beginning and end of the current line.

The scroll commands don't change the absolute position of the cursor, but
rather move the text itself. CTRL-U scrolls the screen up, which appears to make
the cursor move down toward the end of the document. CTRL-D scrolls the
screen down, which in effect moves the cursor toward the beginning of the
document. Either command causes the whole screen to be redrawn from the top,
making the scrolling action rather slow.

Note that in ED, the TAB key is strictly a cursor movement key. When you
press TAB (or CTRL-I), the cursor moves to the next TAB position, which is one
greater than an even multiple of the TAB setting. For example, if you're using
the default TAB setting 3, the TAB key moves the cursor from column 1 (the left

116

ED, THE SYSTEM SCREEN EDITOR

edge of the screen) to column 4, then column 7, column 10, column 13, and so
on. You can change the size of the TAB stops with the extended command ST
(see below), or in Release 2 use the TAB command line option. Unlike some
editors, ED doesn't insert characters into the text when you press TAB. The TAB
key leaves neither a TAB character nor spaces in the text, though if it passes over
a blank portion of the line, the space characters it bypasses remain in the text.
Note also that when you load a text file which contains TAB characters into ED,
ED replaces each with a number of spaces.

Character Deletion/Insertion
When you've moved the cursor to the text location you want to edit, there are
several immediate mode commands which you can use to delete or insert text.
The BACKSPACE key (or CTRL-H) moves the cursor one character to the left,
deleting the character. The DEL key deletes the character under the cursor and
moves the text to the right one position to the left.

You can also delete characters in larger chunks. The CTRL-O command's
actions depend on whether the cursor rests on a character or a space. If the cursor
is on a space, CTRL-O deletes all spaces it finds until the first character of the
next word. Otherwise, CTRL-O deletes the current character and all characters it
finds until the next space between words. Thus, CTRL-O can be used alternative
ly to delete whole words or the spaces between words. CTRL-Y deletes every
thing from the current character position to the end of the line. CTRL-B deletes
the entire current line, regardless of the cursor position.

Unlike many screen editors, ED doesn't let you delete the RETURN
character at the end of a line. This means that once you've split a line with a
RETURN, the only way to join it together again is with the extended command J
(see below).

The ED editor is always in insert mode. This means that any new characters
that you enter push the existing text to the right, rather than overwriting charac
ters. Thus, no special character insertion commands are needed. ED does have an
immediate mode command, CTRL-A, which allows you to insert a blank line
below the current line and moves the cursor to the beginning of that line.

ED supports lines wider than the screen display. To see different parts of
such lines, scroll the text horizontally by moving the cursor left or right. Each
line has a maximum of 255 characters-ED won't let you insert characters in a
line of maximum length. Normally, though, ED tries to keep all of your text
within the right margin by using a form of word-wrap.]f a right margin is set,
and you're typing a word which extends past that margin, ED automatically ends

117

ED, THE SYSTEM SCREEN EDITOR

the current line with a RETURN character at the space before that word and
moves the start of the word down to the next line. This word-wrap feature
applies only when you're typing at the end of a line. If you insert characters into
the middle of the line, forcing the line over the margin, ED won't break the line.
You can disable this feature for the current line only by using the extended
command EX, which acts like the margin release on a typewriter (see extended
commands below). You may also use extended commands to change the left and
right margins from their default positions of 1 and 77 respectively.

Miscellaneous Immediate Commands
The CTRL-F command flips the case of the current character and moves the
cursor one position to the right. This means that if the current character is in
uppercase, it changes to lowercase and vice versa. If the current character is not a
letter, it doesn't change, but the cursor still moves to the right. If the cursor is
positioned at the first letter of the word this, and you press CTRL-F four times,
the word changes to THIS.

CTRL-V redraws the screen. Since ED itself refreshes the display if you
size the window or move it or scroll it in any direction, this command will be
useful only on rare occasions.

CTRL-G is used in conjunction with the extended mode commands. It
repeats the last extended mode command you issued. The usefulness of this
command will soon become apparent, as the discussion turns to the extended
commands.

Extended Mode Commands
Although immediate mode commands are faster and more convenient to use, the
extended mode commands are more powerful. Generally, you may use extended
commands to execute any of the cursor movement and deletion functions of the
immediate commands. In addition, you may use extended mode commands to
delete, copy, or move whole blocks of text, to save and load text files, to find and
replace text strings, and to perform various other functions. You can even issue a
number of commands at one time or indicate that one or more of these com
mands is to be executed a number of times. As of Release 2, you can also store a
whole sequence of extended mode commands in a text file, so that you can
execute the sequence without typing it in each time.

To issue an extended command, you first press the ESC key (or CTRL-[).
When you do, an asterisk appears on the bottom line of the screen, and the cursor
moves to the space following the asterisk. This indicates that you've moved to

118

ED, THE SYSTEM SCREEN EDITOR

the command line, and any text you enter is to be interpreted as an editor com
mand, not as text to be inserted into the document. After entering the
command(s), pressing the RETURN key executes the command. If you just press
RETURN without entering a command, no command is executed and you return
to immediate mode.

For instance, let's say you want to use the T command (explained below) to
go to the top of the file. You first press ESC, and the line at the bottom of the
screen shows an asterisk:

*
You then type T and press RETURN:

*T <CR>

The command line disappears, and the display moves to show the top of the
file.

Extended mode commands are made up of one or two letters. Case is not
important, and you can put more than one command on a line by separating them
with semicolons.

Sometimes a command requires an argument, such as a number or a text
string. A text string must be set off with characters known as delimiters so that it
won't be confused with a command string. The delimiter character can be
anything except letters, numbers, spaces, semicolons, or brackets. Double
quotation marks are the most common delimiters, though if you want to type a
string with double quotation marks in it, you must use something else (like the
slash or exclamation point). Strings may appear properly in commands in the
form "this is a string" or /this is a "string"/ or !c:sub/"so called"!.

Cursor Movement Commands
The CL (Cursor Left) and CR (Cursor Right) commands work just like the left
and right-arrow keys, moving the cursor one space to the left or right. As ex
plained below, however, you can add a repeat count. For example, the command
4CL moves the cursor four spaces to the left. The N command (Next) moves the
cursor to the start of the next line, while the P command (Previous) moves the
cursor to the start of the previous line.

CS (Cursor Start) and CE (Cursor End) move the cursor to the start and end
of the line respectively. T (Top) and B (Bottom) move the cursor to the top or
bottom of the document, while M (Move) moves the cursor to an absolute line
number. For example, M 662 moves the cursor to the start of line 662. This can

119

ED, THE SYSTEM SCREEN EDITOR

be extremely helpful when used with compilers which identify the line numbers
where errors occurred.

Release 2, with its greater emphasis on program control, adds many new
cursor movement commands. The PD (Page Down) and PU (Page Up) com
mands scroll the page down twelve lines or up twelve lines, respectively. The EP
(End Page) command places the cursor at the beginning of the last line of the
display. TB (Tab) moves the cursor to the next tab position. WN (Word, Next)
moves the cursor to the first letter of the next word, while WP (Word, Previous)
moves it to the space after the previous word.

Deletion/Insertion Commands
The DC command works just like the DEL key, deleting the character under the
cursor. The D command functions like the immediate mode command CTRL-B
and deletes the entire current line.

I (Insert line) is used to insert a string of text as a new line above the
current line. The string follows the I command, as in

*r"This goes above the current line"
The A (Add after) command is similar to the I command, but adds the new

line after the current line.
S (Split) and J (Join) are used to split one line into two and join two lines

into one. The S command acts just like a RETURN character, which ends the
current line and moves the text to the right to a new line below. In effect, the J
command deletes the RETURN character at the end of the current line, thus
joining it with the next line.

The Release 2 version of ED includes some new extended mode insertion
and deletion commands. DL (Delete Left) works like the BACKSPACE key,
deleting the character to the left of the cursor. DW (Delete Word) deletes to the
end of the current word, while EL (End of Line) deletes everything from the
current cursor position to the end of the line. FC (Flip Case) turns uppercase
letters to lowercase and vice versa, just like the immediate mode CTRL-F
command.

Search and Replace (Find and Exchange)
Another way of scrolling the screen to a particular place in a document is with
the F (Find) command. The F command is issued along with the text string you
want to find:

120

ED, THE SYSTEM SCREEN EDITOR

*F"Intuition"
Once issued, F searches the document for the exact text specified, from the

current cursor position forward to the end of the file. A complementary com
mand, BF (Backwards Find), searches from the current cursor position to the
beginning of the file. By default, both find commands are case-sensitive and will
find a match only if both text strings contain exactly the same combination of
uppercase and lowercase letters. You may, however, change this default so that
searches ignore differences in case by using the UC command. Once you've
issued this command, all searches ignore case differences until you reset the
default with the LC command.

Sometimes you wish both to locate a phrase and replace it with another.
The E (Exchange) command does just this. When using E, you must first specify
the phrase to find, then follow it with the replacement phrase, like this:

*E"Intuition"User Interface"
This example looks for the word Intuition and replaces it with the phrase

User Interface. The E command only looks forward, so if you want to catch all
occurrences of the search phrase, first move the cursor to the top of the file with
the T command.

The EQ (Exchange with Query) command is a variation on E. Instead of
making the substitution automatically, it prints the message Exchange? on the
command line. If you press the Y key, the exchange takes place, but if you enter
N, the cursor moves past the string.

Both the find and exchange commands lend themselves well to the repeat
features of ED. For example, once you've set up a search string with F, it's a
simple matter to find the next occurrence of the string by using the immediate
command CTRL-G. And it's just as simple to replace every occurrence of a
search string with a command like

*RP EQ"me"myself"
which repeatedly replaces the word me with the word myself after verifying that
you want to make each change. For more on repeating commands, see the
section "Multiple and Repeat Commands" below.

Block Transfers
Among the most powerful commands are those which manipulate an entire block
of text at once. With these commands, you can delete, copy, or move whole
blocks of text.

121

ED, THE SYSTEM SCREEN EDITOR

A block is made up of one or more adjacent lines of text. You use the BS
(Block Start) and BE (Block End) to mark the beginning and ending of a block
of text. Blocks always consist of whole lines. When you issue the BS command,
it marks the beginning of the block at the first character of the current line,
regardless of where the cursor is positioned in the line. To complete the block,
you must cursor down to the final line and issue the BE command. This marks
the end of the block at the end of the current line. Both the BS and BE com
mands are required to successfully mark a block, and the start of the block must
always be above the end. (In other words, you cannot mark the start of the block
near the end of the file, then move the cursor up and mark the end of the block.)
You can mark the start and end of the block on the same line, however, as with
the command

*BS;BE

which marks the entire current line as a block.
You can only mark entire lines as blocks. BS always starts marking at the

beginning of the current line, and BE always marks to the end of the current line.
If you want to mark only parts of a line, you must first use the RETURN key to
split the line. Also note that the block stays marked only so long as you don't
make any changes to the text. Once you make any editing changes to any part of
the text (not just the marked lines), the block markers disappear.

After you've marked a block, you can insert copies of the block by moving
the cursor to where you want the block inserted, then using the IB (Insert Block)
command. You can insert as many copies as you wish, as long as you perform
the inserts immediately after marking the block and don't edit text in between
insertions.

You can delete the entire block with the DB (Delete Block) command.
Unlike some editors which retain a deleted block in a special buffer and allow
you to retrieve it, ED simply discards a deleted block. Once you've deleted it,
it's gone. You can move a block of text, however, by first duplicating it with the
IB command, then deleting the original block with the DB command.

The WB (Write Block) command lets you save a marked portion of text to
a named file. This allows you to split a large file into two smaller parts or
generally manipulate portions of a file. The WB command must be followed
with the name of the file to which the marked portion is to be written. This
filename must be enclosed by the normal string delimiters, such as quotation
marks:

*WB"RAM:tempfile"

122

ED, THE SYSTEM SCREEN EDITOR

The final block command is SB (Show Block). This command helps you
identify the currently marked block by moving its text to the top of the screen.

In Release 2, you also can copy blocks of text in ED by using the console
copy-and-paste feature. Select a block of text by moving the mouse pointer to the
beginning of the block, holding down the left button, and moving the mouse
pointer to the end of block. Let go of the button, and you will see the block that
you've selected is highlighted. Hold down the right Amiga key and press the
letter C. This copies the text to the clipboard device. Then, move the cursor to
the place where you want the text pasted, hold down Right Amiga, and press V.
This inserts the text at the current cursor position.

File Management (Save/Load/Exit)
Versions of Ed prior to AmigaDos Release 2 have no Load command, since you
must specify a file to edit when you start the program. However, you can insert
text from a disk file within the current text file with the IF (Insert File) com
mand. When you type

*IF "filename"
filename is inserted under the current line, and the rest of the text in the docu
ment is moved down.

ED won't let you start editing a file which contains binary (nontext)
characters. If you try this, ED ends with the message File contains binary. It's
interesting to note, however, that in some versions of ED, you may start by
editing a blank file, then use IF to merge a file which does contain such charac
ters. This isn't recommended, however, as such characters don't appear correctly
on the screen, making it hard to do accurate editing.

The SA command is used to save a current copy of the document to disk. If
you don't add a filename, the document is saved to the filenamed when you
started ED. It's recommended that you periodically save your work to disk
(every half hour or so is best) to protect yourself against the perils of power
outages. Speaking of backups, you should be aware that ED creates a backup of
your original text file in the T directory of the document disk (or T: if assigned),
in a file called ED-Backup.

If you use the SA command with a filename, you can save a copy of the
current document to a file other than the one named when you started the pro
gram. This allows you to keep several copies of the document, each varying
slightly. The format for this command is

123

ED, THE SYSTEM SCREEN EDITOR

*SA"filename"
There are two ways to exit the ED program in version 1.3 or below. The

first is with the Q (Quit) command. Q just quits, without saving your text. If you
try the Q command after you have changed the text of the document, however,
without saving these changes, you'll receive a prompt saying Edi ts wi 11 be
lost - type Y to confirm:. This gives you an opportunity to save the
changes-press any key and the quit is stopped. If you press Y, however, the
program ends without saving the changes.

The other way to exit ED is with X (eXit). X both saves the current docu
ment and exits the program. Think of it as first performing an SA, then a Q
command.

Release 2 adds a few additional file-management commands. It lets you
exit by clicking on the window's close gadget, or by using the XQ (eXit with
Query) command, both of which exit unless the file has been changed since the
last save, in which case a requester appears asking if you really want to exit
without saving. It also allows you to clear the existing file and create a new file
with the NW command (if the file has been changed the message Edi ts will
be lost-type Y to confirm allows to preserve the present contents by
pressing any other key). The Release 2 ED also allows you to load a file in place
of the one you are currently editing, with the OP (OPen file) command. As with
Save, you can specify the name of the file in a delimited string that appears right
after the OP command:

*OP"filename"
Or, by adding a question mark after the OP command, followed by a string

of text to appear in the requester window, you can bring up a file requester that
allows you to choose from a list of existing files:

OP ? "Open a File"

Tabs and Margins
The SL (Set Left) and SR (Set Right) commands are used to set left and right
margins. As explained above, the right margin is used for the purpose of word
wrapping. This means that as you add characters to the end of a line and force it
over the right margin, a RETURN character is inserted and the word past the
margin is moved to a new line below. Word-wrapping occurs only when you add
characters to the end of a line. If you insert characters in the middle of a line, you
can cause the end of the line to go past the margin without wrapping. If you wish

124

ED, THE SYSTEM SCREEN EDITOR

to disable the word-wrapping feature for the current line, use the EX (EXtend
margin) command. This works like the margin release on a typewriter, allowing
you to add characters to the end ofthe line past the right margin. The EX com
mand extends the margin only for the current line, however. If you wish to
extend the margin permanently, change the right margin setting from its default
value of 77.

You can also set a left margin with the SL (Set Left margin) command. The
default setting is I (the leftmost column). When you change this setting, each
new line begins at the position indicated. The preceding character positions will
be filled with space characters. This left margin is not a hard margin. You don't
have to use the EX command to move past it. You may use the backspace
character to move to the left of it. The CS command moves you back to column
I as well.

The ST (Set Tabs) command is used to set the distance between tab stops.
The default setting is a stop every three characters.

Miscellaneous Commands
The U command (Undo) gives you a very limited undo capability. When you
start to edit a line, ED saves the original contents of the line. As long as you stay
on that line, you can restore its contents by issuing the U command. However,
once you move off that line, you cannot undo the changes. Moreover, U cannot
restore a line once you remove it completely, either with the immediate com
mand CTRL-B or with the D command.

The SH (SHow information) command displays information about the
current editing session. When you use the SH command, a number of lines
appear at the top of the editing screen, showing the name of the file you're
editing, the tab setting, the left and right margins, the first and last few characters
in the block (if any is marked), and the percentage of the edit buffer that's filled.
This display disappears as soon as you type a character.

The SM (Status Message) command is new for Release 2. It allows you to
print a text message on the status line at the bottom of the screen. This is used
mainly to allow command or AREXX scripts to furnish prompts or messages to
the user.

Multiple and Repeat Commands
When in extended command mode, you're not limited to issuing one command
at a time. Several commands may be placed on the same command line, separat-

125

ED, THE SYSTEM SCREEN EDITOR

ed by semicolons. For example, if you want to search for the first occurrence of
the word Amiga in a text file, you could use the command sequence

*T;F")'l.miga"

which moves the cursor to the top of the document, then starts the search. In
addition, you can specify that a command should be repeated a number of times
by placing that number in front of the command. For instance, the command

*4D

deletes four lines in a row, starting with the current line. You can also use the
special repetition command RP to specify that you want the command repeated
until an error occurs. Let's say that you frcquently misspell the word separate as
seperate. If you want to change every occurrence of thc word seperate to sepa
rate, you could use the following command series:

*T;RP E"seperate"separate"

The first command, T, moves the cursor to the top of the document. The
next command, RP, specifies that you want to repeat the following sequence
until an error occurs. Finally, the E command causes the second string to be
exchanged for the first. The result of all this is that ED searches for seperate and
replaces it with separate until it can't find the string any longer. When that
happens, an End of file error is issued, which causes RP to stop. (Notice that you
do not separate RP and the following command to bc repeated with a semicolon.)

You can stop any command or series of commands by pressing any key.
ED always exits the extended command mode as soon as you press a key, and
displays the message Commands abandoned on the command line.

Using a repetition count or the RP command only repeats the very next
command on the line. Sometimes. however, you necd to repeat a whole series of
commands. Let's say that you're editing a doublc-spaced file, in which every
other line is blank, and you wish to delete all blank lines. One strategy would be
to position the cursor at the top ofthe file (assuming it's not a blank line), then
repeatedly move the cursor to the next line and delete it. You could try the
command

*T;PP N;D

but this wouldn't work. The cursor first movcs to thc top, but only the N com
mand repeats so that the command just moves the cursor to the last line of the
file where it encounters an End of file error.

126

ED, THE SYSTEM SCREEN EDITOR

To counter this problem, ED allows you to group commands together in
parentheses. When you do this, the repetition count applies to all of the com
mands enclosed in the parentheses. Thus, the command

*T;RP (N;D)

does just what you want. It moves the cursor to the top of the document and then
repeats both the Nand 0 commands, again and again.

Keyboard Macros and Custom Menus
The ED program that comes with the Release 2 Workbench has two important
features that are not found in previous versions. The first is pull-down menus.
ED supports menus that allow beginners to save and load files without first
learning the necessary commands. ED also allows the user to customize those
menus, to have them provide whatever functions he likes. Second, ED now
allows the user to assign extended mode commands to function keys and
control-key combinations. This means that you can redefine the keys used by
the immediate mode commands, or create your own.

Normally, when you run ED, there is a set of pull-down menus you can
access by holding down the right mouse button and moving the pointer to the
menu bar. This set of menus is generated by commands that are issued by the
S:Ed-Startup file, the command file that is run automatically when you start ED
(see the section on command files below). If you delete the S:Ed-Startup file
that comes on your Workbench disk, ED starts with an expanded set of default
menus. .

ED provides two commands to let you custom tailor your own set of
menus. The SI command lets you define each menu heading and menu item, and
the EM command enables the menus you defined. These commands can be
given from immediate mode, from the S:Ed-startup file, or from another com
mand file. The format for the SI command is:

81 itemnumber type "Heading Text" "Command"
where itemnumber is a number from 0 to 120 which specifies the position of the
menu heading or item. The type is a code which specifies what kind of entry
we're describing. Varying types require differing amounts of additional infor
mation. The types are:

127

ED, THE SYSTEM SCREEN EDITOR

Type Meaning of Additional Text
Number Type Number Strings Required

0 End of Menus No additional text
1 Menu Heading Heading Text only
2 Menu Item Heading Text and Command Text
3 Submenu Heading Heading Text
4 Separator Bar No additional text

The End of Menus and Separator Bar entries do not require any additional
information. For Menu Headings and Submenu Headings you must add the text
that will be shown on the menu. In addition, Menu Items require an extended
mode command string to be issued when the menu is selected. The commands
required to generate a simple example menu look like this:

81 0 1 "Proj ect"
S1 1 2 "Open .. . " "Op ? / Open File / "
S1 2 4
S1 3 2 "Quit" "q"
S1 4 0
EM
The menu that these commands generate looks like this:

If you have a problem getting your menu's to appear in the bar, you should
remember two points. First, your menus must have an entry whose type number

128

ED, THE SYSTEM SCREEN EDITOR

is zero, and that entry must have the highest itemnumber. Second, none of your
SI commands go into effect until the EM command is given.

Another way in which ED allows you to customize the program is by
assigning extended mode command functions to the function keys or special key
combinations. This lets you create your own immediate mode commands, as well
as modifying or deleting the default immediate mode commands. You define
command keys by using the SF (Set Function key) command. The format for this
command is:

SF KeyNumber /Extended Mode Command String/
The KeyNumber is used to identify the key or key combination used to

execute the command. The SF command recognizes 57 key numbers, of which
four are reserved for future use. Numbers 1 through 10 are used for the function
keys Fl to FlO, while numbers 11 to 20 are used for the Shifted function keys.
Key numbers 27 to 52 are used for CTRL-A through CRTL-Z. When defining a
control key combination, you can use the caret symbol (1\) plus the letter instead
of the number. For example, you can assign the Delete function to the CTRL-B
key combination like this:

SF 28 /D/

or like this:

SF "B /D/
The command string part of the SF command consists of any valid extend

ed mode command line, in delimited string format. You can even use mUltiple
commands in a line, separated by semi-colons. You should be careful with string
delimiters, however, since some commands also require the use of strings which
must have their own distinct delimiters. If you want to create a key combination
that saves the present file under the name RAM:SubIFile, you could not use the
command:

SF "z /SA/RAM:SubiFile//
You'll need to use separate sets of delimiters for the SF and SA commands,

and in neither case could you use the slash character, since it is part of the
filename. You can correct the above command by substituting quotes for one
pair of slashes, and exclamation marks for the other, like this:

SF "z "SA!RAM:Sub/File!"
There are two additional commands dealing with command keys. The DF

(Display Function key) command displays the command string attached to a

129

ED, THE SYSTEM SCREEN EDITOR

particular key. For example, DF 28 would normally display the letter D on ED's
status line, to show that the CTRL-B key combination calls the extended mode
Delete command. The RK (Reset Keys) command can be used to reset all of the
key definitions to their default values. The chart on page 131 shows both the key
combinations and the default extended mode command assigned to each key
number.

Editing under Program Control
Script Commands and AREXX
Another feature that was added to the AmigaDOS Release 2 version of ED
program was support for executing a sequence of commands, either from a
command script or an AREXX program. The concept of a command script is
very similar to that of an AmigaDOS script. Just as an AmigaDOS script is a text
file which contains a series of AmigaDOS commands, an ED command script is
a text file which contains a series of ED extended mode commands. When you
run an ED command script, each command is executed as if it were typed in at
ED's command line, just as when an AmigaDOS command file is EXECUTEd,
each DOS command is run as if it were typed in. Finally, if there is a file in the
S: directory called Ed-Startup, that command file is automatically executed when
the ED program starts, just as the S:Startup-sequence file is run automatically
when you turn the computer on, or the S:Shell-Startup file is run when you start a
new Shell process. This file is often used to set up menus and keyboard macros
automatically.

There are actually three ways of executing an ED command file. As indicat
ed above, the S:Ed-Startup file is run automatically unless otherwise specified.
To execute another file when ED begins, you may use the WITH option of the
command. If you start ED with the command

ED S:Script WITH S:CommandFile

then S:CommandFile will be executed instead of S:Ed-Startup. Since ED scripts
can use all of the extended mode commands, including ones that quit the pro
gram, it is possible to run ED with a command script that opens a file, performs
several editing operations, saves the file, and then exits the ED program, all
without any user intervention at the keyboard.

The third way of executing an ED command script is from within the ED
program itself, using the extended mode RF (Run File) command. The command
requires a text string after it, specifying the name of the command file to run (for
example RF S:CommandFile).

130

ED, THE SYSTEM SCREEN EDITOR

Key Key or

Number Combination Default Command

\-10 FI-FIO None
11-20 Shift FI-FIO None

21 Shift left arrow CS Cursor to start of line
22 Shift right arrow CE Cursor to end of line
23 Shift up arrow T Cursor to top of file
24 Shift down arrow B Cursor to bottom offile
25 Del DC Delete character under cursor
26 Reserved None
27 CTRL-A All Insert Line
28 CTRL-B D Delete Line
29 CTRL-C None
30 CTRL-D PO Page Down (cursor down 12 lines)
31 CTRL-E EP Cursor to top or bottom of screen
32 CTRL-F FC Flip Case
33 CTRL-G RE Repeat last extended command sequence
34 CTRL-H DL Delete character to left of cursor
35 CTRL-I TB Move cllrsor to next tab position
36 CTRL-J None
37 CTRL-K None
38 CTRL-L None
39 CTRL-M S Split line (carriage return)
40 CTRL-N None
41 CTRL-O])W Delete Word or spaces

42 CTRL-P None
43 CTRL-Q None

44 CTRL-R WP Cursor to end of pre\iolls word
45 CTRL-S None
46 CTRL-T WN Cursor to start of next word
47 CTRL-U PU Page Up (cursor up 12 lines)
48 CTRL-Y YW Re-display window
49 CTRL-W None

50 CTRL-X None
51 CTRL-Y EL Delete to end of line
52 CTRL-Z None
53 CTRL-[CM Enter command mode (escape)
54 Reserved None
55 CTRL-] CT Move to start or end of line
56 Reserved None

57 Reserved None

131

ED, THE SYSTEM SCREEN EDITOR

ED's AREXX support provides a flexible way of controlling the editor by a
program. Each time you run the ED program, it opens up a message port through
which it can communicate with AREXX scripts, or even other application
programs. The name of this message port for the first copy of ED you run is ED,
but each subsequent copy that you run takes a slightly different port name so that
you can run multiple copies of ED and communicate with each individually. The
second copy of the ED that you run has a port named ED _1, the third ED _2, and
so on.

When you run an AREXX script from within ED, you can determine the
port name of the current copy of ED with the AREXX addressO function. For
example, if you execute an AREXX script from the second copy of ED which
contains the line HOST=address(), the value ED_2 is placed in the variable
HOST.

External programs can send any extended mode command to ED through
its AREXX port. For example, you can send the cursor to the top of the file
loaded into the first copy of ED with the following command line in an AREXX
script:

address 'Ed' 't'

In addition to sending commands to ED, AREXX programs can also obtain
information from ED about current ED settings and even the contents of the
current text file. This is accomplished by sending ED the special RV (Rexx
Variables) command, along with the stem name of the compound variable in
which to store the information. For example, if an AREXX program sends the
first copy of ED an RV command with the program line

address 'Ed' 'RV/Ed_status/'

ED will assign the following values to fifteen variables:

132

ED, THE SYSTEM SCREEN EDITOR

Variable Name
Ed_Status.LEFT

Ed_Status.RIGHT
Ed_Status.T ABSTOP
Ed_Status.LMAX
Ed_Status. WIDTH
Ed_Status.X
Ed_Status.Y
Ed_Status.BASE

Ed_Status.EXTEND

Ed_Status.FORCECASE

Ed_Status.LINE
Ed_Status.FILEN AME
Ed_Status.CURRENT

Ed_Status.LASTCMD
Ed_Status.SEARCH

Variable Contents
Current left margin (I is left edge), from SL
command
Current right margin, from SR command
Current tab stop, from ST command
Line number of last visible line on screen
Width of screen in characters
Physical X position of cursor (1 is left edge)
Physical Y position of cursor (l is top line)
Window base offset (non-zero when screen
scrolls to right)
Extended margin flag

0= normal margins
I = margins extended with EX command

Case sensitivity flag
o = Search is case sensitive (LC)

Current line number in file (1 is first line)
Name of the text file currently being edited
Text of the line on which the cursor is posi
tioned
Last extended command that was issued
Text of last search string

Using this information, it is possible to read in an ED text file line by line into an
AREXX program, and use both ED and AREXX string commands to manipulate
it.
It is possible to launch an AREXX program directly from ED, using the RX
extended command. The format for RX is:

RX /ArexxFile/

where ArexxFile is the name of the script file to execute. If you create this file in
the REXX: directory, and end it in the letters .ed, you can easily identify it as an
ED script, and you do not have to refer to the pathname or extension in the RX
command. If you have a file called Script.ed in your REXX: directory, for
example, the extended command RX IScriptl will be sufficient to run that
AREXX program. You can even attach the RX command to a function key
combination, to create very complex new immediate mode commands.

133

ED, THE SYSTEM SCREEN EDITOR

ED Command Summary

Keyboard Commands
Cursor Movement

Cursor keys
Shifted Cursor keys

TAB, CTRL-I

CTRL-T
CTRL-R
CTRL-]
CTRL-U
CTRL-D
CTRL-E

InserUDelete

BACKSPACE,
CTRL-H
DEL
CTRL-O

CTRL-Y
CTRL-B
CTRL-A

Move cursor one character up, down, right, or left
Move cursor to top or bottom of file, or start or end of
current line (Release 2 or above only)
Move cursor right to next TAB position (no characters
inserted into text)
Moves cursor to start of next word
Moves cursor to end of previous word
Moves cursor to end or start of line (alternates)
Scrolls text up (moves cursor down) a page
Scrolls text down (moves cursor up) a page
Moves cursor to top or bottom of screen (alternates)

Delete character to left of cursor
Deletes character under cursor
Deletes next word or spaces before next word (alter
nates)
Deletes to end of current line
Deletes entire current line
Inserts a new line below current line

Miscellaneous Commands

CTRL-F

CTRL-V
ESC, CTRL-[
CTRL-G

134

Flips case of character under cursor (and moves cursor
one character to the right)
Verifies (redraws) the screen
Enter extended command mode
Repeats last extended command

ED, THE SYSTEM SCREEN EDITOR

Extended Mode Commands
(Press ESC to Enter Command Mode)

Cursor Movement
CL
CR
N
P
CS
CE
T
B
EP

PD

PU

WN

WP

TB

Mlinenum

InsertlDelete
DC
D
DL

ow

EL

Moves cursor left one character
Moves cursor right one character
Moves cursor to start of next line
Moves cursor to start of previous line
Moves cursor to start of line
Moves cursor to end of line
Moves cursor to top of file
Moves cursor to bottom of file
Moves cursor to top or bottom of screen (alternates)
(Release 2 or above only)
Moves cursor down 12 lines
(Release 2 or above only)
Moves cursor up 12 lines
(Release 2 or above only)
Moves cursor to start of next word
(Release 2 or above only)
Moves cursor to space after previous word
(Release 2 or above only)
Moves cursor to next tab position
(Release 2 or above only)
Moves cursor to line number linenum

Deletes character under cursor
Deletes entire current line
Deletes the character to left of the cursor
(Release 2 or above only)
Deletes to the end of the current word
(Release 2 or above only)
Deletes to the end of the current line
(Release 2 or above only)

135

ED, THE SYSTEM SCREEN EDITOR

FC

Ifstring/
A/string/
S
J

Switches the case of the current character
(Release 2 or above only)
Inserts string as a new line above current one
Inserts string as a new line below current one
Splits current line at cursor position (same as RETURN)
Joins current line with next line
(deletes RETURN at end of current line)

Find and ExchanKe (Search and Replace)

F/string/
BF/string/
E/ string J Istring 2/
EQ/ string 1lstring2/
LC

UC

Block Transfers
BS
BE
DB
IB
WB/filename/
SB

Save/Load/Exit
IF/filename/

SNfilename/

x
Q
xQ

136

Finds string in following text (forward search)
Backward find (searches previous text for string)
Exchanges (replaces) stringl with string2
Exchanges (replaces) after query stringl with string2
Requires searches to match both uppercase and lower
case
Ignores case differences in searches

Marks a block starting at start of current line
Marks a block ending at end of current line
Deletes current block
Inserts copy of the block below current line
Writes the block to file filename
Shows the block on screen

Inserts file filename at the cursor (and moves rest of file
down)
Saves file to disk (to filename if given; if not, to current
file)
Exits, saving text file to disk
Quits without saving text
Exits unless changes have been made to file (same as
clicking close gadget)
(Release 2 or above only)

ED, THE SYSTEM SCREEN EDITOR

NW

OP/jilenamel

RF/filenamel

Tabs and Margins
SLcolnum
SRcolnum
EX
ST

Creates a new file, replacing the existing one
(Release 2 or above only)
Opens the file filename (OP '? II presents file re
quester to choose name)
Loads and executes the commands in filename
(Release 2 or above only)

Sets left margin to column number colnum
Sets right margin to column number colnum
Extends right margin
Sets distance between tab stops

Miscellaneous
SH Shows information on filename, tab stops, margins,

block markers, and buffer usage
U Undoes changes to current line

Executes another command on same command line
number

number Repeats following command number times
() Groups commands for purpose of repetition
RP Repeats following command until an error occurs
SI Num Type Head CMD Defines menu headings and items

(Release 2 or above only)
EM Enables user-defined menus

(Release 2 or above only)
SFKeynum/Commandl Assigns a command to immediate mode command

key specified by keynumber
(Release 2 or above only)

DFKeynumber Displays the command string assigned to
Keynumber
(Release 2 or above only)

RK Resets the immediate mode command keys to
default values
(Release 2 or above only)

RXlRexxFilel Executes the AREXX script named RexxFile
(Release 2 or above only)

137

Chapter 7

EDIT, the Line Editor

EDIT, the AmigaDOS line editor, can be used to inspect and change just about
any kind of AmigaDOS file, including text and program files. EDIT only oper
ates on one line at a time, instead of presenting a whole screen full of data.
Unlike the newer graphic-oriented editors, EDIT is completely command-driven.
It has no support whatever for the Amiga's mouse-and-menu interface.

So why use EDIT? AmigaDOS comes with a fairly powerful full-screen
editor (ED), and reasonably priced word processors for the Amiga are also
available. While most Amiga owners will prefer either of the latter, some users
will find using EDIT comfortable. There are, after all, some users who actually
prefer typing in commands to using a mouse. For those who have mastered its
few commands, EDIT is probably as quick and easy to use as anything else.

EDIT does have two features which ED, its more powerful sibling, does
not-it can be used to modify program files as well as text files, and it can
execute a series of stored commands from a disk file (a capability which was
added to the Release 2 version of ED, further reducing the incentive for using
EDIT).

How EDITWorks
EDIT processes the contents of a source file (we'll call this EDIT's From file)
sequentially-a line at a time-using editing commands specified by the user.

EDIT keeps track of its place within the material being edited. When EDIT
is first invoked, the current line is the first line of the From file. As editing
commands are executed, the current line changes. EDIT keeps tabs on the current
line by maintaining an internal pointer called the current line marker.

As the current line marker is moved past a line, the line is moved into a
special area called the output buffer. The output buffer has a fixed size for the
duration of an EDIT session.

When the output buffer becomes filled, data is written to the file specified
as the destination (EDIT's To file), on a first-in, first-out basis.

138

EDIT, THE LINE EDITOR

During an EDIT session, various informative messages and displays of the
contents of lines are sent to EDIT's verification device (your Amiga's screen,
unless another device is specified when EDIT is started up).

If EDIT's To file is different than its From file, the contents of the file used
as input to the editor will not be altered. If the To file is the same as the From
file, the original contents of the file will be moved to a temporary file called
: tledit. backup.

Invoking EDIT
An EDIT session is usually started from an active CLI by using AmigaDOS' s
EDIT command. What follows is a summary of the EDIT command's syntax.
See the EDIT command section in the "AmigaDOS Command Reference" for a
more detailed explanation.

EDIT [FROM]jromname [TO] toname [WITH] withname [VER] vername [OPT
option]

EDIT's Parameters and Keywords:

FROMjromname-The name of the file whose contents will be edited.
Throughout the rest of this chapter, this is referred to as EDIT's From file.

TO toname-The name of the file which will contain the edited text after the
EDIT session is ended. Throughout the rest of this chapter, this file is referred to
as EDIT's To file.

WITH withname-Lets you specify a file that may optionally be used as input to
the line editor's command processor.

VER vername-Lets you specify where you want messages from EDIT to be
displayed.

OPT Pn or OPT Wn or OPT PnWn-These options let you set the maximum
line length (Wn) and/or number of lines (Pn) that EDIT will keep in its output
buffer. In versions 1.3 and greater, the keyword PREVIOUS can be used instead
of OPT P, and the keyword WIDTH can be substituted for OPT W.

While you can edit files with more lines than the value of n, you'll only be
able to move backward n lines. If the file to be edited is not unreasonably large,
it's usually a good idea to specify an n greater than the number of lines in the file
to be edited. The default number of previous lines is 40, and the default line
width is 120.

139

EDIT, THE LINE EDITOR

Starting an EDIT Session-Examples
Example I-Edit a file called mvsource in the CUITent directory, using EDIT.
The edited data is to be stored under the same filename. The number of lines is to
be set to 40 and line width to 120 (EDIT's default values):

EDIT mysource
Example 2-Edit a file called bigsource. The edited data will be stored in

the file called edited bigsource. The output buffer size is set to 1000 lines, with a
maximum line width of 120:

EDIT bigsource uedited bigsou~ceu OPT PIOOO
Example 3-Edit a file called universe. When EDIT starts up, execute the

list of EDIT subcommands contained in the file autocommands located in the
myprocesslnebula directory on drive dfl:. The edited data is to be stored under
the same filename. Send all messages and verification displays from the line
editor to the system printer. The number of lines in EDIT's output buffer is to be
set to 40 and the maximum line width to 250:

EDIT universe IvIJITH dfl: rryprocess/nebula/ auto commands
VER PRT: OPT W25 0

Note: EDIT expects the From file to exist already. Issuing an edit for a file
called nn~jile which doesn't exist, as in

EDIT FROM newfile
generates the error message Can't open ne}'vjile. However, you can use EDIT to
type in a file by creating an empty file first and then editing the new file:

COpy * newf i Ie Press CTRL-\ after entering this command.

EDIT newfile

NOTE: CTRL-\ is the Amiga Equivalent afthe PC's
CTRL-Z

Example 4-Let' s create a sample file which you can type in, then experi
ment with using EDIT during the rest of this chapter. Type:

140

COpy * testfile
The door slammed and she stormed
out of the house. Meanwhile, the
toast burned and the eggs hardened.
He stared after her, wondering what
to say. Fortunately, he kept his mouth
shut. Better to say nothing than to
say something now.

EDIT, THE LINE EDITOR

Once you've typed this in, press CTRL-\ (end-of-file marker), which will close
the file; testfile is now on your disk. You can access it by entering

EDIT test file

Getting Out of EDIT
There are several ways to exit an EDIT session.

The STOP command exits EDIT, leaving the From file intact. The contents
of the To file, if a separate one was specified, are unpredictable since STOP will
not write the contents of the output buffer to the To file as it exits EDIT.

The W command (Windup) advances the current line marker to the From
file's end-of-file (EOF) marker, moving lines into the output buffer as it goes.
When the EOF is reached, EDIT saves the contents of the output buffer to
EDIT's To file, and the editing session terminates.

The Q command (Quit) is used within EDIT command files to return
control to the process which invoked the file's execution. If Q is issued from
EDIT's primary command level, it has the same effect as W. (See the section
"EDIT Command Files" later in this chapter for more information about the use
of command files.)

The Current Line
EDIT keeps track of its place within the data and/or text being edited. When
EDIT is first invoked, the current line is the first line of the From file. As EDIT
subcommands are executed, this current line changes. EDIT keeps tabs on the
current line by maintaining the current line marker, an internal pointer.

At the beginning of each session, EDIT associates sequential line numbers
with all of the original lines of the From file. When EDIT begins, the current line
is line number 1.

141

EDIT, THE LINE EDITOR

Verifying the Current Line
The? and! commands allow you to display the line number (if any) and contents
of the current line.

?
displays the line number and contents of the current line.

Characters which cannot be displayed can be represented by a question
mark. For instance, if issuing a ? command results in a display of

5.
Whom do you trust???

the question marks which appear to be a part of line 5 may not be question marks
at all. In these cases, the! command will display the hexadecimal value of the
characters in question:

Whom do you trust? i1
03

The exclamation mark (!) revealed that there's only one genuine question
mark in the line, followed by characters whose ASCII values are 10 and 13. The
! also displays a dash (-) under any uppercase letters contained in the current
line.

Turning Verification On and Off
EDIT often displays a verification of the line number and contents of the current
line in response to many EDIT commands. If the current line has no line number,
+++ will be displayed instead. Verification displays may be turned on and off
with the V (Verify) command.

v-
turns off automatic line verification. while

v+
turns verification on. Verification is always set to on by EDIT when an editing
session begins.

142

EDIT, THE LINE EDITOR

Trailing Spaces
EDIT normally suppresses all trailing spaces.

TR+

turns EDIT's trailing spaces switch on, allowing trailing spaces on both input
and output lines.

TR-

reinvokes suppression of trailing spaces (EDIT's default).

Operational Windows
When a command is executed which instructs EDIT to operate on the current
line, EDIT normally scans all the characters in the line from left to right, begin
ning with the first character.

It's possible to instruct EDIT to begin its scan at a character other than the
first in the line. The current line's operational window consists of only that
portion of the line which will be operated on. The beginning of the current line's
operational window is pointed to by the operational window pointer.

> moves the operational window pointer of the current line one character to
the right.

< moves the operational window pointer of the current line one character to
the left.

PR (Pointer Reset) sets the operational window pointer line back to the
start of the line.

Whenever EDIT is instructed to display verification of the current line (by
?, !, or any other command which normally ends with a verification of the
current line), a greater than (» character may be displayed under the contents of
the current line. Everything to the right of the> is within the current line's
operational window. For instance,

3.
Well this is another fine mess

>

indicates that the operational window pointer of the current line has been moved
so that the operational window of the line consists of the text another fine mess.
If you told EDIT to search for the word this, it would not be found, since only
the contents of the current line's operational window are scanned by the search
operation.

143

EDIT, THE LINE EDITOR

Character Operations on the Current Line
EDIT supports four intraline commands which can change the case of characters,
replace characters with a blank, and delete characters:

$ (dollar sign) forces the case of the first character in the current line's
operational window to lowercase. After a $ command is executed, the operation
al window pointer is moved one character to the right.

% (percentage sign) forces the case of the first character in the current
line's operational window to uppercase. After a % command is executed, the
operational window pointer is moved one character to the right.

_ (underscore) forces the first character in the current line's operational
window to be replaced by a blank. After an _ command is executed, the opera
tional window pointer is moved one character to the right.

(pound sign) deletes the first character in the current line's operational
window. The text remaining in the operational window is shifted one character to
the left.

The intraline commands may be strung together on a single EDIT com
mand line. Take a look at the following example.

Assume you start with the current line as All the young dudes, carry the
NEWS. Several operations can be carried out on this line to change its appear
ance:

144

1.
All the young dudes, carry the NEWS
%%%####
1.
ALL young dudes, carry the NEWS

>
»»»>%%%%%»
1.
ALL young DUDES, carry the NEWS

>

»»»-->$$
1.
A I I young DUDES, carry NewS

>

EDIT, THE LINE EDITOR

You could have strung all the commands in the previous example together
on one command line. Several command lines were used to keep things from
getting totally confusing.

Moving from One Line to Another
N (Next line). The current line marker can be moved forward by using the N
command. If you attempt to move the current line marker past EDIT's end-of-file
flag, the message Input exhausted displays, and the current line marker is set at
the end-of-file flag.

N
moves the current line marker to the next line of the current From file. If line
verification is on, the line number and text of the new current line is displayed.
The current line marker may be moved ahead multiple lines by stringing multiple
N commands on a single line or by preceding the command with a number:

N;N;N;N
is the same as

4N
P (Previous line). The current line marker may be moved backward with

the P command. If you attempt to move the current line marker past the first line
contained in EDIT's output buffer, the message No more previous lines displays,
and the current line marker is set to the first line in the output buffer.

Remember, the default capacity of EDIT's output buffer is only 40 lines.
For example, if you EDIT an 80-line file and the current line marker is pointing
to line 60, EDIT's output buffer contains only lines 20 through 59 of the From
file. Attempting to back up 40 or more lines results in the current line marker
pointing to line 20.

P

moves the current line marker back one line. If verification is on, the line number
and text of the new current line is displayed. The current line marker may be
moved back multiple lines by stringing multiple P commands on a single line or
by preceding the command with a number.

P;P;P;P;P;P

is the same as

6P

145

EDIT, THE LINE EDITOR

Both move the current line marker back six lines.
Ma (Move to line a). The current line marker may be moved backward or

forward to a specific line number by using the M command. Using a period (.) in
the a location, the current line marker is moved to the end-of-file flag of the
From file.

If you attempt to move the current line marker back to a line number not in
EDIT's output buffer, the message Line number a too small displays. If the line
number specified is greater than the highest line number of the From file, the
message Input exhausted displays, and the current line marker is set to the end
of-file flag.

M17

moves the current line marker to line number 17 (not the seventeenth line). If
verification is on, the line number and text of the new current line is displayed.

M.

moves the current line marker to the end-of-file flag of the From file.

Displaying Your Text
It's often handy to examine the contents of more than one line at a time. EDIT
has four commands which allow you to display multiple lines of the file being
edited.

Tn (Type n lines). The T command displays n lines on the screen (or
verification device, if one other than the screen has been selected), beginning
with the current line. The current line marker is set to the line following the last
one typed by the T command. If n is not specified, all lines following the current
line are displayed, and the current line marker is set to the end-of-file flag.

Assume that the sixth line of a file being edited is the current line. The
command

T5
displays the sixth through tenth lines of the file, and the current line marker is
changed to point to the eleventh line. The line number and text of the new
current line are displayed.

If the current line marker of a lOO-line file is pointing to the thirty-eighth
line, and the current line marker is set to the end-of-file flag,

T

146

EDIT, THE LINE EDITOR

displays lines 39 through 100, and the current line marker is set to the end-of-file
flag.

TP (Type Previous). The TP command displays the current contents of
EDIT's output buffer. If the buffer is full, the current line marker remains
unchanged. If the output buffer is not fulL the TP command advances the current
line marker to the point which fills the buffer and then displays the contents of
the buffer, followed by verification of the new current line.

For example, assume that EDIT has been invoked with the default buffer
length of 40 lines and that you're editing a 70-line file. If the current line is the
tenth line of the file (which means there are only nine lines currently in the
output buffer) and you issue

T]J

EDIT changes the current line marker to point to the forty-first line. moving lines
10 through 40 into the input buffer (along with the file's first 9 lines). All 40
lines now residing in the output buffer are displayed, followed by a verification
display of the file's forty-first line. Any TP commands issued immediately
thereafter will have no effect on the current line marker. since the output buffer
has been filled.

TN (Type Next). The TN command acts exactly like a Ta command in
which the value of a is determined by the number of lines that the output buffer
has been set to hold (OPT Pn). The default value for (/ is 40 if no P11 is specified
in the EDIT command which started the current session.

TLIl (Type with Line numbers). The TL command displays 11 lines preced
ed by their line numbers, beginning with the current line. Lines that have been
inserted or that are created by splitting a numbered line in two may have no
numbers. If a line has no number. EDIT displays three asterisks (***) in its
place. The current line marker is set to the line following the last one typed by
the T command. If 11 is not specified, all the lines following the current line are
displayed, and the current line marker is set to the end-of-file flag.

Inserting NewText
EDIT allows text to be inserted before the current line or any line that may be
referenced by a line number. The text to be inserted may be typed in via the
keyboard or may be read directly from another AmigaDOS file.

The I command, when used in conjunction with a specific or relative line
number, allows text to be inserted in EDIT's output stream.

147

EDIT, THE LINE EDITOR

• I or I. is used to insert text before the current line.

• 1* inserts text after the last line of text in the From file.

• la, where a is the line number that EDIT associates with a given line of the
file being edited. An la command may search backward into EDIT's output
buffer or forward, past the current line, in search of the specified line number.
Once the line number is found, the line associated with it is made the current
line.

Insert commands all throw EDIT into insert mode. Any text typed at the
keyboard will be inserted before the CUiTent line (into EDIT's output buffer).
Insert mode is terminated by typing a line containing only the letter z (lowercase
or uppercase) in the first column and hitting the RETURN key. The inserted text
will have no line number. Upon exiting insert mode, the current line will be
displayed-it will be the same line as when the I command was invoked.

Let's try it out. Insert several lines before the current line:

I

Well this is a silly little example of how to insert a
couple of lines and then get out of Input's insert
mode.
z

Insert several lines before line number 17:

117
Had enough folks?
EDIT can be a barrel of laughs.
z

Note: You may change the input mode terminator to any string of up to 16
characters by using the Z command. For example,

Z/fin/
changes the input mode terminator from z to Jin,fin will remain the input termi
nator through the end of the current EDIT session or until another Z command is
issued.
• lljilenamel (Insert before current line from a file)

or

148

EDIT, THE LINE EDITOR

• Ia/filename/ (Insert before line a from a file)

Insert also lets you specify an AmigaDOS file as the source for lines to be
inserted. Filenames used in conjunction with insert and replace commands are
normally delimited by slashes (I), although the colon (:), period (.), comma (,)
and asterisk (*) may also be used. Lines inserted from an AmigaDOS file into
EDIT will have no line numbers associated with them. Here are some examples.

Insert the contents of the file my text before the current line:

l/mytext/

Insert the contents of the file WmvlWhat a Party on the external disk drive
before line 66:

166 /"DF1:Wow/Wnat a Party"/

Replacing Lines with Inserted Text
EDIT also allows lines of text to be replaced by inserted text typed in via the
keyboard or read directly from an AmigaDOS file.

The R (Replace) commands' syntax is almost identical to that of the I
(Insert) commands.
• R or R. is used to replace the current line with inserted text.

• R* inserts text after the last line of text in the From file.

• Ra b replaces a range of lines with inserted text; a and b are line numbers
which EDIT associates with specific lines of the file being edited. An Ia h
command may search backward for the specified range of lines into EDIT's
output buffer, or forward, past the current line, in search of the specified line
numbers. Once the lines are found, the line associated with it is made the current
line. If b is omitted, only line a will be replaced by the inserted text.

Replace commands all throw EDIT into insert mode. Any text typed at the
keyboard replaces the line(s) specified. Replace's insert mode is terminated by
typing a line that contains only the letter z in the first column and hitting the
RETURN key. The inserted text will have no line numbers associated with them.
Upon exiting insert mode, the current line will be displayed-it will be the first
line following the last replaced line.

As with the I command, you may also replace text from an AmigaDOS file.
Replace the current line with the phrase One for the Money:

149

EDIT, THE LINE EDITOR

R

One for the Money
z
Replace line 13 with several lines of text entered from the keyboard:

R13
I am Gosar, the Gosarian, keymaster
of Zuuul.
And many were those who knew what it
was to roast in the depths of the Slor
that day, I tell you
z
Replace lines 3-67 with the text contained in the AmigaDOS file

morestuffledit:

R3 67.morestuff/edit.

Renumbering Lines
As has been pointed out, EDIT normally assigns line numbers only when a From
file is opened. Inserted text has no automatically associated line numbers. The
renumber command (=) may be used to assign a line number to the current line
and each line that follows it when the renumber is issued.

=10
renumbers the current line and all lines following. The current line is assigned a
line number of 10.

If the file being edited contained three lines, numbered 1 through 3, and
line 1 was the current line, =1 0 would change the line numbers to 10 through 12.
Any line numbers associated with lines in EDIT's output buffer are lost.

Searching forText
F/string/ (Find text). The find command searches for a specified text string
beginning with the current line and proceeds forward through the lines of the
From file until the text is found or until the end of the From file is reached. The
search operation stops at the first occurrence of string, and the current line
marker is updated to make the line containing the found string the current line. If

150

EDIT, THE LINE EDITOR

verification is on, and the line containing the match is other than the original
current line. the line number and contents of the new current line are displayed.
If the search string is not found, the message Input exhausted displays, and the
current line marker is set to the end-of-file flag.

If no search string is specified in an F command, EDIT attempts to use the
search argument of the last find command issued. If no previous find command
has been issued, the error message Nothing to repeat appears.

String expressions used for search Cand replace) operations within EDIT are
normally delimited by slashes (I), although the colon C:), period C.), comma (,)
and asterisk C*) may also be used. EDIT searches are case sensitive. The search
string AmigaDOS does not match the text amigados.

Here's an example-find the string disk. Begin the search with the current
line and move forward through the From file:

F/disk/

BF/string/ (Backward Find text). The BF command searches for a specified
text string beginning with the current line and proceeds backward through the
previous lines contained in EDIT's output buffer until the text is found or until
the front end of the output buffer is reached with no match. The search operation
stops at the first occurrence of string. and the current line marker is updated to
make the line containing the found string the current line. If verification is on,
and the line containing the match is other than the original current line, the line
number and contents of the new current line are displayed. If the search string is
not found, the message No more previous lines appears. and the current line
marker is set to the line which was at the head of the output buffer.

If no search string is specified in a BF command, EDIT tries to use the
search argument of the last find command issued. If no previous find command
has been issued, the error message Nothing to repeat displays.

Let's try one. Find the string disk. Begin the search with the current line
and move backward through the output buffer:

HF/disk/

Find Command Qualifiers
There are five qualifiers, or options. which may be used in conjunction with the
find and backward find commands to further restrict the conditions that will
result in a search match.

151

EDIT, THE LINE EDITOR

The F and BF commands normally don't care where in a line the search
string is found. The Band E qualifiers let you specify whether the text must
begin a line (8) or end a line (E).

The P qualifier allows you to restrict matches to those lines which consist
of nothing but the precise (P) text specified by the search string.

EDIT's searches normally proceed rightward from the first character of
each line. The L qualifier instmcts EDIT to search each line leftward (L) begin
ning with the last character of each line.

The B, E, P, and L qualifiers are mutually exclusive. EDIT does not all ow
any of these four qualifiers to be specified together in an For BF command.

The U qualifier may be used by itself or in conjunction with any of the
other four. U renders the search string case insensitive-it causes EDIT to treat
both the search string and searched text as if everything were in uppercase (U). A
few examples follow.

Search forward, beginning with the current line, for the line which ends
with the words Natasha Fatale:

F E sha Fatale!

Search backward, beginning with the current line, for the line that begins
with WayBack

B? B

Search forward, beginning with the current line, for the line that is precisely
Into the valley o/'death. rode tlze six hundred.

? PI Into the valley of death, rode the six hundred.!

Search backward for the phrase I can play CenterField. Each line is to be
searched leftward, beginning with the last character of each line. The case of the
search text is to be ignored:

BF LU/i can play centerfield!

You can also find an empty line (one containing nothing) by specifying a
null string as a search argument:

? PI!
Remember, the current line marker is updated to point at the line containing

a found string.

152

EDIT, THE LINE EDITOR

Replacing Text
One of the reasons you may want to find a specific text string is so that you can
make changes to it. EDIT has three commands which can be used to replace and/
or insert text in the current line.

E/stringllstring2/ (Exchange text). The E command lets you exchange a
string of text contained in the current line with another string of text. E searches
rightward for string] in the current line, beginning with the first character of the
line. If found, string] is replaced by string2, and the entire modified line is
displayed. If string] is not found in the current line, the message No match
displays. In either case, the current line marker remains unchanged.

More examples--change the phrase too strange to be believed in the
current line to too strange to have happened:

E/too stange to be believed/too strange to have
happened/

B/stringllstring2/ (insert Before text). The B command inserts a string of
text before a specified string contained in the current line. B searches rightward
for string I in the current line, beginning with the first character of the line. If
found, string2 is inserted immediately before string], and the entire modified
line is displayed. If string] is not found in the current line, the message No match
appears. In either case, the current line marker remains unchanged.

A/stringl/string2/ (insert After text). The A command inserts a string of
text after a specified string contained in the current line. In all other respects, A
functions identically to B.

The Current String Alteration Command
The previous A, B, or E command executed is known to EDIT as the current
string alteration command. Typing a single quotation mark (') repeats the current
string alteration command.

Checking on the Last-Used Search Expression
The SHD (SHow Data) command displays EDIT's current saved information
values, including the last search expression.

Pointing Variants of Replace Commands
There's a secondary form of the E, B, and A commands which performs text
replacement/insertion, and one additional one. This secondary form of each

153

EDIT, THE LINE EDITOR

command is referred to as the pointing variant of each, and they are respectively
EP, BP, and AP.

If the current line is successfully modified, EDIT's character pointer is left
pointing to the first character in the line which follows string2 in the case of EP
or AP, or in the case of a BP command, the first character in the line that follows
stringl.

Using Qualifiers with Replace Commands
The B, E, P, L, and U qualifiers that may be used in conjunction with find
commands may also be used with the replace commands and their pointing
variants. The effect of using the qualifiers and rules for their use is the same as
described in the section entitled "Find Command Qualifiers."

Deleting Text
D (Delete line). The D command can be used to delete the current line, a multiple
number of lines (beginning with the current line), a specific line number, or a
range of lines delimited by lines having line numbers. After the requested
deletion has taken place, the current line marker is advanced to the line immedi
ately following the last line deleted by the operation, and the line number and
contents of the new current line are displayed. If D does not find a specified line
between the current line and the From file's last line, the message Input exhaust
ed appears, and the current line marker moves to the end-of-file flag. The D
command does not affect the contents of EDIT's output buffer. An example or
two might help.

Delete only the current line. The current line marker is moved to the next
line in the From file:

D

Delete the current line and the next three lines. The current line marker is
moved to the line that was four lines after the original current line:

4D

Delete line 17. If line 17 is found, the current line marker is moved to the
line which follows it after line 17 is deleted. If a line numbered 17 is not found,
no deletion will take place, and the current line marker will be updated to point at
the end-of-file flag:

D17

154

EDIT, THE LINE EDITOR

Delete the lines numbered 22, 28, and all lines between them. If line 28 is
found, the current line marker is moved to the line which follows it after the
requested lines are deleted. If line 22 is found, but a line numbered 28 is not, line
22 and all the lines that follow are deleted. The current line marker is updated to
point at the end-of-file flag:

D22 28

Delete the current line and all the lines that follow. The current line marker
is updated to point at the end-of-file flag:

D*

Delete Commands That Use Search Expressions
DTBlstringll (Delete Text Before)
and
DTAlstringll (Delete Text After)

The DTB and DT A commands let you delete text within the current line
that occurs before or after a search expression you specify. DTA and DTB
operate only upon the current line. After execution, the line number and new
contents of the current line are displayed. If the search expression is not found,
the message No match is displayed and the current line remains unchanged.

DFlstringl (Delete lines until Find). The DF command searches each line,
beginning with the current line, for the specified search expression. If the line
searched does not contain the search string, it's deleted. The search-and-delete
process continues until the search string is found. The line found to contain the
search expression becomes the new current line. If the search string is not found,
a DF command deletes the current line and all lines thatfollow until it reaches
the end of the From file.

Using Qualifiers with DTB, DTA, and OF
The B, E, P, L, and U qualifiers used in conjunction with find and replace
commands may also be used with the DTB and DT A commands. The effect of
using the qualifiers and rules for their use are the same as those described in the
previous section "Find Command Qualifiers." Here are some examples to help.

Delete all text that precedes the word gremlins in the line There is no
reason to suspect gremlins as the cause:

DTB/gremlins/

155

EDIT, THE LINE EDITOR

Delete all text to the right of the second occurrence of ragged in the line
Around the ragged socks the ragged rascals ran:

DTA L/ragged/
Delete all lines encountered, beginning with the current line, until a line

beginning with the phrase enough already! is found. Ignore the case of the search
argument:

DF BU/enough already!/

Splitting and Joining Lines
EDIT provides two commands which may be used to split the current line into
two lines, and a command which combines two lines into one.

SB/stringl (Split line Before string). The SB command searches the current
line for the specified text string, and if found, splits the current line in two. The
first of the two lines consists only of the text in the current line that preceded the
found string. The second line begins with the found string and includes all text
that followed it in the current line. After SB has executed, the second of the two
new lines is made the current line.

SA/stringl (Split line After string). The SB command searches the current
line for the specified text string, and if found, splits the current line in two. The
first of the two lines consists of the text in the current line that preceded the
found string and the found string itself. The second line consists solely of the text
that followed the found string in the current line. After SA has executed, the
second of the two new lines is made the current line.

CListringl (Combine Lines and string). The CL command combines the
current line and the line which follows it into a single line; string is optional, and
if specified, inserts the text string in the middle of the combined line. If the
length of the combined line exceeds the current maximum line width allowed by
EDIT, the rightmost characters of the line are truncated. Take a look at these
examples.

Consider the line of text I would gladly pay you Tuesdayfor a hamburger
today.

SB/ fori

or

SA/sday/

results in the line being split in two:

156

EDIT, THE LINE EDITOR

I would gladly pay you Tuesday
for a hamburger today

If you started with a current line Time for all good men, followed by the
line to aid their lemon lobby:

CLI and clones I
the result is

Time for all good men and clones to aid their lemon
lobby

Note: The SA, SB, and CL commands also accept string qualifiers (B, E, L,
P, and U). See the previous section "Find Command Qualifiers" for further
information on their uses.

Global Operations
EDIT's global operation commands let you automatically insert and replace text
in lines which match specified search criteria. Global commands set up editing
"phantoms" that constantly look over EDIT's shoulder as lines of the From file
are processed. Multiple global commands may be in effect during the course of
an EDIT session. The global commands are

GAl s tringl I s tr ing2 I (Global insert string2 After string I)
GB 1st r ingl I s tr ing2 I (Global insert string2 Before string I)
GE/stringl/string21 (Global Exchange string2 with string!)

Once a global command is issued, EDIT applies the associated A, B, or E
command to every line as it passes the current line marker.

Canceling Global Operations
When a global command is issued, EDIT displays an identification number
associated with that particular global phantom.

An individual global phantom may be canceled by issuing the CG (Cancel
Global) command followed by the phantom's ID number. For instance, to cancel
a global command that's been issued the ID number G4, type

CG4
To stop all current global operations, simply type

CG

157

EDIT, THE LINE EDITOR

If you can't remember what the active global operations are, the SHG
(SHow Globals) command will refresh your memory.

Command Groups
EDIT commands that have been strung together on a single line, separated by
semicolons, may be grouped together by enclosing the commands itt parentheses.
The resulting expression is called an EDIT command group. Command groups
are normally used when you wish to repeat a group of commands several times.
One command group may be nested within another, such as in

2(25(E /red/blue/;N);5 ON)

This replaces the text red with blue in the current line and all lines within
24 lines of the current line. The current line marker is then moved ahead 50 lines.
Occurrences of the text red are replaced with blue in the new current line and in
the following 24 lines. Finally, the current line marker is again moved ahead 50
lines.

If you instruct EDIT to execute a command or command group zero times,
the command continues to execute until the end-of-file is encountered or until
CTRL-C is used to issue a BREAK.

EDIT Command Files
When EDIT is invoked, it accepts commands from the keyboard or from an
AmigaDOS file specified by the WITH keyword in the DOS command line
which started the editing session.

You can also dynamically invoke the execution of EDIT commands stored
in AmigaDOS files from within EDIT by using the C command.

C . :my/stored/commands.

starts execution of the EDIT commands contained in the file myh·toredlcom
mands in the root directory of the current drive. Command execution continues
until a Q (Quit) command is encountered in the command file or until the
command file's end-of-file is reached. The filename must be enclosed by a valid
EDIT delimiter. (Notice that in the above examples, periods were used to delimit
the filename.) Command files may call other command files.

Suppose you want to set up an AmigaDOS command sequence file that will
create a nicely sorted list of the contents of the current directory. The following
command sequence file, when used in conjunction with a simple EDIT command
file, does the trick:

158

EDIT, THE LINE EDITOR

LIST > mylist
EDIT mylist WITH df O:unwanted
SORT mylist TO finlist
TYPE finlist TO prt:

The contents of the filename unwanted are

D M* D W

When the above AmigaDOS command sequence file is executed, an
unsorted list of the contents of the current directory is directed to the file called
my list. EDIT is invoked using the WITH option to pull in the commands in the
file unwanted. These commands remove the first and last lines of the LIST
output (since they contain information about the current directory rather than the
file or directory names in it). The edited file is saved and you're returned to the
command sequence file. The edited file is then sorted and sent to the system's
printer.

Merging Selected Parts of Files/Outputting Multiple Files
It's also possible to use EDIT to merge selected parts of different files together
and to create multiple versions of the edited text. This is accomplished in a
somewhat roundabout way, using facilities within EDIT that allow you to change
the current From and To files on the fly from within EDIT.

FROM/filename/. The lines that follow the current line are replaced by the
contents of the new From file. The original From file remains open and the lost
lines may be accessed again by issuing a FROM command with no filename. A
file opened by FROM may be closed by the CF (Close File) command, which
has a format of CF/filename/.

The following sequence of EDIT commands merges the first 15 lines of
three different files into one:

159

EDIT, THE LINE EDITOR

EDIT onefile TO
l4N
FROM ,twofile,
l5N
FROM ,threefile,
l6N
D*
CF onefile
CF twofile
W

myfile

TOljiienamel. The TO command lets you dynamically switch EDIT's
destination, or To file. TO writes EDIT's existing output buffer to the To file
before the switch is made and then clears the buffer. TO leaves the previous To
file open. Issuing a subsequent TO command with no filename results in the
original To file being reselected.

The following example outputs lines 1-100 of the file bigfile to a file called
firsthundred, and lines 101-200 of bigfile to a file called secondhundred.

EDIT bigfile TO firsthundred
lOON
TO .secondhundred.
lOON
CF
D*
W

The Rewind Command
REWIND scans the remaining lines from the current line forward, executing any
global commands in effect as it proceeds, until it reaches the last line of the From
file. The contents of the output buffer are written, and the To and From files are
closed. The To file is then reopened as a new From file.

The Halt Command
H (Halt) lets you set a line number as a brick wall which the current line marker
cannot be moved past.

160

EDIT, THE LINE EDITOR

H134
prevents EDIT from moving past line 134 of the From file. If a command causes
line 134 to be reached, the operation is halted and the message Ceiling reached
displays.

Point Before and After
PB (Point Before) and PA (Point After) move the position operational window
pointer in the current line.
PA/string/ moves the operational window pointer immediately after string in the
current line.
PB/string/ moves the operational window pointer immediately before string in
the current line.

EDIT Command Reference
Ending an Edit Session

STOP Quick bailout; From file remains intact
W Windup; advance to EOF, save, and exit EDIT
Q QUIT; return to previous process

Verification Commands
? Verify current line

Verify current line; display codes of undisplayable characters
V +N Tum auto verification on/off
TR+ITR Display/suppress trailing spaces

Operational Window Commands

>
<
PR
$
%

PB/string/
PA/string/

Move operational window pointer right
Move operational window pointer left
Reset operational window pointer
Change character at operational window pointer to lowercase
Change character at operational window pointer to uppercase
Change character at operational window pointer to a blank
Delete character at operational window pointer
Move operational window pointer before string
Move operational window pointer after string

161

EDIT, THE LINE EDITOR

Moving from One Line to Another

N Next line
P Previous line
Ma Move to line a

Display Text

Tn Type n lines
TP Type previous lines
TN Type next lines
TL Type with line numbers

Inserting Text

III.
I* or R*
Ia
Zlstringl
Ufilenamel
I*lfilenamel
Ia/filenamel
RIR.
Rab

Insert before current line
Insert at end-of-file marker
Insert before line a

Change input mode terminator
Insert file before current line
Insert file at end-of-file marker
Insert file before line a

Replace current line with inserted text
Replace lines a through b with inserted text

Renumbering Lines

=n

Flstringl
BFlstringl
Elstring 1 /string 2/
BI string 1 1 string 21
AI string 1 1 string 21

String Qualifiers

Renumber; assign n to current line
Find string
Backward find string
Exchange string2 with string 1
Insert string2 before string1
Insert string2 after string 1
Repeat string alteration command

B Search string must begin line for match
E Search string must end line for match
P Entire line must match search string
L Search from right to left for string

162

EDIT, THE LINE EDITOR

U Ignore case of search string

Deleting Text

Da b

DTB/string/

DT A/string/

DF/string/

SB/string/

SA/string/

CL

Delete lines a through b

Delete text before string
Delete text after string
Delete lines until string found
Split line before string
Split line after string
Join line

CL/string/ Join lines with string

Global Operations

GA/string l/string2/

GB/string l/string2/

GE/string l/string2/

CGn
CG
SHG

Global insert string2 after string 1

Global insert string2 before string 1

Global exchange string2 with string I

Cancel global operation n
Cancel all global operations
Show global info

External File Commands

C/tllename/
FROM/filename/

TO/filename!

CF/tllename!
SHD
REWIND

Hn

Execute EDIT commands in filename
Change current From file
Change current To file
Close current From or To file
Show data
Close From and To files; open previous To file as new
From file
Halt movement past line n of the From file

163

Chapter 8

AmigaDOS
Command Reference

In early versions of AmigaDOS, CLI command lines are limited to 255 charac
ters, while later versions allow command lines of up to 512 characters. In either
case, it's possible that a single command line will occupy more than one line on
the screen. The console refuses to accept any keyboard input that would cause
the line to exceed its limit (255 or 512 characters).

With AmigaDOS versions prior to 1.3, you cannot use editing features to
recall a previously issued command, edit it, and use the revised line for a new
command. Each time you issue a new command, you have to enter the entire
command line from scratch. You cannot use the cursor keys to edit the line
you're on. If you make a mistake at the beginning of a line, you have to erase the
whole line and start over.

Version 1.3 of AmigaDOS added an optional NEWCON console device,
that allows you to use the cursor keys to edit the current command line. In
addition, the optional Shell handler provides command history, which allows you
to recall a previous command line, edit it, and use the revised version as a new
command line. To use these features with version 1.3, you must explicitly
MOUNT the NEWCON handler and make the Shell-Seg handler RESIDENT,
using the appropriate commands in the Startup-sequence or elsewhere. With
Release 2, however, these features are built into the Kickstart ROM.

Though not really an editing character, the semicolon (;) is significant to
the CLI. The CLI interprets anything in a command line which follows a semico
lon as a comment, ignoring the entire rest of the line.

AmigaDOS Filename Conventions
• AmigaDOS filenames may be up to 30 characters long .
• Filenames may not contain a colon (:) or slash (I), or nonprinting CTRL

characters. Versions earlier than 1.3 do not allow ALTernate characters.

164

AMIGADOS COMMAND REFERENCE

CON: Editing Features

Key(s)
BACKSPACE or CTRL-H
CTRL-X
CTRL-L
RETURN or CTRL-M
CTRL-J

CTRL-\

Function
Erases character to left of cursor
Erases entire CUlTent line (cancels line)
Clears the screen (form-feed)
Ends the line and executes the command
Moves cursor to next line, but doesn't
execute the command
Marks start of a comment
End-of-file indicator

NEWCON: or Release 2 and 3 only
CTRL-A Moves the cursor to the beginning of the

line or Shift-LeftAlTow
CTRL-K

CTRL-U

CTRL-W
CTRL-Y

CTRL-Z

Erases everything from the cursor forward
to the end of the line
Erases everything from the cursor back
ward to the start of the line
Deletes the word to the left of the cursor
Replaces the characters deleted with
CTRL-K
Moves the cursor to the end of the line

• If a filename is to contain special characters, such as spaces, plus (+), equal (=),
semicolon (;), or wildcard characters (see below) that have special significance
to CLI, the entire filename must be enclosed in double quotation marks (").

• If a filename is to contain double quotation marks (") or an asterisk (*), each ,.
and * must be preceded by an asterisk.

• Any combination of uppercase and lowercase can be used in naming a file.
When you LIST the filenames, they']] be printed in the same combination of
uppercase and lowercase used when the filename was created. The CLI,
however, does not distinguish case. Since CLI ignores case, you cannot have
two files with the same name in the same directory, two files named Test and
TEST cannot reside in the same directory.

165

AMIGADOS COMMAND REFERENCE

Pattern Matching (Wildcards)
Some AmigaDOS commands allow you to reference one or more files at a time
using a technique called pattern matching. Pattern matching lets you do things
like getting a listing of all files whose names end with the characters .bas, or
deleting every file in a directory at one time. AmigaDOS pattern matching is
similar to the concept of the wildcard characters used in MS-DOS, but there are
important differences.

In MS-DOS, the asterisk character can be used to substitute for any string
of characters in a filename. In AmigaDOS, the asterisk is used as an escape
character which allows for the insertion of quotation marks (and other asterisks)
in a filename. AmigaDOS also uses the asterisk to refer to the console device
that's currently active. AmigaDOS Release 2 and higher provides the option of
using the asterisk to substitute for any string of characters, just as in MS-DOS.
This option can only be turned on with softwarc, however.

PC wildcards can be used with more commands than AmigaDOS pattern
matching, which is mostly confined to the COPY, DELETE, DIR, and LIST
commands. AmigaDOS patterns, however, are much more flexible. They allow
you to match names which start with the same group of characters, end with the

Other CON: Features

Key(s) Function
TAB or CTRL-I Moves cursor one space to the right (inserts a tab

CTRL-K
CTRL-O
CTRL-N
ESC-[lm
ESC-[2m
ESC-[3m
ESC-[4m
ESC-[7m
ESC-[8m
ESC-[Om
ESC-C

166

character)
Moves cursor up one line (vertical tab)
Switches to ALTernate character set (shifts out)
Switches back to normal character set (shifts in)
Switches to bold characters
Switches character color (to black)
Italics on
Underline on
Reverse video on
Switches character color (to blue-invisible)
Switches to normal characters
Clears screen and switches to normal characters

AMIGADOS COMMAND REFERENCE

same group of characters, or have the same characters in the middle (preceded by
any number of characters and followed by any number of characters).

The most important pattern matching characters are the question mark (?)
and the pound sign (#). The pound sign followed by a single character will match
any number of repetitions of that character (including none).

For example, #CLUITER matches:

CLUTTER
CCCCLUTTER
LUTTER
The question mark is used to replace any single character (but not the null

string, or no character). For instance, ?LA?S matches:

GLASS2LABS
but not

LABS
When these two characters are paired together (#?), it creates a pattern that

matches any number of any characters (or no characters at all).
For example, you could use GLAD#? if you wanted a pattern that matched

all filenames starting with the letters GLAD. If you wanted to LIST all of the
icon information files (whose names always end in .info), you could use the
pattern #?INFO to find them.

In addition to the pound sign and question mark, there are three other
characters which have special meaning when used for pattern matching. Paren
theses () may be used to group a number of characters together into a single
pattern element. If a pound sign is followed by a group of characters within
parentheses, it will match any number of repetitions of that pattern group (in
cluding none). Thus, #(HO) matches these filenames:

HO
HOHO
HOHOHOHO

If you didn't use the parentheses, however, #HO would match:

HO
HHO
HHHHO
The #H can only substitute for repetitions of the letter H.

167

AMIGADOS COMMAND REFERENCE

The vertical line (I) is used when you want either of two patterns to match
the characters in the filename. For example, YlZ matches:

y
Z

While the pattern WARMICOLD matches:

WARM
COLD

and the pattern MO(BIN)STER matches:

MONSTER
MOBSTER

(Note how the parentheses were used to set off the BIN as a distinct pattern).
The percentage sign (%) is used to represent the null string (no character).

Remember, a pattern starting with the pound sign will match any number of
repetitions of the following character, including none at all.

The pattern Z#AP then matches:

ZAP
ZAAAP
ZP
If you want to match only a single appearance of the character or none at

all, you can use the form (AI%), which stands for either A or the null character
(no character at all). Using the same example, Z(AI%)P would still match:

ZAP
ZP

but would not match:

ZAAAP
which uses the A more than once.

Combining the percentage sign with the question mark in the form (?I%)
forms an expression which matches any character or no character at all. The
pattern (?I%)A?X matches:

LAPX
APX

but not:

MAPPX

168

AMIGADOS COMMAND REFERENCE

There's one final character which addresses a problem created when using
these special AmigaDOS characters. Since these characters have meaning in the
language of pattern matching, it makes it difficult when you want to match a
filename containing one of those characters. In order to match a filename con
taining a question mark, for example, you must precede the question mark with
an apostrophe (') to let the pattern matching mechanism know that you want to
match an actual question mark, not use the question mark as a substitute for any
other character.

The pattern ?OW'? matches filenames like:

HOW?
COW?
WOW?

Since you've used the apostrophe itself as a special character, you need to
use two apostrophes to represent an apostrophe which is part of the filename.
You would therefore need a pattern like ?ON"T to match filenames like:

DON'T
WON'T.

Finally, if a pattern contains space characters, it must be enclosed by double
quotation marks.

Release 2 of AmigaDOS introduces a number of very handy new pattern
characters, the tilde and the dash(-). The tilde functions as a not operator,
selecting any file that doesn't match the pattern. For example, if you wanted a
directory listing of all files except icon files (those whose name end in .info), you
could use the command

DlR ~(#?,info)
The other new character, the dash, is used in an expression set off by square

brackets to indicate a range of characters. Thus, the expression [W-Z}#? would
select any file beginning with W,X,Y or Z, just like the the expression
(W1XIf1Z)#? Be sure that to use the square brackets (the keys just to the left of
the top of the Return key), not the parentheses. To copy all files from the c:
directory that begin with the letters A-D, you could use the command

COpy c:ra-d]#? ram:

Pattern Matching Summary
#c Matches any number of repetitions of the character c (including

none)

169

AMIGADOS COMMAND REFERENCE

#(group)

?

#?

PJIP2

%

(?I%)

o

N#O matches N, NO, NOO, and NOOOOOOOOOOO
Matches any number of repetitions of group (including none)
#(TOM) matches TOM and TOMTOM
Matches any single character (but not the null character)
K?NG matches KING and KONG (but not KNG)
Matches any number of repetitions of any character (including
none)
#?BAS matches any filename ending in .BAS
Matches either pattern P 1 or P2
B(AIO)Ymatches BAY and BOY
Matches the null string (no character)
(SI%)TOP matches STOP or TOP
Matches any character or no character
(?I%)LOTmatches SLOT, CLOT and LOT
Used to set off a group of characters as its own distinct pattern
(MIP)A matches MA or PA
MIPA matches M or PA
Used in front of one of the special characters to show that you
want to match it, not invoke its special meaning
?ON"T matches WON'T and DON'T

[char l-char2] Matches any character in the range from char 1 to char2
(AmigaDOS Release 2 and 3 only).
C:[t-w J#? matches TYPE, VERSION, WHICH and WAIT

-P Matches any file that does not fall within the definition of
pattern P (AmigaDOS Release 2 and 3 only).

-(#?info) Matches all files in the current directory except the icon files
whose names end in . info.

AmigaOOS Templates
AmigaDOS contains a handy feature that can be used to jog your memory if you
forget the command syntax of any AmigaDOS command in the C: directory. By
typing the command name, followed by a question mark, the command's tem
plate is displayed on the screen. The template is a shorthand summary of the
parameters and keywords associated with the command.

U sing the template feature breaks the process of entering a command line
into two parts. In the first part, you enter the command name and question mark,
and then the command displays its template and waits for further input. The next

170

AMIGADOS COMMAND REFERENCE

line that you enter is treated as if it were the arguments typed after the command
name. Hitting Return without typing anything invokes the waiting command
with no arguments.

Let's take a look at the template for the Release 2 and 3 COPY command.

COpy ?

displays on the screen:

FROM/A/M,TO/A,ALL/S,QUIET/S,BUF=BUFFER/K/N,CLONEI
S,DATES/S,NOPRO/S,COM/S,NOREQ/S:

AmigaDOS command arguments are separated by commas in command
templates. The first part of each argument is either the argument name or the
keyword associated with the argument. Keywords are followed by qualifiers (lA,
IK, IS, IN, 1M, or IF) which tell you more information about the argument. When
you invoke an AmigaDOS command, keywords, if used, must be typed exactly
as presented; often you must type additional information following the keyword
(depending on the command).
argumentlA The argument is required.
optionlK The argument is optional, and must contain the keyword (along

with additional information) if that option is used.
opfionlS The argument is optional, but if used, the keyword alone is

sufficient.
= The equals sign indicates that there are two equivalent versions

of the keyword. The user has the choice of entering the keyword
to the left of the equals sign, or the one to the right of it.

argumentlM Multiple arguments are accepted (Release 2 and 3 only). In
earlier versions, multiple arguments are indicated by a series of
commas. Note that there is no limit on the number of arguments,
but multiple arguments must be given before any other argument
or option.

valuelN The argument is a number (Release 2 and 3 only)
sfringlF This string argument must be the final one on the command line.

The rest of the command line (including spaces) will be consid
ered part of the string (Release 2 and 3 only).

A keyword in an argument template may have more than one qualifier
associated with it (such as FROMI NM in the example above).

Some commands allow you to use different keywords to invoke the same
option. For example,

171

AMIGADOS COMMAND REFERENCE

DAcrE ?

shows

TIME,DATE,crO=VER/K:

TIME and DA TE are the parameter names of the first and second arguments
of the 0 ATE command. Values for these arguments are set by the user. The TO
and VER keywords may be used interchangeably and require additional informa
tion to be specified after them.

If the arguments you use with an AmigaOOS command don't match the
template, AmigaOOS 1.3 and below displays the message Bad arguments.
AmigaOOS Release 2 and 3 provides a more specific message, such as Required
Argument Missing or Wrong Number o[Argwl1ents.

Redirected Output
The characters < and> may be used to redirect the input and output of
AmigaDOS commands. AmigaOOS commands normally expect input to come
from the system's keyboard and send output to the system's screen. Input and
output redirection is temporary, lasting only until the invoked command com
pletes. Here are some examples.

LIST the files and directories in what a/silly/mess directory on drive dfl:.
Send the output of the LIST command to the system's printer:

LIST> PRT: "df1:whata/silly/mess"
Send the output of the DATE command to a file called tempdate on the

system's RAM disk:
DATE> RAM:tempdace
Use the Amiga's line editor (EDIT). Edit the file called myfile using the

commands stored in the file mycommal1ds. Store the edited data in newfile:
EDlcr < mycorTlfJands FROI1 myfile TO newfile
The Shell Program on the 1.3 and Release 2 and 3 Workbench disk sup

ports a third redirection operator. The character » can be used to append
information onto the end of an existing file. For example, if you wanted to add a
listing of a directory called MoreStuffto an existing file called Directories, you
could use the command

DIR »Directories MoreStuff
Note that if a file called Directories does not exist, the 1.3 version of this

command will not create one, but the Release 2 and 3 version will.

172

ADDBUFFERS

Format of the AmigaOOS Command Reference
The remainder of this section is a command-by-command listing of AmigaDOS.
For the most part, its format is self-explanatory. However, under the "Format"
heading (perhaps the most important part of each command's listing), there are
several typographical devices used to show you what is required and what is
optional.
I The command names (which must always appear first on the command line)

and keywords that are required appear in uppercase boldface roman type.
ASSIGN and COPY are examples.
Keywords which are optional appear in uppercase boldface italics, and are
enclosed in square brackets. r LIST] is an example.

I . Arguments or command parameters are in lowercase italics. These denote
where you'll enter something, such as the name of a file or directory. If
required, the parameter is not enclosed in brackets. If optional, it is enclosed
in brackets.

Thus,

COpy [FROMlfromname [TO] toname [ALLl [QUIETj

indicates that the keyword COpy is required, that the keywords FROM, TO,
ALL, and QUIET are all optional, and that the two parametersfromname and
to name are required.

Of course, complete explanations of each keyword and parameter are
provided under the "Explanation of Parameters and Keywords" heading.

AOOBUFFERS Command
Location: C:

Function
Sets aside a portion of the system RAM to be used exclusively as disk
buffer space. This disk buffer keeps information frequently accessed from
the disk in the computer's memory. Thus the system accesses the physical
disk less often, significantly speeding up disk operation. The default
number of buffers are S for floppy disks and 30 for hard drives. The
ADDBUFFERS command allocates additional buffer space in S12-byte
increments. Although additional buffer space increases disk performance
somewhat, floppy disks reach a point of diminishing returns at the level of
about 30 additional buffers (1SK of buffer space). Hard drives that are

173

ADDBUFFERS

formatted using the Fast File System wiII always benefit from the addition
of more disk buffers. Usually, however, the number of hard drive buffers
allocated are specified during the partitioning process, and this number is
stored in the drive's Rigid Disk Blocks (ROB).

Additional buffer space means that more of the information read from
disk remains in memory, where it can be accessed more quickly. Therefore,
added disk buffer space only speeds up access to frequently used files. It
won't speed up operations like a file copy, where the information to be
copied is only used once.

Keep in mind that any memory you allocate for buffer space will be
subtracted from the free memory that you have to run programs. Some
programs which require the full memory of a 5I2K or one megabyte Amiga
may not operate when a significant amount of memory has been allocated
for disk buffer space.

Under AmigaDOS Release 2 and 3, this command can also be used to
determine the number of buffers assigned to a drive (the Release 2 and 3
version prints the number of buffers assigned after the changes have been
made). It can also be used to subtract buffers from a drive, freeing up a
little memory.

1.3 Format
ADDBUFFERS drive n

Release 2 and 3 Format
ADDBUFFERS drive [n]

Explanation of Parameters and Keywords

174

drive This is the device name of a physical disk drive, either a floppy drive
(dfO:, dfl:, and so on) or a hard drive (dhO: jhO:, and so on). Note that if
you add buffers for an electronic RAM drive, you may actually slow down
the operation of that drive, since all of its information is already stored in
RAM.
[nJ The number of 512-byte buffers to add. Floppy drive performance
peaks first at about 30 buffers (15K of memory), and again at about 100
buffers (50K of memory).

Under AmigaDOS Release 2 and 3, you may use a negative number
for n, and that number of buffers will be subtracted from the total currently
allocated to the drive, down to a minimum of one buffer per drive. This will
hurt drive performance, but may be enough to help you run some programs

ADDDA T A TYPES

that take every bit of memory in the machine. AmigaDOS Release 2 and 3
also allows you to omit the number of buffers to add completely. If you
give an ADDBUFFERS command without specifying the number of
buffers to add, the command will return the number of buffers assigned to
drive.

Examples

1. Add 30 disk buffers for use by the internal disk drive:
ADDBUFFERS dfO: 30

2. Add 100 disk buffers for use by the BridgeBoard hard drive:
ADDBUFFERS jhO: 100

ADDDATATYPES Command
Location: 3.0 C:

Function
ADDDATATYPES was added in Release 3 in support of the object
oriented DataTypes scheme which is used by the new MultiView program
in the Utilities drawer. MultiView displays text files, shows pictures, and
plays sound samples without "understanding" anything about these types of
data. It passes all of the nitty-gritty work to system-standard libraries that
are "experts" in a particular kind of data. These libraries are stored in the
sys:Classes directory, and are accessed through the datatypes.library which
is stored in the L: directory. In order for datatypes.library to recognize a
particular data-handling library, it must first be registered with
datatypes.library. The ADDDATATYPES command can be used to register
such a library, by reading information about it from a file in the
DEVS:DataTypes directory. Normally, all of the files in that directory are
registered at boot time, but additional data types can be added later with
this command.

Release 3 Format
ADDDATATYPES [files(s)J [QUIET] [REFRESH]

Explanation of Parameters and Keywords
[files(s)] The name of the file or files to add. If multiple filenames are
specified, they must be separated by spaces. Normally, the description files

175

ADDDATATYPES

used to add data types are stored in the DEVS:DataTypes directory, and for
each type description file, there is a corresponding library file in the
SYS:ClasseslDataTypes directory. For example, the DEVS:Datatypesl
ILBM file describes an object that can be manipulated by means of the
support found in the SYS:Classes/picture.datatype file.
[QUIEI1 This optional keyword prevents the command from printing
any output, such as the names of data types it has added.
[REFRESH] This optional keyword causes the command to scan the
DEVS:DataTypes for any new or updated entries.

Examples
1. Add the data type described in the file dfO:DevslDatatypes/JPEG:

ADDDATATYPES dfO:Devs/Datatypes/JPEG

ALIAS Command
Location: Internal

Function
ALIAS is an internal function of the 1.3 or Release 2 and 3 Shell, which
allows you to create short names or aliases for longer command strings.
This concept is similar to that of the keyboard macro, where you type only
a single key combination to print a longer series of letters. When the Shell
encounters the alias name as the first word on the command line, it substi
tutes the full command string (which may include arguments as well as the
command name) for that name. The ALIAS command may also be used to
display the current list of alias assignments.

Aliases are only recognized by the Shell in which they are created, or
Shells that are opened with the NewCLI command entered in that Shell. To
create aliases that are recognized by all Shells, enter the alias definition in
the s:Shell-startup script file. This script is automatically executed whenev
er a Shell window is opened.

1.3 and Release 2 and 3 Format
ALIAS [alias [string]]

Explanation of Parameters and Keywords
[alias 1 The short name you wish to substitute for the command string.
If all arguments are omitted, ALIAS will display a complete list of alias

176

ASK

names and their corresponding command strings. If the alias argument is
used alone, without string, the 1.3 version of ALIAS will remove the alias.
The Release 2 and 3 version, however, will display the command string
associated with this name. To remove an alias under Release 2 and 3, use
the UNALIAS command.
[string] The command which you wish to substitute for the alias name.
This string can include command arguments, but it cannot consist solely of
command arguments. It must contain the command name, because the alias
must be entered as the first word of text on the command line in order to
have the command string substituted for it.

Additional command arguments can be incorporated into the com
mand string by using the square brackets [] as a place holder. Any argu
ments typed after the alias on the command line will be inserted into the
command string at the spot indicated by the square brackets.

Examples

1. Shorten the name ofMAKEDIR command to MD

ALIAS MD MAKEDIR

2. Create an alias called DUPE that will copy the disk in dfO: to dfl :

ALIAS DUPE Sys:System/Diskcopy dfO: to dfl:
Whenever you enter the command DUPE, the Shell will substitute the

command line starting with Sys:SystemlDiskcopy.

3. Create an RD command that will delete a directory even if it is not empty

ALIAS RD DELETE [J ALL
When you type the command

RD Directory
the Shell expands the command to

DELETE Directory ALL

ASK Command
Location: 1.3 C: Release 2 and 3: Internal

177

ASK

Function
ASK allows a script file to vary its command sequence based on input from
the user. It prints a prompt string, and then waits for the user to type the
response Y or YES, N or NO, or RETURN (same as NO). When the user has
responded, the command exits with a return code of 5 for a YES response, or
o for a NO response. The IF WARN command can be used to detect the
results of this operation, and to direct script execution accordingly.

1.3 and Release 2 and 3 Format
ASK promptstring

Explanation of Parameters and Keywords
promptstring A text message that's printed to the current CLI output
stream (usually requesting a yes or no answer). If this prompt message
contains spaces, promptstring should be contained within quotation marks.

Examples
A command file that requests the user to specify a yes or no answer, and
then prints a text string that indicates what his choice was:

ASK "What is your choice? (Yes/No) "
IF WARN

Echo "Your choice was YES"
ELSE

Echo "Your choice was NO"
ENDIF

ASSIGN Command
Location: C:

Function
Builds, removes, and lists associations between logical device names and
filing system directories, physical devices (DFl:, DHO:, and so on), and
disk volume names.

1.3 Format
ASSIGN[devname [dirname]][LISl1[EXISTS][REMOVE]

178

ASSIGN

Release 2 and 3 and 3 Format
ASSIGN [devname ldirname(s)]J [LIST] [EXISTS] [DISMOUNT]

[DEFER][PATH][ADD] [REMOVE] [VOLSlf DIRS HDE VICES 1

Explanation of Parameters and Keywords
r devname 1 The logical device name that you wish to assign to a directory,
physical device, or disk volume. After making the assignment, you can use
this device name in place of specifying the entire directory, device, or
volume until you change the assignments or reboot the computer.

Certain assignments are automatically made by the operating system
when DOS is initialized. These are the logical devices S:, L:, C, FONTS:,
DEVS:, LIBS:, and SYS:. These correspond to the directories of the same
names, which have special significance to AmigaDOS (see Chapter 4 for
more information on logical devices). If corresponding directories don't
exist on the boot disk, the assignment is made to the root directory of the
disk.

If a specified logical device name already has a directory, physical
device, or volume name associated with it, the new ASSIGNment replaces
the old. If you try to assign the same logical device names as an existing
volume, however, the assignment will fail (for instance you cannot assign
the logical device MyDisk: when a disk whose volume name is MyDisk is
already mounted). Any associations built by ASSIGN apply to all CLls,
and all are lost when the system is shut off or rebooted.

The devname argument is optional. If you use the ASSIGN command
without any parameters, it returns a list of all of the logical device assign
ments, as well as the volumes and devices that are currently recognized.

l dirname] The directory path, physical device, or disk volume
name that will be represented by references to the specified devname. For
example, if you used the directory dJO:DaveslWordprocessinglDocuments
often, you might find it more convenient to be able to type Docs: instead of
the entire phrase djO:DaveslWordprocessingIDocuments. To make the
assignment, type

ASSIGN Goes: dfO:Daves/Wordproeessing/Doeuments

Notice that the full pathname of the directory to be assigned was
specified. ASSIGN searches the directory path starting with the current
directory, so the path should be fully spelled out if the target directory is
located anywhere but in the current directory.

179

ASSIGN

180

If you just want to remove an assignment, without replacing it, use the
command form ASSIGN devname, with no dirname specified.

Under AmigaDOS Release 2 and 3, you may ASSIGN a single logical
device name to mUltiple directories simply by listing all of the directory
names after the device name. If you use a hard drive with a number of
programs that created bitmap picture files, for example, and you want to see
all pictures listed from any of the programs, you might use an ASSIGN
command like this:

ASSIGN PIeS: DHO:Dpaint/Pics DHO:Scanner/Pics
DHO:ArnigaVision/Pics

[LIST] If you type ASSIGN without specifying a logical device name,
it displays the list of current assignments. If you wish to both make or
remove assignments and show the new assignment list, use the optional
LIST keyword at the end of the command line.

[EXISTS] If you add the EXISTS keyword after the name of the
logical device, the ASSIGN command will display assignment information
for that device name only. If the device is not found, the command exits
with a return code of 5 (WARN). This feature can be used in sequence files
that take one action if the device name is found, and another if it is not
found.

[REMOVE] Under AmigaDOS 1.3, this optional keyword may be used
to remove a physical device (such as dfO: or prt:) from the list of mounted
devices. It does not free up resources (such as disk buffers) used by that
device, so it cannot be used to release memory, for example, that could
normally be reclaimed by physically disconnecting a second disk drive. It is
useful mostly for experimental purposes, like disconnecting the internal
disk drive (dfO:) and MOUNTing it with a different disk format (such as the
Fast File System).

Under AmigaDOS Release 2 and 3, the REMOVE keyword is used to
delete a logical assignment. Most often it is used to remove one of the
directories from the list of those assigned to a single logical device name,
when a multiple assignment has been made. In that sense, it is the opposite
of the ADD keyword (see beloW).

[DISMOUNT] Under AmigaDOS Release 2 and 3, the optional
DISMOUNT keyword is used exactly as the the REMOVE option was used
under 1.3 (see above), to remove a physical device from the list of mounted
devices.

ASSIGN

[DEFER] The optional DEFER keyword, new for AmigaDOS Release
2 and 3, is used to delay the search for dirname until a command tries to
use the logical device name (normally, the ASSIGN command tries to
verify that dirname exists before it will make the assignment). If you assign
FONTS: to dfO:Fonts with the DEFER option, for example, the logical
device name will be assigned to the Fonts directory of whatever disk
happens to be in the internal f10ppy drive the first time a program asks for
FONTS:, and not the Fonts directory of the disk that is in the internal drive
when the ASSIGN command is given. This command was designed to be
used for assignments that are made automatically by one of the startup
scripts. If the DEFER option is used in such an assignment, then the startup
procedure won't be interrupted if the directory is not found.

[PATH] Another optional keyword added by AmigaDOS Release 2
and 3, PATH not only delays the search for dirname until a command tries
to use the logical device name, but it causes the assignment to be reevaluat
ed each time the logical device name is requested. Tn the example given
above, the command ASSIGN FONTS: dfO:Fonts DEFER assigns FONTS:
to the Fonts directory of whatever disk is in the internal drive the first time
a program asks for FONTS:. If it was a disk volume named Stuff, then
FONTS: would be assigned to Stuff:Fonts, and that assignment would not
change until you changed it.

With the command ASSIGN FONTS: dfO:Fonts PATH, however,
ASSIGN will look for the Fonts directory of whatever disk is in the internal
drive each time a program requests FONTS:. For this reason, an assignment
made with the PATH option is called non-binding.

The PATH option was designed for the convenience of f10ppy dri ve
users. It can help eliminate the need to insert the original Workbench disk
each time one of the system directories is required. In the example above,
you would not have to replace Workbench each time that FONTS: was
requested-any disk that had a Fonts directory would be acceptable. Note,
however, that if you use the PATH option, you cannot assign multiple
directories to the same logical device name, either by using several directo
ry names in the original ASSIGN command, or by using the ADD option
(see below).

[ADD] This Release 2 and 3-only option allows you to add new
directories to an existing logical device name, without removing existing
directories. Normally, when you ASSIGN a logical device name that
already exists, the old assignment is lost. When you use the ADD option,

181

ASSIGN

however, the specified directories are added to the existing list of directo
ries for that device name. For example, to the VideolFonts directory to the
FONTS: device that is automatically assigned to Sys:Fonts at startup time,
you could use the command:

ASSIGN Fonts: Video/Fonts ADD

[VOLSj
[DIRSj
[DEVICESj These options were added in AmigaDOS Release 2 to
allow you to limit the information displayed by ASSIGN when the com
mand is given without arguments or using the LIST option. The VOLS
option shows which volumes are recognized, and whether or not they are
are currently mounted. The DIRS option shows the directories to which
logical device names are assigned. The DEVICES option displays the
names of devices that are recognized by the system. If none of these options
are used, all three kinds of information are displayed.

Examples
] . List the current logical device name/file directory associations:

ASSIGN or ASSIGN LIST

Sample Display:

Volumes:
RAM DISK lMOUNTED J

CLI WorkDisk [Mounted]
Directories:
S
L

CLI WorkDisk:s
CLI WorkDisk:l
CLI WorkDisk:c C

FONTS
DEVS
LIBS
SYS

CLI W orkDisk:fonts
CLI WorkDisk:devs
CLI WorkDisk:libs
CLI WorkDisk:

Devices:
DFI DFO PRT PAR SER
RAW CON RAM

182

ASSIGN

2. Associate the logical device name Rick: with the directory :Amiga Word!
ProposalslRickWork:

ASSIGN Rick: :Arnigaword/Proposals/RickWork
After executing this ASSIGN statement, a file called ACME in the
AmigaWord!ProposalslRickWork directory may be referenced by referring
to the logical device name or the full directory specification for the file.

TYPE Rick:ACME

yields the same result as

TYPE :AmigaWord/Proposals/RickWork/ACME
If an ASSIGN or ASSIGN LIST is executed, the directory association
RICK Volume: CLI WorkDisk Dir: RickWork
shows up in the Directories section of the table.

3. Remove a logical device/directory assignment.

ASSIGN Rick:

removes the association built by the ASSIGN statement in the second
example.

ASSIGN Rick: LIST
removes the association built by the ASSIGN statement in example 2 and
lists the remaining logical device associations still in effect.

4. Check for the existence of a logical device name or disk volume name in
a sequence file.

ASSIGN >nil: empty: EXISTS
IF WARN

ECHO "The directory name doesn't exist"
ELSE

ECHO "The directory name exists"
ENDIF
This script file, when executed, prints a message telling whether or not a
volume named EMPTY: exists. In your own script, you might take a
specified action at the points where the ECHO command appears.

5. Under AmigaDOS Release 2 and 3, assign multiple directories to the
FONTS: logical device name.

ASSIGN FONTS: Sys:Fonts PPage:Fonts Work:PM/Fonts

183

AVAIL

AVAIL Command
Location: C:

Function
Prints a report of system memory resources, broken down by memory type.
For each type (CHIP. FAST, and TOTAL), AVAIL reports the amount of
available (free) RAM, the amount in use, the maximum (total) amount, and
the largest contiguous block that is available for allocation. The Release 2
and 3 version also provides an option which causes all unused libraries and
fonts to be unloaded from memory, expanding the pool of free memory.

1.3 Format
AVAIL[FASTor CHIP or TOTALl

Release 2 and 3 Format
AVAIL[FAST or CHIP or TOTAL] [FLUSHl

Explanation of Parameters and Keywords
[FAST] or [CHIP] or [TOTALl When one (and only one) of these
keywords is used with the A V AIL command, the command returns a single
number which indicates the total number of available bytes of that type of
memory. This value can be used by script files for comparisons, using
either the EV AL or IF GT commands.

If the AV AIL command is given without any of the optional key
words, a more complete summary of available system RAM is printed. This
summary includes a breakdown by RAM type, and lists the total amount,
amount used, amount free, and largest contiguous free block.
[FLUSHl The FLUSH option. added in version Release 2, directs
A V AIL to free as much memory as possible. During the course of opera
tion, AmigaDOS routinely loads system libraries and font information from
disk as needed. These take up a small, but significant, amount of memory,
and are not automatically unloaded when the system is finished with them.
Using the FLUSH option causes A V AIL to unload all such modules that
are not currently being used by any program, potentially freeing up some
memory.

Examples

1. Print a complete summary of system RAM:

184

AVAIL
The summary is printed in the following format:

Type
chip
fast
total

Available
909984
3442976
4352960

In-Use
130168
751264
881432

Maximum
1040152
4194240
5234392

BINDDRIVERS

Largest
909952
2097120
2097120

In this summary, the first column shows free (available memory), the
second column the memory in use, and the third the total (maximum)
memory, so that the sum of the first two columns should equal the value in
the third. The final column shows the largest contiguous available block of
memory, and is a sub-set of the first column, available memory.

Contiguous memory is important because if free memory is highly
fragmented (broken up into small pieces scattered here and there in the
memory map), it may not be possible to load and run additional programs,
even if the total amount of free memory might indicate that is was possible.

2. Show only the total available chip memory:

AVAIL chip
In the example above, the number returned would be 909984.

BINDDRIVERS Command
Location: C:

Function
Looks for device drivers (software instructions on how to interact with
external hardware devices connected to the Amiga's expansion port) in the
Expansion subdirectory of the startup disk (the disk to which the logical
device name SYS: is assigned) and then integrates these drivers into the
operating system so that it knows how to control the devices. As of this
writing, devices that are added to the system in this way include the IBM
compatible Bridgeboard, and non-autoboot hard drives.

The BlNDDRIVERS command is usually issued in the startup
sequence script file in the s directory, so that external devices are added as
part of the startup process. If the Expansion directory is empty, however, as

185

BINDDRIVERS

is normally the case, the BIND DRIVERS command can safely be omitted
from the startup-sequence file.

1.3 and Release 2 and 3 Format

BINDDRIVERS

Explanation of Parameters and Keywords
None

Examples

1. Load device drivers in the Expansion directory of SYS:

BINDDRIVERS

BREAK Command

Function
Sets attention flags which interrupt a process as if the user had pressed
specified CTRL-key combinations in an active window. Since many CLI
commands will exit when they receive a CTRL-C interrupt, BREAK may
be used by one program to signal another task to quit.

1.3 and Release 2 and 3 Format
BREAK tasknum [C] [D] [E] [F] [ALL]

Explanation of Parameters and Keywords
tasknum The number assigned by the system to the CLI process that you
wish to interrupt (for more information, see the STATUS command).
[C] [D] [E] [F] [ALL] The attention flag(s) associated with the inter-
rupt type that you wish to issue. You may trigger up to four CTRL-key
attention flags. If the BREAK command is issued with no flag keys speci
fied, only the CTRL-C flag is enabled. Issuing the BREAK command
simulates selecting a CLI process with the mouse and pressing the specified
CTRL-key keystrokes. BREAK may be used to interrupt a background CLI
task initiated by the RUN command.

Examples

186

1. Trigger all valid attention flags (CTRL-C, CTRL-D, CTRL-E, CTRL-F)
for process number 4:

CD

BREAK 4 ALL

2. Trigger the CTRL-C and CTRL-E attention flags for process number 1:

BREAK 1 C E

3. Trigger the CTRL-C attention flag for process number 5:

BREAK 5

4. Under AmigaDOS Release 2 and 3, signal the process that is currently
running the WAIT command to quit:

BREAK 'STATUS COffi=WAIT'
This command uses the backtick feature of the Release 2 and 3 Shell

to feed the results of the STATUS command (which gives the number of
the process that is currently running the WAIT command) directly to the
BREAK command. The BREAK command then sends a CTRL-C interrupt
telling WAIT to stop waiting. You can test this by opening two Shells,
typing WAIT 5 Min in one, and then typing the above command in the
other. Instead of waiting for 5 minutes, the WAIT command will quit
immediately with the message ***Break.

CD Command
Location: 1.3 C: Release 2 and 3 Internal

Function
Sets or changes the current directory or drive. Also used to display the
current drive and directory.

1.3 and Release 2 and 3 Format
CD [name]

Explanation of Parameters and Keywords
[name] The name of the directory path or logical device name that you
wish to make the current directory. A pathname may be fully specified or
relative to the current default directory. Specifying a full pathname, such as
:major/minor/tiny does not make any assumptions about what the current
directory is. If the current directory was set to major/minor, the former
pathname could be switched to by a relative reference, namely CD tiny.

187

CD

You can also move the current directory back (up) one level by typing
CD followed by single or multiple slashes (I). For instance, if the current
directory is major/minor/tiny, typing CD II changes the current directory to
major.

You can specify a logical device name in lieu of a pathname. This lets
you change the default disk or change directories to a directory path
associated to a logical device name (see the ASSIGN command for more
information). Under Release 2 and 3's Workbench, you can substitute a
wildcard pattern for the directory name, provided that only one directory
matches the pattern.

CD specified by itself, with no path or device name, lists the current
directory setting. The complete path is specified, starting with the volume
name.

Under AmigaDOS Release 2 and 3, you can change the current
directory merely by typing the name at the Shell prompt. The CD command
is not necessary unless the desired directory has spaces in its name, and
must be enclosed in quotes.

Examples

188

1. Change the current directory to the root directory of the volume mounted
in dfl:

CD dfl:

Note: AmigaDOS is somewhat different from the DOS of many other
microcomputers in that the way it treats a default drive is volume- rather
than device-oriented. For instance, assume you had a disk volume called Hi
There in an external Amiga drive and changed the default drive to dfl: by
typing CD DF1:. After changing the default drive, typing DIR would give
you a directory listing for Hi There. If Hi There is ejected from the drive
and another volume called Salutations is inserted, and you type DIR again,
the system will ask for the Hi There volume to be reinserted in the drive.

How can you avoid this? Entering another CD :JF1: causes
AmigaDOS to read the volume label of the disk in the external drive again
and forget any volumes that it previously defaulted to.

2. Change the current directory to dfO:particlelquarkicharm,and then back
to djO:particle:

CHANGETASKPRI

CD particle/quark/charm
CD /I

3. List the current directory setting:

CD

4. Change the current directory to the path associated with the logical
device name Rick:

CD Rick:

5. Change directories to the root directory of the current drive:

CD :

CHANGETASKPRI Command
Location: C:

Function
Changes the multitasking priority of a CLI task, and of subsequent tasks
started from that CLI. The Amiga multitasking operating system is set up
so that each task is assigned a priority number from -128 to 127. Processor
time is divided among the tasks, with each task executing in tum for a few
fractions of a second. Tasks with the same priority number get an equal
"time-slice," but tasks with higher priority execute more often and end up
getting more of the processor's time. Normally, a CLI has a priority of zero.
Raising its priority makes it (and the programs which run from it) run at a
higher priority than other CLI tasks, while lowering makes it run at a lower
priority and get less processor time. Under most circumstances, you
shouldn't raise a task's priority higher than 5, nor lower it to less than -5.
This will insure that it doesn't pre-empt important system tasks, such as the
input handler (which checks the keyboard and the mouse), nor will it have
so Iowa priority as to get completely shut out.

1.3 and Release 2 and 3 Format
CHANGETASKPRI priority lPROCESS tasknum 1

189

CHANG ET ASKPRI

Explanation of Parameters and Keywords
prlOrzty The priority number for the task. This number may range from
-128 to 127, but generally should be kept within the range of -5 to 5.
Normally, CLI tasks run at a priority of O.

[tasknum 1 The task number whose priority is to be changed. If this
optional parameter is not entered, the priority of the current CLI or Shell
process is changed. If it is entered, however, it must be preceded by the
keyword PROCESS. Normally, the prompt of an interactive CLI or Shell
process shows its task number. You may also check the task number of a
process with the STATUS command.

Examples
1. Increase the priori ty of the current CLI task to 5:

CHANGETASKPRI 5

2. Decrease the priority of CLI task number 5 to -1:

CHANGETASKPRI 1 PROCESS 5

3. Use the Release 2 and 3 backtick feature to change the priority of the
C:CONCLIP task to 5:

CHANGETASKPRI 5 PROCESS 'STATUS com=c:conclip'

CONCLIP Command
Location: C:

Function

190

This command directs the Release 2 and 3 console device to use the Amiga
clipboard for its copy-and-paste function. (By default, the console device
uses its own internal buffer for copy-and-paste.)

The copy-and-paste feature allows you to copy a block of text from a
console window by drag-selecting it with the mouse and pressing
RightAmiga-C; and then paste it into another console window by position
ing the cursor and pressing RightAmiga-V. CONCLIP expands the func
tionality of this feature, allowing the user to paste text not only into other
console windows, but also into the window of any application that supports
the clipboard.

COpy

CONCUP is normally executed as part of the default Release 2 and 3
startup-sequence script. The program requires that the iffparse.library file
be in the UBS: directory, and the clipboard.device file be in the DEVS:
directory.

Release 2 and 3 Format
CONCLIP [UNIT clipnum] [OFF]

Explanation of Parameters and Keywords
[UNIT clipnum] The UNIT option allows you to specify a clipboard
device unit number from ° to 255. This allows the exchange of data with
applications that use a clipboard device number other than 0, the default
device number. You do not have to enter the optional keyword UNIT when
changing the unit number-entering a clipnum value is sufficient.

[OFF] This optional keyword can be used to turn the console device's
support of the clipboard off, and return it to the use of its own internal
buffer for copy-and-paste. Under normal circumstances, there is no reason
to turn clipboard support off.

Examples
1. Direct the Release 2 and 3 console device to use the Amiga clipboard for
its copy-and-paste function:

CONCLIP

2. Change the clipboard device unit number used by the console device to
unit I:

CONCLIP 1

COpy Command
Location: C:

Function
Copies one or more files or directories to a device, and as an option, lets
you give the copy a name different from the original. If the destination
device already contains a file of the same name, the new copy replaces that
file. COpy can create duplicate copies of a file on the same disk as the

191

COpy

original, if different names are used for copies in the same directory, or if
the files are copied to different directories.

1.3 Format
COpy [FROMJfromname [TO] toname [ALL] [QUIEl1 [BUF or
BUFFER =num] [DATE] [COM] [NOPRO] [CLONE]

Release 2 and 3 Format
COPY [FROMlfromname [TO] toname [ALL] [QUIET] [BUF or
BUFFER =num] [DATE] [COM] [NOPRO] [CLONE][NOREQ]

Explanation of Parameters and Keywords

192

[FROM] fromname Specifies the directory or file(s) you want copied.
The keyword FROM is not needed as long as the source and target files are
named in the correct order (jromfile, then tofile). If you change the order
(COpy TO t(~file FROMfron~file), the keyword FROM is required.

When a directory is specified as the FROM source, all files within the
directory are copied. If no directory is specified, but the TO keyword is
used (for instance COpy TO RAM:), the current directory is assumed to be
the source, and all files are copied. As of version 1.3, a pair of double
quotes ("") can also be used to refer to the current directory.

When you're copying individual files, and not an entire directory, you
may use pattern matching to copy every file in the directory which matches
the pattern. Under AmigaDOS Release 2 and 3, you may also specify
multiple FROM files, each separated by spaces. Under version 1.3, you
cannot use pattern matching with directory names. If you attempt to copy
directories with patterns, nothing actually is done. Under Release 2 and 3,
all of the directories that match the pattern will be copied.

If a physical disk drive is specified, the root directory of the drive is
used as the FROM source. If a logical device name is specified, the directo
ry path associated with it is used as the FROM source (see the ASSIGN
command for more details).
[TO] toname Specifies the TO target (where you want to put the
FROM files you are copying). The keyword TO is necessary only if the TO
destination is listed before the FROM source.

When copying a single file, a device name or directory or filename
can be used as the destination. A pair of double quotes ("") can be used to
specify the current directory as the destination. When toname is a directory
or device name, the name of the new file will be the same as the old name.

COpy

If the target file is in the same directory as fromname, you must specify a
toname that is different from the original (since you can't copy a file to
itself or have two files of the same name in the same directory). If the file is
to be copied to a directory or a disk drive different from the one on which
fromname resides, toname may be the same as or different from the original
filename. If a file of the same name already exists in the target area, the
existing file will actually be deleted and a new file with the same name is
created and copied to. For this reason, a file that has been protected from
deletion with the PROTECT command cannot be copied to.

If a directory is being copied to the same disk, a different directory
path must be used for toname. In versions prior to 1.3, AmigaDOS assumes
that the TO directory already exists, and the COPY will fail if it does not.
Versions 1.3 and above create the new directory if it doesn't already exist,
and then copies the file or files.

If a logical device name is specified, the directory path associated
with it is used as toname (see the ASSIGN command for more details).

If toname is a physical disk drive, the root directory of the disk in that
drive is assumed to be the target directory.

toname may be other physical devices known to the system. For
instance. copying files to RAM: places a copy of the files on a RAM disk
(see Chapter 4 for more details on RAM:). The contents of a file may also
be copied to an attached printer by specifying PRT: as the target. Using
AmigaDOS version 1.3 and above, you may have your Amiga speak the
file by copying it to SPEAK:

[ALL] If you use this keyword, any files, subdirectories, and the files in
the subdirectories located infromname's directory will be copied to the
toname directory (normally, only files in that directory, not subdirectories,
are copied). Subdirectory entries corresponding to those found in the
FROM directory will automatically be created in the TO directory. (You
might say that this command does the MAKEDIRty work for you.)

[QUIEl1 When copying multiple files (due to the use of pattern
matching or the ALL keyword), the name of the files being copied and
directories created are displayed unless this keyword is specified. Suppress
ing the output makes things a little quicker, and can prevent the user from
becoming confused if you COPY files from within a script.

[BUF or BUFFER = num] The BUFFERS option can be used to set
the number of 512-byte buffers that are used during the copy. The default is

193

COpy

200 buffers or 100 Kbytes. You may want to use fewer buffers when
copying a large file to the RAM, in order to avoid running out of memory.
Similarly, you may want to increase the number of buffers when copying a
large file from one disk to another on a single-drive system with a lot of
RAM, to reduce the number of disk swaps during the copy. In version
Release 2 and 3, BUF=O causes the copy command to use a buffer that is
the same size as the file.

[DATE] If the optional DATE keyword is used, the creation date of the
original file is copied to the new file. By default, a new creation date is set
when a file is copied.

[COM] If the optional COM keyword is used, the FILENOTE com-
ments from the original file are copied to the new file. Normally, the new
file is created without comments.

[NOPRO] By default, a copy of a file retains the same the protection
bits of the original. The NOPRO keyword can be used to create a copy that
has only the default protection bits (read, write, execute, and delete) set.

[CLONEl The CLONE keyword can be used to make the file copy an
exact duplicate of the original, with the same creation date, comments, and
protection bits set. Using this option is the same as using both DATE and
COM keywords.

[NOREQ] This option suppresses the requester that asks you to insert
a volume that COPY cannot find. Normally, for example, if you mistakenly
typed COPY DEVS:printer.device TO RAM:, AmigaDOS would pop up a
requester asking you to insert volume DEVS:. If you are using the copy
command in a script, however, you may not want to present the user with a
requester if the command fails. The NOREQ option will cause the com
mand to fail without presenting a requester.

Examples

1. Copy a file called myfilel to myfile2 in the same directory:

COpy ?ROM myfilel TO myfile2

194

COpy

or

COpy TO myfile2 FROM myfilel
or

COpy myfilel myfile2
Note that the FROM and TO keywords are optional, unless you

reverse the order of the filenames (by putting the name of the destination
fi I e before that of the source).

2. Copy all files in the root directory of the volume in floppy disk 0 (dfO:)
to the volume in disk drive 1 (dfl:):

COpy dfO: dfl:

3. Copy all files on disk drive 1 to disk drive 2, including subdirectories.
Don't display the status of each copy operation:

COpy dfl: dfO: ALL QUIET

4. Copy a file called burgers in the current directory to a file of the same
name in a different directory called fast/food, which is in the root directory
of the same disk:

COpy burgers :fast/food

5. Copy all files in the current directory to a RAM disk, retaining the
original creation date of each file:

COPY TO RAM: DATE
or

COpy "" RA1>1: DATE

6. Copy all files ending in .bas from the current directory to the directory
Basicfiles on dfl:.

COpy #?bas TO dfl:Basicfiles
Note that if the root directory of the volume in dfl: does not already

contain the directory Basicfiles, the copy will fail under versions below
AmigaDOS 1.3.

7. Copy selected files from the C: directory to the current directory.

COpy C: (DIR I DELETE I COpy I LIST I RUN) ""

195

CPU

CPU Command
Location: Release 2 and 3 C:

Function
Used to identify which processor in the Motorola 680xO family is installed
in the computer, and to set a number of options that are available with
advanced processors such as the 68020, 68030, and 68040.

Release 2 and 3 Format
CPU [CACHE] [NOCACHE] [DATACACHE] [NODATACACHE]
[INSTCACHE] [NOINSTCACHE] [EXTERNALCACHE]
[NOEXTERNALCACHE] [COPYBACK] [NOCOPYBACK] [BURST]
[NOBURST] [INSTBURST] [NOINSTBURST]
[DATABURST][NODATABURST] [TRAP] [NOTRAP] [FASTROM]
[NOFASTROM] [NOMMUTEST] [CHECK 68010 or 68020 or 68030 or
68040 or 68881 or 68882 or FPU or MMUl

Explanation of Parameters and Keywords
[CACHE]

196

[NOCACHEl
[DATACACHE]
[NODA TA CACHE]
[INSTCACHE]
[NOINSTCACHE]
[EXTERNALCACHE]
[NOEXTERNALCACHEl
[COPYBACK]
[NOCOPYBACK] All of these commands are used to control the
cache features of the various advanced processors. Processors like the
68020, 68030, and 68040 all have an instruction cache, which can store a
series of instructions within the processor itself. This reduces the frequency
with which the processor has to fetch instructions from memory, and allows
the instructions to be executed at top speed. The INSTCACHE flag turns
the instruction cache on, while the NOINSTCACHE flag turns it off. In
addition to the instruction cache, processors like the 68030 and 68040 have
a data cache, which allows access to data without making several fetches
from memory. The DAT ACACHE option turns this data cache on, and the
NODATACACHE option turns it off. You may use the CACHE flag to

CPU

turn on all caches, and the NOCACHE switch to turn them all off. Under
AmigaOOS 1.3, caches are turned off by default; while under Release 2 and
3, they are turned on.

AmigaOOS 2.1 added some switches to help manage the 68040
processor. The data cache of the 68040 has a mode in which changes made
to the cache are not automatically copied to memory. This copyback mode
is enabled with the COPYBACK switch, and can be turned off with
NOCOPYBACK option. Some software is not compatible with this mode,
so by default it is left off. In addition to internal cache, some processors
provide for external caching. The EXTERNALCACHE and
NOEXTERNALCACHE options are used to turn this external caching on
and off.
[BURST]
[NOBURST]
[INSTBURST]
[NOINSTBURST]
[DATABURST]
[NODATABURST] Some advanced processors include a special mode
that allows them to quickly feed memory to the caches, if the memory is
connected so as to support this special burst mode. The INSTBURST and
OAT ABURST options are used to turn on burst mode for instructions and
data respectively, while NOINSTBURST and NODAT ABURST turn them
off. To control both at once, use BURST or NOBURST.
[TRAP]
[NO TRAP] These commands can be used to set or clear a memory
access trap which will warn you if a program tries to access the lowest 256
bytes of memory, or any memory above the normal 16 megabyte address
space of the 68000 processor. This feature is used by programmers to make
sure that their programs are not accidently writing to random areas of
memory. Information about illegal memory usage is sent out the serial port.
You must be using an advanced processor (68020 or above) in order to use
this debugging feature, as well as having a 9600 bps terminal connected to
the serial port.
[FA S TROM]
[NOFASTROMJ On models that come with a 68000 processor, the
Kickstart ROM is accessed 16-bits at a time. If you add an accelerator
board that has a 32-bit processor and an MMU, you may want to move the
Kickstart image to the 32-bit RAM, and use the MMU to make it appear as

197

CPU

if that RAM is addressed where the Kickstart ROM usually resides. The
FASTROM option moves the ROM image to RAM (this will use up 256K-
5I2K of 32-bit memory), while the NOFASTROM clears the ROM image
from RAM and uses the original Kickstart.
[NOMMUTESTj Allows the Memory Management Unit (MMU) to be
changed for the FASTROM option without checking to see if it is already
in use.
[CHECK 68010 or 68020 or 68030 or 68040 or 68881 or 68882 or FPU or
MMU] The CHECK option can be used to check for the existence of a
particular type of processor, floating point co-processor, or memory man
agement unit. If you use the command CPU CHECK 68030, for example,
the command will return a code of zero if you have a 68030 or 68040
processor installed, and a return code of five (WARN) if you have a 68020,
68010, or 68000.

Examples
1. Tum on the instruction cache, tum the data cache off, and move the
Kickstart ROM image to protected 32-bit memory:

CPU INSTCACHE NODATACACHE FASTROM

2. Within a script, check to see if a 68020 (or higher) processor is installed:

CPU >NIL: CHECK 68020
IF WARN

Echo "You only have a 68000 or 68010"

ELSE

Echo "You have a 68020, 68030, or 68040"

ENDIF

DATE Command
Location: 1.3 and Release 2 and 3 C:

Function

198

Used to display, change, or store the current setting of the system date and
time. Under 1.3, the SETCLOCK command is used to automatically read
the day and date from the hardware clock (if present) during the startup-

DATE

sequence script. Under Release 2 and 3, this clock is read by the operating
system, without using SETCLOCK. On Amiga 1000 or 512K Amiga 500
systems that don't have a hardware clock, AmigaDOS checks the boot-up
disk for the date of the most recently modified or created file and sets the
system date a bit in advance of that. The changes made to the system date
and time using the DATE command are only temporary, and do not affect
the hardware clock unless you save them with the SETCLOCK SAVE
command.

Format
DATE [date] [time] [TO or VER name]

Explanation of Parameters and Keywords
[date] The day of the month, the month, and the year to which the
system date will be set. A specific desired date is typed in as DD-MMM-YY.
DD is a two-digit number representing the day of the month to be set.
Versions prior to 1.3 require a leading zero for dates before the 10th of the
month, while Version 1.3 and higher do not. MMM is the first three letters
of the month's English name, and YYis the last two digits of the year.

AmigaDOS also allows indirect references for setting the date.
YESTERDAY, TODAY, and TOMORROW are valid values for date.
YESTERDAY moves the present system date back by one day, TOMOR
ROW moves the present value of the system date forward one day, and
TODA Y leaves the date unchanged.

The days of the week, SUNDAY through SATURDAY, can also be
used as values for date. If the day specified is different from the current day
of the week setting, the system date is advanced to match the specified day
of the week. For instance, specifying WEDNESDAY when the current
system day of the week is SUNDA Y advances the system date by three
days.

Specifying date does not alter the current system time.
[time 1 The time of day to which the system clock is to be set. The time
should be entered in the form HH:MM:SS, representing hours, minutes, and
seconds of the desired clock setting. Versions prior to 1.3 require two-digit
numbers with leading zero, if necessary; as of version 1.3, the leading zero
became optional. If seconds or minutes and seconds are omitted, they are
set to zero. System time is kept in 24-hour format, also referred to as

199

DATE

military time. Thus, 1:00 p.m. is expressed as 13:00, and midnight as 00:00.
Specifying time does not alter the current system date.
[TO or VER name] The TO and VER options allow you to store the
present system date and time to name, which may be a disk file or a physi
cal device such as a printer. TO and VER are equivalent keywords and may
be used interchangeably. If TO or VER is used when setting the time and/or
date rather than just reading its current status, a blank file overwrites the
specified file since the DATE command sends no output when used to
change a setting. AmigaDOS does remember the date and time that the
blank file was written, however.

Examples

200

1. Display the current system date and time:

DATE

2. Set the system date and time to September 8, 1987, 10:05 a.m.:

DATE 08-Sep-87 10:05:00

3. Change the current system date to the next day, and change the current
system time to 4:00 p.m.:

DATE TOMORROW 16:00

4. If the current system day of the week is not Wednesday, change the
system date to that of the next Wednesday. Leave the time alone:

DATE WEDNESDAY
Note: If the current system day ofthe week is Wednesday, the date

remains unchanged.

5. Copy the current system date and time to a filenamed Timestamp:

DATE TO Timestamp

6. Change the system date and time to August 19, 2001,2:00 a.m.:

DATE 2: 19-Aug-01

Note: Since date and time have different formats, the order in which
they are specified can be reversed. Also, AmigaDOS treats year references
from 78 to 99 as 1978 to 1999, and from 00 to 45 as 2000 to 2045. The
DATE command does not allow years from 46 to 77. If you accidentally set
the year to a number from 0 to 45, all files that you subsequently create in

DELETE

that session will have a date stamp from the 21 st century. The next time
you set the clock to the correct date-say, 14-JUN-93-all files stamped
2043 will appear on the directory with the date-stamp Future since 2043 is
in the future from the point of view of 1993. This renders the date-stamp
useless, since you won't even be able to tell the order in which the files
were created. Version 1.3 of the Workbench introduced the SETDA TE
command to let you change bogus date stamps.

DELETE Command
Location: 1.3 and Release 2 and 3 C:

Function
Removes files and directories from the designated drive. If no drive is
designated, the current default drive is assumed. If no directory path is
specified, the files andlor directories are deleted from the current directory.
DELETE accepts patterns as well as specific filenames, and as of version
1.3, the 31 character limit for wildcards has been removed. See "Pattern
Matching (Wildcards)" in Chapter 3 for more information. Ordinarily, you
cannot retrieve files that are deleted, so care should be exercised when
erasing multiple files using the wildcard feature.

1.3 Format
DELETE name(s) [ALL] !Q or QUIEIl

Release 2 and 3 Format
DELETE name(s) [ALL] rQ or QUIEIl [FORCE!

Explanation of Parameters and Keywords
name(s) The name of the file(s) or directory entry(s) to be removed.
Versions prior to Release 2 and 3 only allow up to ten file or directory
names to be entered within a single DELETE command, but Release 2 and
3 removed that limit. A pattern may be used in lieu of specific file or
directory names. When an attempt to delete an item is unsuccessful, DE-
I "ETE continues until it has attempted to process all specified items.
rALL] When this keyword is used, DELETE erases all files and
subdirectories contained within the directory as well as the directory itself.
Attempts to DELETE directories that contain any files or subdirectories
will fail unless those files and subdirectories are deleted first or the ALL
keyword is used.

201

DELETE

[Q or QUIET] Suppresses the status reports that are issued as each
file's deletion is attempted during a DELETE which erases more than one
file.
[FORCE] Normally, if the d protection bit of a file or directory is not
set, that file or directory is protected from deletion. If you use the FORCE
option, however, all indicated files and directories will be deleted, without
regard to the protection bits.

Examples
1. Erase the file unwanted:

DELETE unwanted

2. Erase the files oranges, kiwi, peaches, and herbs:

DELETE oranges kiwi peaches herbs

3. Erase the directory phone book and all files and subdirectories within it.
Don't report on the status of each deletion attempt:

DELETE phonebook ALL QUIET

4. Erase the current directory and all the files and subdirectories within it:

DELETE #? ALL

5. Delete all files in the current directory which start with the letter a, b, or
c:

DELETE (alblc)#?

DIRCommand
Location: 1.3 and Release 2 and 3 C:

Function

202

Lists the files and subdirectories within the present directory or another
specified directory. The list is normally grouped into a list of subdirecto
ries, followed by a sorted list of files. Options allow you to use a special
interactive mode and/or ask for an extended listing which lists the contents
of subdirectories as well. The directory listing may be aborted at any time
by the CTRL-C key combination (hold down CTRL and press C).

1.3 and Release 2 and 3 Format
DIR dirname [OPT A or OPT D or OPT lor OPT AI] rALL] [DIRS]
[INTER] [FILES]

Explanation of Parameters and Keywords

DIR

dirname The name of the directory or logical device whose contents
you want displayed. An AmigaDOS pattern may also be used to display
multiple directories. If no directory or AmigaDOS pattern is specified, the
current directory is displayed.
rOPT A or OPT D or OPT lor OPT AI] When the OPT A keyword is
used, the display includes the contents of any subdirectories residing in the
directory being listed. This lets you see everything in a directory with a
single command. OPT 0 displays only the names of subdirectories within
the specified directory, and not those of the files.

OPT I invokes the special interactive mode of DIR. In interactive
mode your system pauses as each subdirectory entry or file is listed,
displaying a question mark to the right of the entry. When in interactive
mode, you may use any of the following subcommands:

Key(s) Function

<RETURN> Doesn't do anything with the current item. Goes on to the
next item in the DIR listing.

T <RETURN> Types (lists) the file. To pause the display while listing, hit
the space bar or any key. To resume after pausing, press the
BACKSPACE key or CTRL-X. When you want to aban
don the listing of the file contents before the complete file
has been listed, type CTRL-C. You'll be returned to the
interactive mode. T is an invalid option for subdirectories.

DEL <RETURN> Erases the file. Subdirectories may be erased only if they're
empty.

E <RETURN> Enters a subdirectory. Displays the files and subdirectories
within a subdirectory. The listing remains in interactive
mode. Not a valid option for a file.

B<ENTER> Moves back to the previous directory after you have
descended into a new directory with the E command.

Q<ENTER> Quit. Abandons the DIR listing and goes back to the CLI
prompt.

203

DIR

As of Workbench 1.3, a new COMMAND = option was added to interac
tive mode, which allows almost any AmigaDOS command to be executed
from interactive directory mode.

OPT AI combines both the A and I options, resulting in an interactive
listing of all files and directories within the specified directory.

[ALL] As of Workbench 1.3, this is an acceptable synonym for OPT A.

[DIRSl Starting with version 1.3, this may be used instead of OPT D.

[INTER] As of Workbench 1.3, this is an acceptable synonym for OPT 1.

[FILES] This option, added with Workbench 1.3, allows you to
display only the files within a directory, and not the subdirectories.

Examples
1. List the current directory:

DIR

2. List all files and directories on disk drive dfl: in interactive mode:

DIR dfl: OPT AI

3. List all files and directories in directories beginning with the letter Z:

DIR Z#? OPT A

4. Display all of the directories and subdirectories that are contained within
the root directory of the current disk:

DIR : ALL DIRS

DISKCHANGE Command
Location: 1.3 and Release 2 and 3 C:

Function

204

Lets AmigaDOS know when you've changed the disk in a 5I.4-inch disk
drive, or removable-media hard drive. With version 1.2, AmigaDOS added
support for 5I.4-inch drives as DOS devices, using the MOUNT command,
and under 1.3, it became possible to use auto-mounting, removable-media
hard drives. Unlike the normal 3Y2-inch drives, however, some of these disk
drives don't have a sensing mechanism which can tell the Amiga when a
disk has been removed or inserted. Therefore, if you change a disk and then

DISKCOPY

try to read it, the system will try to access it as if it was the disk that was
previously mounted, confusing AmigaDOS completely. Therefore, you
must enter the mSKCHANGE command to let AmigaDOS know you've
changed the disk, so it can read it and adjust to the new layout. Note that
some drivers for removable-media disks can sense when you change media,
and will automatically do a DISKCHANGE for you.

See the MOUNT command for more information about mounting 51,4-
inch drives as DOS devices.

Another use of DISKCHANGE is to notify Workbench of a change in
the volume name of a disk that was made using the CLl RELABEL com
mand.

1.3 and Release 2 and 3 and 3 Format
DISK CHANGE drive

Explanation of Parameters and Keyword
drive The device name of the drive. Since the internal drive is always
dfO:, an external 514-inch drive will usually be mounted as df1: (if there's no
external 3Yz-inch drive), or df2: (if there is an external 3Yz-inch drive). Of
course, both 51,4-inch floppies and removable-media hard drives can be
mounted with any device name that you choose.

Examples

Inform DOS that you've changed the disk in the sole external disk drive,
which happens to be a 514-inch drive:

DISKCHANGE dfl:

DISKCOPY Command
Location 1.2 C: 1.3 and above SYS:SYSTEM

Function
Copies the entire contents of one disk volume to another. DISKCOPY can
be used to make copies of your work to new disks or to used disks contain
ing files that are no longer needed. When you use DISKCOPY, any infor
mation previously stored on the destination disk is erased. While many
other computer systems require that new disks be specially prepared before
use, AmigaDOS DISKCOPY automatically prepares, or formats, disks as

205

DISKCOPY

the information from the original disk is copied. In fact, copying an existing
disk takes about the same amount of time as formatting a new one. Use
DISKCOPY regularly to make backup copies of your work and non-copy
protected program disks.

Though DISKCOPY copies entire disks, it takes about the same
amount of time to copy a disk full of data as to copy one which has only a
few short files on it. If the amount of data you want to copy is relatively
small, using the COpy command may be faster than DISKCOPY.

DISKCOPY is usually used to copy the contents of one 3Y2-inch floppy
disk to another, but it can be used with other devices, as long as the source
and the destination disks are of identical format and storage capacity. For
example, it is possible to use DISKCOPY to copy the contents of the RAD:
RAM disk to or from a floppy, if that disk has been set to 80 tracks, 11
blocks per track, the same as a floppy.

Format
DISK COpy [FROM] source drive [TO J destination drive [NAME
volname][NOVERIFY] [MULTI]

Explanation of Parameters and Keywords

206

[FROMJ source drive The name of the drive in which the disk you
wish to copy will be mounted. If your system has only one drive, this will
be dfO:. If you have two drives, you may use dfO: or dfl:. While
AmigaDOS supports up to four drives-dfO:, dfl:, df2:, and df3:-Amiga
500 owners may find, however, that the power supply furnished with the
computer is not adequate for more than two or three drives. If source drive
is the first argument of the DISKCOPY command, the FROM keyword is
optional.
[TO] destination drive This is the name of the drive in which the disk
to be copied to will be mounted. If your system has only one drive, this will
be dfO: (the same as your FROM device). Single-drive DISKCOPY opera
tions require that both the source and destination disks be removed and
reinserted multiple times. If you have 512K, each disk must be inserted
three times. On an old 256K Amiga 1000 system, DISKCOPY requires
eight insertions of each disk-I 000 owners are strongly recommended to
upgrade memory, and/or get a second disk drive. If your system has two
drives, no disk swapping during the copy process is required as long as you
specify different drives for the FROM and TO devices.

DISKCOPY

With versions 1.3 and below, the TO keyword must be used with the
DISKCOPY command. AmigaDOS Release 2 eliminated that requirement,
allowing for the first time the format DISKCOPY dfO: dfl:.
[NAME volname] The volume name that will be given to the copy of
the original disk. If the volume name contains spaces, it must be enclosed
by quotation marks. If volname is not specified, the copy will have the
same name as the original. AmigaDOS can still distinguish between
volumes with the same name based upon information stored on the dupli
cate disk. The NAME keyword is required if a volume name is specified.

When DISKCOPY is invoked, you'll be prompted to insert the disks
required to complete the copy operation. Status messages keep you advised
as each track is copied. A standard AmigaDOS format 3Y2-inch disk requires
80 tracks of information to be read and written.

You can stop the copy process after issuing the command (when the
system is waiting for the disk(s) to be inserted) by pressing CTRL-C
followed by the RETURN key. You'll then be returned to the CLI prompt.
If you press CTRL-C after the copy process has started, the copy is aban
doned, and all information already on the destination disk is lost.
[NO VERIF Y] Normally, the DISKCOPY command reads each sector
after writing it, to verify that it was copied correctly. Using the NO VERIFY
option eliminates this step, speeding up the copy process.
[MULTI] If you have enough memory to load the entire disk at once,
you can use the MULTI option to write multiple copies without reading the
disk in each time. When you use the MULTI option, the entire disk is read
first, and then you are prompted to insert each destination disk in turn.

Examples

1. Make a copy of a disk with a single-drive system. The copy is to have the
same volume name as the original:

DISKCOPY FROM dfD: TO dfD:

2. Make a copy of a disk on a dual-drive system without verifying, copying
the original from the external drive to the Amiga's internal drive. The copy
is to have the same volume name as the original:

DISKCOPY FROM dfl: TO dfD: NOVERIFY

207

DISKCOPY

3. Make a copy of a disk with a dual-drive system, copying the original
from the internal drive to the external drive. The copy is to be named
Kings:

DI SKCOPY df 0: TO dfl: NAME "Kings"

Note: In this example the optional FROM keyword has been omitted.

DISKDOCTOR Command
Location: 1.3 and Release 2 C:

Function

208

DISKDOCTOR attempts to reconstruct the directory and file structure of
corrupted disks. A disk can become corrupted because of a defect in the
media, exposure to magnetic fields, or operator error (such as removing the
disk while the drive activity light is still on). When this happens,
AmigaDOS is unable to read the disk correctly, and it displays a system
message such as Volume Programs is a ReadlWrite error, Volume Pro
grams is not validated, Disk is unreadable, Checksum error, or even Not a
DOS Disk.

Since each directory item contains duplicate information about the
preceding and following entries, it's sometimes possible to reconstruct the
corrupted disk information. DISKDOCTOR restores as much information
as can be salvaged.

As of Workbench 1.3, DISKDOCTOR can be used to salvage disks
that have been formatted with the Fast File System, but only if the
DOS TYPE keyword in the file DEVS:Mountlist has been set to
Ox444F5301.

Trying to write to damaged disks is risky. Further damage may occur
while DISKDOCTOR is changing the disk, resulting in the loss of all
information on the disk. For this reason, you should try to DIS KCOPY the
disk before using DISKDOCTOR on it. If DISKDOCTOR manages to save
some data, you should always use the COPY command to copy all of the
files onto another disk, since DISKDOCTOR will not have repaired the
suspect media. You should not re-use the damaged disk again.

Programs that salvage files from the damaged disk to another disk are
usually preferable to those that try to repair the damage. For this reason,
programs like the public domain Disksalv (found on disk 251 of the Fred Fish
collection) or New Horizon's Quarterback Tools are generally better alterna-

ECHO

tives than DISKDOCTOR. Because of its unrealiability, the DISKDOCTOR
command was removed from the Workbench as of version 2.1.

Format
DISKDOCTOR drive

Explanation of Parameters and Keywords
drive The device name of the drive containing the damaged disk. Note
that DISKDOCTOR can be used with hard drives or hard drive partitions
(dhO: or dhl:), as well as with floppy disk drives (dfO: or df1:), but should
be used only as a last resort on hard disks.

Examples
Attempt to restore the data on a damaged floppy disk in the external disk
drive:

DISKDOCTOR dfl:

Note: After DISKDOCTOR is finished with the disk, copy the files
onto a new disk. Do not use DISKCOPY to transfer the files, since it will
copy corrupted information as well. Instead, use the FORMAT command to
initialize a new disk, then use the COpy command in the form:

COpy dfD: TO dfl: ALL

where djD: contains the "doctored" disk, and dfl: contains the newly
formatted disk. If the corrupted disk was bootable, you may use the IN
STALL command on the new disk to also make it bootable.

ECHO Command
Location: 1.3 C: Release 2 and 3 Internal

Function
ECHO is used in command files to display a message on the system screen.
This command is most often used in script files, to report the progress of
operations to the user, who might otherwise be unaware of the sequence of
commands which were being executed. See Chapter 5 for more information
on using ECHO in scripts. AmigaDOS Workbench 2 users may also want
to use the text manipulation and file output features of ECHO to create
environment variables, as in example 4, below.

209

ECHO

1.3 Format
ECHO string [NOLINE] [FIRST num] [LEN num]

Release 2 and 3 Format
ECHO string [NOLINE] [FIRST charnum] [LEN numchars] [TO destina
tion]

Explanation of Parameters and Keywords

210

string The text of the message which will be printed to the currently
active output stream. The output stream usually will be the system display,
but text can be redirected to a file or device. If string contains spaces,
AmigaDOS 1.3 and below requires it to be contained within quotation
marks. For Release 2 and above, the quotes are not necessary if the string
appears last on the command line. If you are using the FIRST or LEN
options to print part of a string, however, you must always put quotes
around text that includes spaces.

If you want the cursor to skip to a new line at some point during the
printing, put the characters *N where you want the line break to appear. If
you use this formatting character, you must enclose the string in quotes,
whether in 1.3 or Release 2 and 3.
[NOLINE] Normally, the ECHO command appends a new line charac-
ter to the end of the string. The NOLINE option, introduced in Workbench
1.3, allows you to omit the new line after printing the string, so that the next
word that is output to the CLI console appears on the same line as the text
that was ECHOed. This allows you to build a single line of text using the
output of two or more commands.

[FIRST charnum] This optional keyword, introduced in Workbench 1.3,
allows you to print only a selected part of the text string. The FIRST
keyword is used to designate the first character within the string that is to
be printed. For example, if the echo string is "This is a test", FIRST 3
designates character 3, the "i" in "This", as the first letter to be printed.

[LEN numchars] Another sub-string option introduced in version 1.3, the
LEN keyword is used to designate the length of the sub-string that is to be
printed. In the above example, FIRST 5 LEN 4 would print the "is a"
portion of the string. If no FIRST keyword is used to indicate the starting
position of the sub-string, LEN backs up numchars number of characters
from the end of the string. In the example above, if there were no FIRST,
LEN 4 would print "test".

ECHO

Examples
1. A command that executes a background SORT of a file called sortsource
on the external drive to a file called sortdest on the same drive and notifies
you when the operation is complete:

RUN SORT FROM dfl:sortsource TO dfl:sortdest + ECHO
"Sort Complete"

2. A command that executes a background COPY of all files and subdirec
tories in a directory called worklmydir on the current default drive to a
directory called storage/archive on the same drive:

RUN COPY FROM :work/mydir TO :storage/archive ALL
QUIET + ECHO "That's All Folks"

3. Create a one-line file called :Joey that contains the text string I have the
power:

ECHO> :Joey "I have the power"

4. A Release 2 and 3 command file that creates an environment variable
named CPU, and then performs one action if the computer has a 68000
processor, and another if it has an accelerated processor.

ECHO FIRST 9 LEN 5 "'CPU'" TO Env:CPU

IF $CPU EQ "68000"
ECHO "Your computer's processor is a plain old 68000.

Too bad."
ELSE
ECHO Your computer has an advanced processor, you

lucky devil.
ENDIF

The first command uses the "backtick" feature, along with text manipula
tion and file redirection to create the environment variable. The "CPU"
command is in quotes, because its output includes spaces. The last ECHO
command does not need quotes, however, because it comes last on the line,
and does not use any of the partial string options.

211

ED

ED Command
Location: 1.3 and Release 2 and 3 C:

Function
The ED command is used to edit the contents of a text file using Amiga
DOS's full-screen editor. See Chapter 6 for complete information on using
the full-screen editor.

1.3 Format
ED [FROM] name [SIZE numchars]

Release 2 and 3 Format
ED [FROM] name] [SIZE numchars] [WITH com file] [TABS interval]
[WINDOW device] [WIDTH columns] [HEIGHT rows]

Explanation of Parameters and Keywords

212

[FROMJ name The name of the AmigaDOS file which you wish to
edit using the full-screen editor. If name is the first argument in an ED
command statement, the FROM keyword need not be specified. If the file
already exists, its contents are loaded into the editor's workspace. If the file
doesn't already exist, it is dynamically created by the editor. You do not
need to include the FROM keyword.

[SIZE] numchars This option is used to set the size of the editor's
workspace. If numchars is the second argument in an ED command state
ment, the SIZE keyword need not be given. If no value for numchars is
specified, the editor's default workspace is 40,000 bytes. To edit files larger
than that, specify SIZE with a value for numchars larger than the size of the
file to be edited. If the workspace size selected is not large enough, the
editor will display the message SIZE of numchars too small.

[WITH comfile] This AmigaDOS Release 2 and 3 option allows you to
specify an ED command file to execute automatically. A command file is a
text file containing a number of extended mode ED commands, each on its
own line, which are executed as if they were entered one after another from
the keyboard. A command file can be used to edit a file on a completely
automated basis.
[TABS interval] The TABS option allows you to specify the interval to
skip each time that the Tab key is pressed. The default tab stop interval is
three.

[WINDOW device]
[WIDTH columns 1

EDIT

[HEIGHT rows] These three optional arguments allow you to describe
your terminal type, allowing you to use ED on a remote terminal. The
WINDOW argument specifies the device, such as AUX:, or a console
window description (CON:LeftJTop/width/HeightiTitle). The WIDTH and
HEIGHT options show many characters to print in each column and row
before scrolling the display.

Examples

1. Invoke AmigaDOS's full-screen editor to edit a file called
WorkInProgress in the Current/Stuff directory:

ED :Currenl/Stuff/WorkInProgress

2. Invoke AmigaDOS's full-screen editor to edit a 90,OOO-byte file called
Big in the root directory of drive df1:.

ED df1:Big SIZE 100000

EDIT Command
Location: 1.3 and Release 2 and 3 C:

Function
The EDIT command is used to edit the contents of a file using Amiga
DOS's line editor.

Unless you're a real fan ofline editors, give AmigaDOS's full-screen
editor (ED) a try first, particularly if your're editing a text file. The full
screen editor is both more flexible and easier to use than EDIT. In all
fairness, EDIT does have the ability to edit binary files and can execute a
prestored list of line editor commands, which may be handy features for
some users (though ED also gained this capability in version Release 2).
See Chapter 7 for detailed information on EDIT.

1.3 and Release 2 and 3 Format
EDIT [FROMJfromname [TO] toname [WITH] withname [VERI vername
[OPT W chars or WIDTH chars] [OPT P lines or PREVIOUS lines]

213

EDIT

Explanation of Parameters and Keywords

214

[FROM] jromname The name of the file whose contents will be edited. If
jromname is the first argument in the EDIT command, the FROM keyword
is optional. EDIT requiresjromname, and it must already exist.

[TOl toname The name of the file to which the edited text is saved when a
Q or W subcommand is executed from within the line editor. If toname is
the second argument in an EDIT command (followingjromname), the TO
keyword is optional.

If toname is different fromjromname, the contents of the file used as
input to the editor will not be replaced by a save from within the line editor.
If toname is not specified and a save is executed from within EDIT, the
contents of the original file will be moved to a temporary file called :t/
edit. backup, and EDIT will rename its work file (where it temporarily holds
edited data) to jromname.

[WITH] withname This option lets you specify a file which will be
used as input to the line editor's command processor. The contents of
withname should be a series of valid line editor subcommands. If withname
is the third argument in an EDIT command (followingjromname and
toname), the WITH keyword is optional. IF withname is not specified, the
line editor expects manual input from the keyboard.

[VER] vername Lets you specify where you want messages and
verification output produced by the line editor sent; vername may be a file
or logical device. If vername is the fourth argument in an EDIT command
(followingjromname, toname, and withname), the VER keyword is option
al.

[OPT W chars or WIDTH chars]

[OPT P lines or PREVIOUS lines] These options let you set the
maximum line length (WIDTH chars) and number of lines (PREVIOUS
lines) that EDIT will keep memory resident. The default maximum line
length is 120. The default number of lines is 40. Multiplying the value for
PREVIOUS lines by WIDTH chars yields the amount of memory that
EDIT reserves as a temporary work area. If you use just Plines or Wchars,
you must use the OPT keyword before them.

ELSE

Examples
1. Edit a file called mysource in the current directory, using AmigaDOS' s
line editor. The edited data. if saved, will be stored under the same
filename. The number of lines is to be set to 40 and line width to 120
(EDIT's default values):

EDIT mysource

2. Edit a file called bigs()urce in the current directory, using AmigaDOS's
line editor. The edited data, if saved, will be stored under the filename
edited bigsource. The number of lines is to be set to 1000 and line width to
120:

EDIT FROM bigsource TO "edited bigsource" OPT PIOOO

3. Edit a file called universe in the current directory, using AmigaDOS's
line editor. When EDIT starts up, execute the list of line editor commands
contained in a file called autocommands in the myprocess/nebulaJ directory
on drive dfl:. The edited data, if saved, will be stored under the same
filename. Send all messages and verification displays from the line editor to
the system printer. The number of lines is to be set to 40 and line width to
250:

EDIT universe WITH cf1:myprocess/nebula/autocommands
VER PRT: OPT W250

ELSE Command
Location: 1.3 C: Release 2 and 3 Internal

Function
The ELSE command can only be used in a script file. It is used after an IF
command to specify an alternative block of commands. If the condition
tested by the IF command is not true, all the commands after IF and before
ELSE are skipped, and all of the commands after ELSE and before ENDIF
are executed. Ifthe condition is true, all the commands after IF and before
ELSE are executed. and all of the commands after ELSE and before ENDIF
are skipped. See IF command.

215

ELSE

1.3 and Release 2 and 3 Format
ELSE

Explanation of Parameters and Keywords
None

ENDCLI Command
Location: 1.3 C: Release 2 and 3 Internal

Function
ENDCLI terminates the current Command Line Interpreter process, and
closes the CLI or Shell window.

Under AmigaDOS Release 2 and 3, a Shell window may also be
closed by clicking on the close gadget (if any), or sending the window an
end-of-file character (CTRL-\).

1.3 and Release 2 and 3 Format
ENDCLI

Explanation of Parameters and Keywords
None

Example

216

Open a new CLI window and issue a directory command within the new
CLI. Close the CLI window with the ENDCLI command, returning to the
CLI from which the NEWCLI command was issued:

NEweLI
Note: A new CLI window will appear on your screen. The next two

commands will appear within the new window as they're typed:

DIR
EIJDCL 1

ENDSHELL

ENDIF Command
Location: 1.3 C: Release 2 and 3 Internal

Function
The ENDIF command is used only within a script file. It is used to termi
nate a block of commands specified by IF or ELSE. If the condition tested
by the IF command is not true, all the commands after IF and before ELSE
or ENDIF are skipped. If the condition is true, all the commands after IF
and before ELSE are executed, and all of the commands after ELSE and
before ENDIF are skipped. See IF command.

1.3 and Release 2 and 3 Format
ENDIF

Explanation of Parameters and Keywords
None

ENDSHELL Command
Location: 1.3 Alias Release 2 and 3 Internal

Function
Like ENDCLI, ENDS HELL terminates the current Command Line Inter
preter program, and closes the CLI or Shell window. Under AmigaDOS
1.3, ENDSHELL is not really a command, but an alias for ENDCLI which
is established by the default Shell-Startup file. Under AmigaDOS Release 2
and 3, it is an internal command.

1.3 and Release 2 and 3 Format
ENDSHELL

Explanation of Parameters and Keywords
None

217

ENDSKIP

ENDSKIP Command
Location: 1.3 C: Release 2 and 3 Internal

Function
ENDSKIP was added to Workbench 1.3 to designate the end of a SKIP
clause in a batch file. When ENDSKIP is encountered within a SKIP
clause, execution continues at the line following the ENDSKIP, and the
condition nag is set to WARN. See SKIP command.

Format
ENDSKIP

Explanation of Parameters and Keywords
None

EVAL Command
Location: 1.3 and Release 2 and 3 C:

Function
The EVAL command, added in Workbench 1.3, is used to evaluate simple
integer expressions with one or two arguments, and to print the resulting
expression in a user-specified format. Any fractional amount results are
discarded. EV AL is mainly used to perform calculations in scripts, to aid in
chores such as counting loops.

1.3 and Release 2 and 3 Format
EVAL [VALUE] = valuel rOp = operatorl rVALUE2 = valuel [TO
filename 1 [LFORMAT = string I

Explanation of Parameters and Keywords

218

[VALUE] = value 1 The first value in the expression to be evaluated.
This value may be expressed as a decimal number (the default), a hexadeci
mal number (indicated with a leading OX or #X) or an octal number (indi
cated by a leading 0 or a leading #, followed by other digits). You can also
use the ASCII value of a text character, by prefacing it with a single
apostrophe (for example 'a for 97, the ASCII value of the letter "a"). The
keyword VALUE 1 = does not have to be included if value appears as the
first argument after the EV AL command.

EVAL

[OP = operator] A symbol which indicates the mathematical operation
to be performed on the value or values. The supported operations and their
symbols are:

+ Addition
Subtraction

* Multiplication
/ Division
mod Modulus
& Bitwise AND
I Bitwise OR

Bitwise NOT
« Bitwise shift left
» Bitwise shift right

Negation
xor Bitwise exclusive or
eqv Bitwise equivalence

The keywords OP = do not have to be included if the values and operator
are presented in the correct order (value 1 operator value2). If you change
this order, the OP = and V ALUE2 = keywords must be included to indicate
which is the operator and which the second value. Note that if the addition
operator (+) appears at the end of the line, it must have a space after it, so
that the command interpreter doesn't confuse it with the sign that joins two
command lines togeter. Without the space, EV AL will not recognize the
final plus sign as an operator, and will give you an error message like Bad
args or value after keyword missing.

[VALUE2 = value] The second value in the expression that is to be
evaluated. It may be expressed in any of the forms mentioned above. The
keywords V ALUE2 = do not have to be included if the values and operator
are in the correct order (valuel operator value2). They only need to be
included if you change the order in which they're presented.

Under AmigaDOS Release 2 and 3, you may have multiple arguments
for value2, each separated by its own operator (e.g. 3 + 5 - 6 * 2 \ 4). You
may also use parentheses to change operator precedence (e.g. (3+5)*4 is
different from 3+(5*4)). Under AmigaDOS 1.3, you may only use multiple
arguments for VALUE2 if there are no spaces in the expression (e.g. 3+5-6
is acceptable, but 3 + 5 - 6 is not).

219

EVAL

[TO filename] This optional keyword is used to send the output of this
command to a file whose name is indicated by filename.

[LFORMAT = string] This optional keyword is used to specify the
format of the text string that this command prints. By default, the program
prints the answer in decimal format, but through the use of a text string, you
may specify hexadecimal (%X), octal (%0), decimal (%N), or ASCII
character (%C). The hexadecimal and octal format strings require a number
after the letter, indicating how many digits should be printed (for instance a
string of "O/OX8" indicates that the answer should be printed as 8 hex digits).
You may also include any additional text you want in the format string. The
command option

LFORMAT = "The answer is %N"

will cause the command to print the words "The answer is" in front of the
value that it has calculated. Note that by default, EV AL does not terminate
its output with a new line character. If you want the cursor to skip to a new
line after some output is printed, you should include the characters "*N"
within the format string where you want the line break to appear, and put
the format string in quotes. If there are any spaces within the format string,
the entire string should be placed within quotes as well.

Examples

220

1. Calculate the value of] 0000 divided by nine, and print the answer as 4
hexadecimal digits, followed by a new line character.

EVAL 10000 / 9 LFORMAT = "%X4*N"

2. Use EVAL in a 1.3 command sequence file to decrement a loop counter,
causing the script to execute exactly 5 times:

EVAL

SETENV Count 1
LAB Loop
ECHO "Loop #" NOLINE
TYPE ENV:Count
EVAL >NIL: <ENV:Count value2=1 op=+ to=T:Temp<$$> ?
COPY T:Temp<$$> ENV:Count
IF VAL $Count NOT GT 5

SKIP Loop RACK
ENDIF
DELETE >nil: T:Temp<$$> ENV:Count
ECHO "*N I'm done.Five loops is my limit. *N"

The fifth line from the top is the tricky one. The question mark is used to
get the command to take the VALUEI argument from the ENV:Count file,
and the redirection to nil: prevents the user from seeing the template
printed. See Chapter 5 for more information.

3. Use EV AL in a Release 2 and 3 command sequence file to decrement a
loop counter, causing the script to execute exactly 5 times:

SET Count 1
LAB Loop
ECHO Loop #$Count
SET Count 'EVAL $Count + 1 '
IF VAL $Count NOT GT 5

SKIP Loop BACK
ENDIF
CNSET Count
ECHO "*N I'm done.Five loops is my limit. *N

The "backtick" feature of Release 2 and 3 makes it much easier to feed the
results of EV AL directly into the SET command.

221

EXECUTE

EXECUTE Command
Location: 1.3 and Release 2 and 3 C:

Function
The EXECUTE command is used to invokc AmigaDOS command se
quence files. Command sequence files are tcxt files which contain a series
of command lines which are executed sequentially once the command file
has been started by EXECUTE. EXECUTE also can pass information to the
command sequence file to be used as arguments for the commands con
tained in the file.

Command files may be nested by issuing an EXECUTE as one of the
commands in the command sequence file. See Chapter 5 for more informa
tion on sequence files.

Under AmigaDOS 1.3 and higher, it is possible to execute a script just
by typing its name (and path, if necessary), if the S (or script) protection bit
of the script file is set. Such script files can be executed just like normal
program files. without using the EXECUTE command.

1.3 and Release 2 and 3 Format
EXECUTE name [arg 1 arg2,,,,]

Explanation of Keywords and Parameters
name The name of the command sequence file to be invoked, name is a
required parameter.

EXECUTE sometimes needs to create temporary files in the course of
executing a script. Under version 1.2, these files were created in the the :T
directory. The version on Workbench 1.3 uses the T: directory if one has
been ASSIGNed, otherwise it uses :T. Also, as of version 1.3, an EXE
CUTE script will substitute the characters <$$> with the task number of the
CLI from which it is run. This feature is helpful in creating unique tempo
rary filenames.
largl arg2.".J Arguments to be passed to the command sequence file.
Arguments may be any valid AmigaOOS string (including filenames and
logical and physical devices).

Examples

222

1. Invoke a command sequence file called commikazi on drive dfl:.

EXECU1E dfl:commikazi

EXECUTE

2. Invoke a command sequence file called games. Pass the arguments
lacrosse, bowling, prt: and dfl:whatlthe!heck to the command sequence
file:

EXECUTE games lacrosse bowling prt: dfl:what/the/heck

Note: The command sequence file being called must be written so that
it will receive passed arguments. Before the command file is started up,
EXECUTE examines the file for special directives and characters which tell
it how to insert the passed information in the command sequence file's
command stream.

Command sequence lines that contain directives for EXECUTE begin
with a period (.).

Directives
.K subnamel subname2 or .KEY subnamel subname2 Defines
substitution names for passed arguments. EXECUTE scans for these
names, delimited by the angle bracket « and» characters in subsequent
lines of the command file, and substitutes passed arguments in their stead.
Each substitution argument may be further qualified by lA, IK, or IS (see
"AmigaDOS Templates," page 170 earlier in this reference section for
information on these qualifiers) .
. BRA n Substitutes character n for the < character. This comes in handy if
< is to be part of a substitution name .
. KET n Substitutes character n for the> character. This comes in handy if
> is to be part of a substitution name .
. DOL n or .DOLLAR n Substitutes character n for the command file's
normal default delimiter ($). Substitution arguments may assume a default
if no corresponding argument is given to EXECUTE by the user. For
instance, <animal$squirrei> substitutes the string squirrel for the substitu
tion argument animal .
. space Defines a comment line .
. DEF sub name string Assigns the value string to all occurrences of the
substitution argument subname.

Examples

1. When the following EXECUTE command is issued:

EXECUTE sortvar ingress egress

and the contents of the command sequence file sortvar is:

223

EXECUTE

.KEY SFILE/A TFILE/A HEX/S
IF HEX EQ ""
SORT <SFILE$mysource> <TFILE$mysorted>
ELSE
SORT <SFILE#mysource> <TFILE#mysorted> OPT H
ENDIF

EXECUTE will substitute ingress everywhere it finds the substitution
argument SFILE enclosed within < and >, and it will substitute egress
everywhere it finds the substitution argument TFILE enclosed within < and
>. Note that in this example, the dollar sign ($) is used to provide default
filenames in case SFILE and TFILE are not specified. If the HEX keyword
is passed with EXECUTE, the H option of SORT is used.
2. The following example illustrates how using various dot commands can
affect the appearance of the same command file. The function of the
command file remains unchanged:

.DOT
!KEY SFILE/A TFILE/A HEX/S
!BRA (
!KET)
!DOL #

IF HEX EQ ""
SORT (SFILE#mysource) (TFILE#mysorted)
ELSE
SORT (SFILE#mysource) (TFILE#mysorted) OPT H
ENDIF

FAILAT Command
Location: 1.3 C: Release 2 and 3 Internal

Function

224

The FAILAT command is used within command sequence files and RUN
command statements to alter the failure level threshold of the system.

When AmigaDOS commands encounter an error upon execution, a
numeric return code is set (usually 5, 10, or 20). Under AmigaDOS Release

FAULT

2 and 3, this result code is stored in the environment variable RC, whose
contents are represented by the characters $rc. The higher the return code,
the greater the severity of the error. If a return code which exceeds the
current failure level threshold is encountered during execution of a com
mand sequence file or multiple command task set up by a RUN, execution
stops. The default failure level threshold of AmigaDOS command sequence
files and RUN background tasks is 10.

Resetting the current failure level threshold can come in handy. By
setting F AILAT very high, you can test return codes with the IF command
in a command sequence file (or $rc under Release 2 and 3) and react
according to the return code encountered without aborting script execution
when a relatively high return code is encountered.

Once the command sequence file or RUN sequence has ended, the
current failure level threshold is reset to 10.

See Chapter 5, "Command Sequence Files," and the RUN command
for more information.

1.3 and Release 2 and 3 Format
FAlLA T codenum

Explanation of Parameters and Keywords
codenum The new failure level threshold. If codenumn is not specified,
FAILAT displays the current failure level threshold.

Examples

1. Display the current failure level threshold:

FAILAT

2. Temporarily set the current failure level threshold to 55:

FAILAT 55

FAULT Command
Location: 1.3 C: Release 2 and 3 Internal

Function
The FAULT command provides English-language explanations for many of
the error codes which AmigaDOS generates. When AmigaDOS runs into a
problem, it usually displays a description of the problem or a requester box

225

FAULT

telling you what needs to be done. In some cases, nothing appears but a
fault code (under AmigaDOS Release 2 and 3, this error code is also placed
in the environment variableresult2). Further questioning of the system
using the WHY command might produce a message like Last command
failed with error 220. In these cases, the FAULT command can give you
more information about the nature of the problem.

1.3 and Release 2 and 3 Format
FAULT errornum(s)

Explanation of Parameters and Keywords
errornum(s) The error number (fault code) which you want explained. Up
to ten error numbers may be specified within one FAULT command. If no
information is available on the error, the system simply repeats the error
number. For instance, entering FAULT 999 results in the display:
Fault 999: Error 999

Examples

226

1. Display the error message corresponding to fault code 216:

FAUL'; 216

AmigaDOS responds with:

Fault 216: directory not empty.

2. Display the error messages associated with fault codes 220, 103, and
226:

FAULT 220 103 226
AmigaDOS responds with:

Fault 220: comment too big
Fault 103: insufficient free store
Fault 226: no disk in drive

FF Command
Location: 1.3 C: Release 2 and 3 None

Function
FF (Fast Fonts) is a program that only appears on Workbench 1.3 (faster
text routines are a standard part of Release 2 and 3). This program is used
to speed up the display of text to the screen when a standard 8x8 pixel or
lOx 9 pixel fixed width font is used. It also can be used to replace the
standard system fonts with custom fonts, as long as they are of the proper
size and are fixed width (not proportional).

Format
FF [-0] [-N] [fontname]

Explanation of Parameters and Keywords

FF

[-0] This optional switch indicates that the command is being used to tum
the fast text routines on. This is the same behavior as when no switches are
used.

[-N] This optional switch is used to temporarily disable the fast text
routines, which can be turned on again by running FF once more.

[fo/ltnG me] The name of the font descri ptor file of the fonts to replace the
TOPAZ80 and TOPAZ60 fonts. This file has a name like Siesta.font. The
directory. which corresponds to this font descriptor file (in the example
given, the fonts:Siesta directory), should contain either a filenamed 8, a
filenamed 9, or both. These files should contain the font information for a
fixed width 8x8 pixel font and a fixed width lOx9 pixel font respectively. If
fonts of the correct type are found in this directory, they will be substituted
for the default system fonts. If not, the system Topaz font will be used.

Examples

1. Turn on the fast text routines:

FF -0

2. Turn on the fast text routines using the SiestaJ8 and Siesta 9 fonts:

FF Siesta. font

227

FILENOTE

FILENOTE Command
Location: 1.3 and Release 2 and 3 C:

Function
FILENOTE lets you attach comments to existing AmigaDOS files (there
are no comments associated with files when they are first created). Any
comments stored using FILENOTE remain distinct and separate from the
actual contents of the file.

When a file with comment attached by FILENOTE is duplicated using
the COPY command, the comment is not associated with the new file
(unless you use the COM or CLONE option). When a file is RENAMEd,
comments attached to the file are attached to the new filename. When the
contents of a file with a comment are updated, comments remain un
changed. If a comment is already attached to a file and a FILENOTE
command with a new comment is issued, the new comment replaces the
old.
Comments stored using FILENOTE may be viewed by using the LIST
command. Any comments about the file appear on the screen beneath the
file's name and are preceded by a colon (:). If the file is accompanied by an
icon (.info) file, it's possible to read and edit the comment field from the
Workbench by clicking on the icon, and selecting the "Info" of "Informa
tion" item from the Workbench menu.

1.3 Format
FILENOTE [FILElfilename [COMMENT] string

Release 2 and 3 Format
FILE NOTE [FILE]filename [COMMENT] string [ALL] [QUIET]

Explanation of Parameters and Keywords

228

[FILE] filename The name of the file that is to have a comment
attached. The FILE keyword is optional ifJilename is the first argument of
a FILENOTE statement. Only one filename may be specified. The 1.3
version of FILENOTE does not support AmigaDOS patterns. Releases 2
and 3 do, however, allowing you to add the same comment to several files
at once.
[COMMENT] string Defines the comment assigned to the specified
file. The COMMENT keyword is optional if string is the second argument

FORMAT

of a FILENOTE statement (following filename); string, the comment to be
attached to the file, can be up to 80 characters in length (79 characters for
version 1.3 and up), and must be enclosed in quotation marks if it contains
spaces.
[ALL] Using this Release 2 and 3 option, you can add the same com-
ment to every file in the specified directory, and all of its subdirectories.
[QUIET] This Release 2 and 3 option prevents the command from
listing the names of files to which it is adding the comment, as it normally
does when you add comments to multiple files either by using a pattern, or
the ALL option.

Examples
1. Attach the comment Don't delete this file until September 8, 2001 to the
file fedtax91 :

FILENOTE FILE fedtax91 COMMENT "Don't delete this file
until September 8, 2001"

2. Attach the comment Lattice C Object Code - Almost Works to the
filenamed PinBaliDemo in the directory Lattice!CodelWork on drive dfl:.

FILENOTE df1:Lattice/Code/Work/PinBall Demo "Lattice C
Object Code - Almost Works"

FORMAT Command
Location: Pre-1.2 C: 1.2, 1.3 and Release 2 and 3 SYS:System

Function
Initializes a floppy disk or hard drive as a blank AmigaDOS disk. A volume
name, which must be specified by the user, is assigned to the disk after the
initialization process is complete. Caution: If a used disk is formatted, all
information on it will be erased.

FORMAT prompts you to insert the disk to be formatted in the
desired drive and hit the RETURN key. This is your last chance to change
your mind about the FORMAT request. Hitting CTRL-C and then RE
TURN aborts the process at this point. Once the disk is inserted and the
RETURN key is pressed, the FORMAT process cannot be interrupted
under earlier versions of the command, and may not be interrupted without
losing the data on the disk in any version.

229

FORMAT

A status display reports as each cylinder on the disk (0-79 for a
floppy) is initialized. After initialization, another display appears as each
cylinder is verified. After verification is complete, the volume name is
assigned.

It's not necessary to FORMAT a disk before using the DISKCOPY
command-DISKCOPY formats as it copies. Thus, if all you want to do is
copy the contents of a disk, it's much faster to use DISKCOPY than to first
format the destination disk, INSTALL the system information on the
formatted disk, and use the COPY ALL command to copy all of the files
one by one. In fact, it's even faster to use DISKCOPY to duplicate a blank
formatted disk than it is to format a new one.

One situation in which you may wish to copy a disk using the FOR
MAT-COPY ALL approach is where the files on the source disk have
been deleted and rewritten so many times that the contents of the disk have
become scattered. When this occurs, the time required to access each file
may increase noticeably. By copying each file to a newly formatted disk,
the contents of the disk will be consolidated.

1.3 and Release 2 and 3 Format
FORMAT DRIVE drivename NAME string [NOICONS] [QUICK] [FFS]

Explanation of Parameters and Keywords

230

DRIVE drivename The disk drive in which you will insert the disk to
be formatted. The DRIVE keyword must be used. The valid values for
drivename are dfO:, dfl:, df2:, and df3:, if you're formatting a floppy disk.
The values used most often will be dfO: (your Amiga's internal disk drive)
and dfl: (the optional Amiga 1010 external disk drive).

Since FORMAT can be used for any valid AmigaDOS storage device,
you also can use hard drive or recoverable RAM drive names here like
dhO:, jhO:, rad:, and work:. Exercise extreme caution in entering the device
name for the FORMAT command. Typing dhO: when you mean dfO: can
result in you losing the entire contents of your hard drive.
NAME string The volume name assigned to the formatted disk. The
NAME keyword is mandatory. string is the text of the volume name, which
is also mandatory. string can be up to 31 characters long and must be
enclosed in quotation marks if it contains spaces.

GET

[NOICONS] This option specifies that you wish the formatted disk to
be completely empty. If not used, a Trashcan directory will be created on
the disk, as well as a Trashcan.info file for the drawer icon.
[QUICK] When this option is used, FORMAT will only write over the
root block, the boot block, and the bitmap block, without formatting the rest
of the disk. If you're formatting a disk that has already been formatted
before, this is sufficient to create an empty volume, and is much quicker
than going through the entire format process.
[FFSJ By default, floppy disks use the old file system, while hard
drives use whatever file system is specified in their Mountlist file or Rigid
Disk Blocks. Using the FFS keyword causes FORMAT to ignore these
defaults, and use the Fast File System on the specified volume. Fast File
System floppies hold slightly more than the default ones, and can be read
and written somewhat more quickly. Under Workbench 1.3, however, it is
difficult to get the operating system to read FFS floppies, and it cannot boot
from one. Workbench Release 2 and 3 reads and writes FFS floppies like
any others.

Examples
1. Format a disk in drive dfO:, naming the volume Backup9:

FORMAT DRIVE dfO: NAME Backup9

2. Format a disk in drive dfl:, with the volume name Just Another Blank
Disk:

FORMAT DRIVE df1: NAME "Just Another Blank Disk"

GET Command
Location: Release 2 and 3 only Internal

Function
GET prints the contents of a local environment variable. A local environ
ment variable is a named text string that is stored in an environment space,
and is accessible only to the Shell in which it was created (and Shells
spawned from that Shell). Unlike the global variables created by SETENV,
the local environment variables are stored in private system memory, rather
than in the RAM disk. You can substitute the value of a local environment
variable on the command line by putting a dollar sign in front of its name.

231

GET

Thus, if you have an environment variable called Fred, the command
ECHO $Fred does the same thing as GET Fred.

Format
GET varname

Explanation of Parameters and Keywords
varname The name of the environment variable to get. Under Work-
bench Release 2 and 3, there are a number of significant local environment
variables that are automatically set for you, or which you can set yourself.
These include:

Process The process number of the current Shell.
RC The return code of the last command that was executed. This

allows you to examine the code without using the IF WARN or IF FAIL
command.

Result2 The error number that indicates why the last command failed.
You can use the FAULT command to interpret these error codes.

Echo This local environment variable controls whether or not the
Shell repeats each command as it is executed. If you SET Echo on, the
commands are repeated. If you set Echo to anything else (or don't set it at
all), they are not repeated. Turning Echo on is a good way to debug scripts
that don't work, since there is often no other way of telling at which line
they failed. With Echo on, you can tell which lines are executed properly,
and which fail.

Example
Print the contents of an environment variable named Cuhby:

GET Cubby

GETENV Command

Function

232

GETENV prints the value of a global environment variable, a named text
string that is accessible to all tasks. As of Workbench Release 2 and 3,
these strings are stored in files in the ENV: directory on the RAM: disk.
This means that currently, "GETENV test" does the same thing as "TYPE
ENV:test". In future versions, however, global environment variables may

IF

be stored in system RAM, and manipulated by their own device handler,
like local environment variables. As with local environment variables, if
you put a global environment variable name with a dollar sign in front of it
in a command line, the Shell will substitute the contents of the variable.

1.3 and Release 2 and 3 Format
GETENV varname

Explanation of Parameters and Keywords
varname The name of the environment variable to get. Currently, this is
the name of a text file that is stored in the ENV: directory. Using the
GETENV command prints the contents of this text file.

Under Workbench Release 2 and 3, there are a number of significant
global environment variables that are automatically set for you, or which
you can set yourself. These include:

Kickstart
Workbench These variables are created by the startup-sequence script,

and contain the version numbers of the Kickstart and Workbench that you
are using.

Editor This environment variable is recognized by some Workbench
programs like the MORE program. If you set this variable to the pathname
of your text editor, MORE allows you to bring up the program to edit the
current file by pressing Shift-E.

Example

Print the current Workbench version number:

GETENV Workbench

IF Command
Location: 1.3 C: Release 2 and 3 Internal

Function
The IF command and its associates (the ELSE and ENDIF commands) are
used within AmigaDOS command sequence files to carry out groups of
commands within the command sequence file it' one or more conditions are
met. [f an IF statement is satisfied, the commands following the statement
are executed sequentially until an ELSE or ENDIF statement is encoun-

233

IF

teredo If the IF conditional is not satisfied and an ELSE statement is en
countered before an ENDIF, the commands between ELSE and ENDIF are
executed.

For every IF command there must be an associated ENDIF.
The ELSE command, ifused, must appear between IF and ENDIF

commands.

1.3 and Release 2 and 3 Format
IF [NOn [WARN] [ERROR] [FAIL] [VALJ [stringlEQ string2]
[stringlGT string21 [stringlGE string2] [EXISTS name]

Explanation of Parameters and Keywords

234

[NOT] Reverses the result of the IF test. If the condition tested is true
and NOT is also used, the IF statement will not be satisfied. If the condition
is otherwise false and NOT is used, the IF statement will be satisfied.

[WARN] Is satisfied (true) if the return code of the previous command
is greater than or equal to 5.

[ERROR] Is satisfied (true) if the return code of the previous command
is greater than or equal to 10.

[FAIL 1 Is satisfied (true) if the return code of the previous command
is greater than or equal to 20.

[stringlEQ string2] Is satisfied (true) if stringl is identical to string2.
Case is ignored in the comparison. This test can be reversed to test inequali
ty by use of the NOT keyword. It can be changed to a numeric comparison
by placing the VAL keyword in front of the first string. string I and string2
are normally text strings, which are enclosed in double quotes if there is a
space character in the string. However, under version 1.3 and up, either or
both strings may be substituted by the contents of an environment variable
by using a dollar sign ($) in front of the variable name. Thus, the IF com
mand substitutes the expression $TEST with the text string that is contained
within the environment variable named TEST.

[stringlGT string2] This option was introduced in Workbench 1.3. The
test is satisfied (true) if the characters in string I come after the characters in
string2 in alphabetical order. Case is ignored in the comparison. This test
can be reversed to test the LESS THAN OR EQUAL condition by use of
the NOT keyword. It can be changed to a numeric comparison by placing
the VAL keyword in front of the first string. As with EQ, the strings may

be text strings in quotes, or the name of an environment variable prefaced
with a dollar sign.

IF

[stringlGE string2] This option was introduced in version 1.3. The test
is satisfied (true) if the characters in string 1 come after the characters in
string2 in alphabetical order, or if the two strings are identical. Case is
ignored in the comparision. This test can be reversed to test the LESS
THAN condition by use of the NOT keyword. It can be changed to a
numeric comparison by placing the VAL keyword in front of the first
string. As with EQ, the strings may be text strings in quotes, or the name of
an environment variable prefaced with a dollar sign.

[VAL] This option was introduced in Workbench 1.3. When this
keyword is placed in front of a comparison expression (EQ, GT, GE), it is
changed to a numeric rather than a string comparison. Normally, these tests
compare each character of the string in alphabetical order. Thus, the string
"91" is shown to be greater than the string "099", since the leading 9 of the
first string comes after the leading 0 of the second string. If you compare
VAL "91" and "099" however, "099" is correctly shown to be greater.

[EXISTS name] Is satisfied if name exists; name may be any
AmigaDOS file, directory or logical device. This test can be used to check
the existance of files or directories. To check the existance of disk volumes,
use the EXISTS option of the ASSIGN command.

Examples

1. Using IF-ENDIF statements, build a command sequence file which
deletes any file except the file DontDolt:

.KEY nerf/a
IF <nerf> EQ DontDoIt
ECHO "I refuse to delete that File"
QUIT
ENDIF
DELETE <nerf>

Note: Actually this example will delete DontDolt if the value
:DontDolt or DFO:DontDolt is passed to the command file as the value of
neifwhen the command sequence file is executed. The EQ option of IF
compares the text strings, not the internal block IDs of the files. Multiple

235

IF

236

EQ statements could have been added to the IF statement to check for
filename variants.

IF-ELSE-ENDIF sequences may be nested within one another.

2. Using nested IF-ELSE-ENDIF statements, build a command sequence
file that attempts to delete the file broccoli. If any errors are encountered,
report on their severity.

Note: The commands of this example have been indented to highlight
the IF-ENDIF command groupings.

FAILAT 100
IF EXISTS broccoli

DELETE broccoli
IF WARN

ELSE

ELSE

IF NOT EXISTS broccoli

ELSE

ECHO "File deleted - error encountered"
QUIT

ECHO "Fatal error - file not deleted"
QUIT

ENDIF

ECHO "File deleted"
QUIT

ENDIF

ECHO "File not found"
ENDIF

3. Using IF-ELSE-ENDIF statements, build a command sequence file that
will copy all files in the directory myworkitextlAmigaProject on drive dfl :
to the directory myworkltextlbackup on the same disk drive. If the
AmigaProject subdirectory does not exist, create it. Start up the program
called Textcraft in the root directory of drive dfO:.

INFO

FAILAT 100
ASSIGN MYDIR: TO df1:mywork/text
IF EXISTS MYDIR:AmigaProject
ECHO "Copying Documents to Backup Area"
COpy MYDIR:AmigaProject TO MYDIR:backup ALL
SAY backup completed boss
SKIP STARTUP
ELSE
MAKEDIR MYDIR:AmigaProject
ECHO "AmigaProject Directory Created"
ENDIF
LABEL STARTUP
RUN dfO:Textcraft
4. For an example of the V AL and GT keywords, see Example 2 under the
EV AL command.

INFO Command
Location: 1.3 and Release 2 and 3 C:

Function
Displays information about disk volumes and the system RAM disk. A
typical INFO display shows the following information about each disk
volume currently mounted on a physical drive attached to the Amiga. INFO
also will report on the status of RAM:, the Amiga's memory-based RAM
disk, if it's being used. A typical INFO display might look like this:

Mounted disks:
Unit Size Used
DFI: 880K 1089
DFO: 880K 740
RAM:22K 43
V olumes Available:

Free
669
1018
o

Graphics Demos [Mounted]
CLI Disk [Mounted]

Full Errs
61% 0
42% 0
100% 0

Status Name
Read Only Graphics Demos
ReadlWrite CLI Disk
ReadlWrite

237

INFO

238

INFO tells you what disk volumes are in use and the amount of
storage currently allocated to them. Amiga 3V2-inch disks have a capacity of
880K (901,120 bytes) of information, of which 837K (857,088 bytes) is
usable when the disk is formatted under the old file system (879K is usable
under the Fast File System). Each AmigaDOS disk contains 1758 usable
sectors, with each sector holding 488 bytes of information under the old file
system, and 512 bytes of information under the Fast File System. INFO
reports the number of sectors already used on each disk, the number of free
sectors available for use, and the percentage of the disk used. The size of
RAM: will vary depending upon how much information has been copied to
it. Storage used for RAM: reduces the amount of real memory available for
programs to run in. When RAM: is used, it will always show as being 100
percent full.
INFO also reports on the number of "soft" disk errors encountered in using
the disk volume during the current session. Soft errors are those of a
temporary nature. An example of a soft error is a temporary failure in
reading some information from a disk. When the error is first encountered,
many systems will try to read the information again for a predefined
number of times. If one of the retries is successful, the original read error is
considered a temporary, or soft, failure. If all retries fail, the error is consid
ered a permanent, or hard, failure.

The status of each volume will be either Read/Write or Read Only.
Read/Write indicates that the volume may be read or written to. New files
may be added, and existing files on the disk may be read, updated, and
deleted. A volume is made Read Only when its write-protect window has
been uncovered. The write-protect window is located on the front left of a
3V2-inch disk and is usually uncovered by sliding a small plastic shutter
toward the front edge of the disk.

INFO

Write-Protect Window

Write Protect Window

3Y2-inch Disk

The files on Read Only volumes can be read, but not updated or
deleted. New files may not be added. Any attempt to write to a Read Only
disk will result in an error. While RAM: cannot be write-protected, all files
residing in RAM: can be protected from deletion by using the PROTECT
command.

INFO also displays the name of the disk currently residing in each
physical disk drive. This is very helpful in matching physical device names
to those of the volumes mounted. A list of Volumes Available is also
presented, indicating the status (mounted or unmounted) of disk known to
the AmigaDOS filing system during the present session.

Format
INFO [name]

Explanation of Parameters and Keywords
[name] This option was added in Workbench 1.3. It allows you to
obtain information on a single device or volume by typing its name after
the INFO command.

Examples
1. Display information about the disk volumes known to the filing system:

INFO

2. Redirect the INFO display to an attached printer:

INFO> PRT:

239

INFO

3. Display information only about the disk in the internal disk:

INFO DFO:

INSTALL Command
Location: 1.3 and Release 2 and 3 C:

Function
The INSTALL command makes a formatted disk capable of a minimal
startup of the AmigaDOS environment (assigning SYS: to the booted disk).
The key words to keep in mind here are minimal startup. While a blank,
formatted disk, which has had an INSTALL command issued to it, will
bring up the AmigaDOS window and command line prompt, none of the
AmigaOOS commands will function unless invoked with their full
pathnames.

If you wish to copy a bootable disk by formatting a new disk and
copying each file from it one by one, you'll have to INSTALL the system
information on the new disk in order for it to be accepted at the Insert
Workbench Disk prompt.

With Workbench 1.3, additional functions were added to INSTALL to
help the user identify and destroy "viruses," self-replicating computer
programs that may be stored on the initial (boot) block of the disk without
the user's know lege. This also added the ability to remove the boot block
from a disk, making it non-bootable (and less susceptible to viruses).

While INSTALL is meant to be used on your own AmigaOOS format
disks, it also can install a boot block on non-AmigaDOS disks as well. You
should be very careful only to use it on your own disks, because installing a
boot block on auto-booting game disks will probably destroy the disk.

1.3 Format
INST ALL [DRIVEl drive [NOBOOn [CHECK]

Release 2 and 3 Format
INSTALL [DRIVEl drive [NOBOOn [CHECK] [FFS]

Explanation of Parameters and Keywords

240

[DRIVE] drive The disk drive in which the disk you wish to make
bootable resides. The DRIVE keyword is optional. Valid values for drive
are dfO:, dfl:, df2:, and df3:.

INSTALL

[NOROOT] This keyword, added in version 1.3, can be used to clear
the boot block, but not make the disk boatable. This can be used to get rid
of unwanted information stored by viruses on the boot block, without
making the disk boatable. Note that the NOBOOT option will write out a
new boot block even if the disk is not set up in the standard DOS format.

I CHECK] This option, added in Workbench 1.3, is used to check if the
disk is boatable, and if it contains the standard Commodore-Amiga boot
code. When the CHECK keyword is used, the command prints the message
No bootblack installed if the disk is not boatable, Appears to be normal
Vl.21V1.3 bootblack or Appears to be Release 2 and 3 FFS bootblack if the
disk is boatable and contains standard boot code, or May not be standard
Vl.211.3 bootblock if the disk is boatable and contains non-standard boot
code. The command also sets a return code of zero if the disk is not
boatable or has standard boot code, and a code of 5 (WARN) if it contains
non-standard boot code.

[FFSJ Normally, the disk will be given a boot block of the type used
by the filing system for which it was formatted (old file system or Fast File
System). Use of this keyword will force a Fast File System boot block to be
installed. As of version 2.1, this keyword has no effect-presumably,
Commodore decided that there was no valid reason to install an FFS boot
block on a non-FFS disk.

Examples

1. Install boot files on the disk presently inserted in disk drive dfl:.

INSTALL DRIVE dfl:

2. Install boot files on the disk currently residing in the internal system
drive dfO:.

INSTALL dfO:

Note: TNST ALL does not prompt you for the disk to be inserted. For
most owners of single-drive systems, this makes a direct INSTALL to drive
dfO: difficult. Typically, the place where AmigaDOS commands are found
by the system (the C: command directory) is assigned to dfO:. If you insert
the disk you wish to install to ahead of time and then type INSTAl ,l ,

DRIVE dfO: I you'll be prompted to insert the disk with the command
library on it in any disk drive. Once you do so, INSTALL puts boot files on

241

INSTALL

the disk with the command library, which was not where you wanted the
files installed and was bootable to begin with.

The following procedure will get single-drive users around this
limitation. Put your Workbench or CLI disk into the drive and type:

INSTALL ?

When the command template (DRIVE/A etc.) appears, eject that disk from
the internal drive and insert the disk you want to install or check. Type

DFO:

3. Check the boot code on the disk that is currently in drive dfl:.

INSTALL DRIVE dfl: CHECK

IPREFS Command
Location: Release 2 and 3 C:

Function

242

IPREFS manages the new Preferences scheme introduced in Release 2. It
reads all of the preference setting files in the ENV:Sys directory, and puts
their settings into effect. IPREFS stays in memory, and requests to be
notified if any of these settings files are changed, so that it can update the
settings as soon as a change occurs.

In order to correctly set the display and overscan settings, IPREFS
must close the Workbench screen, if it has been opened before IPREFS
runs. In order to do this, the user must close any windows (such as the Shell
window) that has opened on the Workbench screen. (Intuition will print the
message "Intuition is attempting to reset the Workbench screen. Please
close all windows except drawers.") If you get this message every time you
boot up your system, you probably have added a new command line
somewhere in the startup-sequence which creates some output, causing the
Workbench screen to open before IPREFS has run. The simple solution is
to redirect the output of any new command line to NIL:. If the program is
called "MYCOMMAND", for example, and it takes the command argu
ments "arguments", change the command line from "MYCOMMAND
arguments" to "MYCOMMAND >NIL: arguments".

Release 2 Format
IPREFS [QUIT]

Release 3 Format
IPREFS

Explanation of Parameters and Keywords

JOIN

[QUIT] Under Release 2, you may run IPREFS a second time using the
optional QUIT keyword to unload the program, and prevent it from chang
ing the preferences as they are updated. Under Release 3, this option was
removed.

Examples
None. Under normal circumstances, this program is run automatically by
the startup-sequence script, and any attempt to run it again results in a
requested box that says "ERROR: Attempt to run multiple instances of
IPrefs! New instance cannot start."

JOIN Command
Location: 1.3 and Release 2 and 3 C:

Function
JOIN lets you merge the contents of several files into a new file. Files are
merged in the order given to JOIN, and none of the original files are
changed or deleted.

Format
JOIN name} name2 ,,,,,,,,,,,,, AS or TO destname

Explanation of Parameters and Keywords
name} name2 '"'''''''''' The names of the files you want merged togeth
er. Under versions prior to Release 2, a minimum of two filenames must be
given, with a space between each name, and a maxium of fifteen can be
specified. These limits were removed in version Release 2. Version Releas
es 2 and 3 also allow you to use pattern matching to specify the names of
the files to be merged.
AS or TO destfile The name of the file into which the contents of all
tiles preceding the AS or TO keyword (one of which is required) will be
merged; destname can be a new or old file, but it cannot be any of the files

243

JOIN

which precede the AS or TO keyword. If destname already exists, its
previous contents will be replaced. The TO keyword was added in Work
bench 1.3.

Examples
1. Merge two files (Dick and Jane) in the current directory into a file
(HusbandAndWife) in the same directory:

JOIN Dick Jane AS HusbandAndWife

2. Merge four files, from various drives, devices, and directories into one:

JOIN myparty :spritzers/white/chablis df1:softdrinks/
cola/moxie RAM:mydate AS ":party/animal/March 25
1986"

LAB Command
Location: 1.3 C: Release 2 and 3 Internal

Function
LAB is used within command sequence files to define a location in the
command file to skip to using the SKIP command. See Chapter 5 for
complete information on command sequence files.

1.3 and Release 2 and 3 Format
LAB string

Explanation of Parameters and Keywords

244

string A "signpost" or label that can be used by a SKIP command to
jump to the spot in the command file where a specific LAB statement is
located. Once jumped to, command file execution continues with the
commands following the LAB statement.

LIST

Example
Define a location called DontDo that may be jumped to by a SKIP instruc
tion:

IF EXISTS work. backup
SKIP DontDo
COpy work work.backup
LAB DontDo
RENAME work work. old ...

LIST Command
Location: 1.3 and Release 2 and 3 C:

Function
Displays the name, size, protection status, time and date of creation, and the
Amiga filing system block numbers of (a) a directory, (b) a selected portion
of a directory, or (c) a single file. LIST also displays any comments at
tached to a file by a FILENOTE command.

Here's an example of a typical LIST output:

Directory":" on Wednesday 12-0ec-85
bagel 20 rwed Today
c Dir rwed Yesterday
fonts Dir rwed Yesterday
lox 1921 rwe- 1O-Dec-85
: A history of Nova Scotia's Finest
!ibs Dir rwed Yesterday

Oir rwed Yesterday
2 files - 4 directories - 7 blocks used

00:57:23
23:49:01
23:49:01
14:29:54

23:49:01
23:49:01

The file and directory names are listed at the left. To the right of each
name is additional information about the file. The first number indicates
each file's size in bytes (directories are shown by the letters Dir).

The protection flags currently turned on for each item (see the PRO
TECT command for further information) are listed next, then finally the
date and time the item was created or last updated. Any comment attached
to a file or directory by the FILENOTE command appears directly beneath

245

LIST

the file's information line in the LIST display and is preceded by a colon
(:).

With 1.3, a formatting option was added which allows you to output
the directory listing in a customized text display.

1.3 Format
LIST listname [P or PAT pattern] [KEYS I [DATESI [NODATES]
[TOdevice or filename] [SUB string] [SINCE date] {UPTO date]
{QUICK] {BLOCK] [NOHEAD] [FILES] [DIR] [LFORMAT =stringJ

Release 2 and 3 Format
LIST listname [P or PAT pattern I [KEYSI [DATESI [NODATESJ [TO
device or filename] {SUB string] [SINCE date] [UPTO date] [QUICK]
[BLOCK] [NOHEAD] [FILES] {DIR] [LFORMAT =string] [ALLI

Explanation of Parameters and Keywords

246

listname This can be the device name or volume name of a disk, a
directory, or the name of a specific file. As of Workbench 1.3, this name
may include a pattern. Thus, LIST #?info gives a list of all the files ending
in the fi ve characters" .info". This eliminates the need for the PAT option,
below.

[P or PAT pattern] When you use this option, the P or PAT keyword
must precede the pattern. A pattern allows you to specify a number of files,
each of which has some common characteristic (see Chapter 3 for more
information on creating AmigaDOS patterns). Since recent versions of
LIST allows you to use patterns in listname, this option is no longer need
ed.

[KEYSJ Specifying this option includes the block number associated
with each file and directory displayed. The AmigaDOS filing system
automatically assigns and uses block numbers to keep track of things. Each
file and directory has a single, unique block number. The block number on
the display appears to the left of the file length (or Dir).

[DATES J Includes file and directory creation date and time informa-
tion in the LIST display. DATES is usually optional since LIST defaults to
displaying creation dates and times unless either QUICK or NODATES is
used.

[NODATES I Instructs LIST to suppress the display of file and directory
creation date and time information. NODATES is optional.

LIST

[TO device orfilename] Selects where the output of LIST is to be sent;
device or filename may be any valid AmigaDOS filename or a logical
device known to the system. If a file of the same name already exists, the
existing file will be deleted and a new file with the same name is created.
For this reason, if TO device orfilename is a file that has been protected
from deletion with the PROTECT command, LIST will fail. If TO device or
filename is not specified, LIST's output is displayed on the system screen.

[SUB string] To use this option, the SUB keyword must precede string,
which can be any character string. LIST then displays only those filenames
or directories which include string. If spaces are included in string, quota
tion marks must enclose it. Since recent versions allow patterns in the
listname, this option has been rendered unnecessary.

rSINCE date] Displays information only for those files and directories
created or modified on or after date; date may be specified in the format
DD-MMM-YY, or as an indirect reference of YESTERDAY, TODAY, or
TOMORROW. The days of the past week, SUNDAY through SATUR
DAY, can also be used as date. See the DATE command for more infonna
tion.

[UPTO date J Instructs LIST to display information only for those files
and directories created or modified on or before date, which is subject to
the same restrictions as the SINCE keyword.

[QUICK] Instructs LIST to display only file and directory names.
However, if the DATES and/or KEYS keywords are specified as well,
LIST displays file and directory names alcng with the information associat
ed with DATES and/or KEYS. As of version Release 2, KEYS no longer
has any effect if QUICK is specified. With either version, you may use the
FILES or DIR option to limit the display to files or directories.

[BLOCK] This option, added in version 1.3, specifies that file sizes be
displayed in terms of 512-byte blocks, rather than bytes.

[NOHEADj This option, new in Workbench 1.3, allows you to sup-
press the "Directory ... " heading on the first line, and the "x files -x directo
ries -x blocks used" footnote on the last line of the listing.

247

LIST

248

[FILES] This option, added in version 1.3, allows you to list only files,
and not directories.

[DIRl This option, also added in version 1.3, allows you to list only the
directories, and not the files.

[LFORMAT = string] The LFORMAT option was added in Work-
bench 1.3 to allow you to customize the text output of the LIST command.
This feature lets you use LIST to quickly generate script files. In order to
send the output to a script file, you must either use the redirection operator
> or the TO option. If you use the TO option, it is best to put the TO
keyword at the end of the line.

When you use LFORMA T, the output of the LIST command is totally
controlled by the format string that appears after the keyword. This format
string can contain any text that you want to appear as output. At the place in
the text string that you want the names of files and directories to appear,
you use the substitution string %S. This substitution string may be used
more than once in the text, allowing you to use the listing name more than
once per line. If you use the string twice, the first time the relative path will
be substituted for %S, and the second time the file or subdirectory name
(the relati ve path is simply the list of directories you must traverse in order
to get to a specified directory from the current one). If you use it three
times, the first occurrence will be replaced by the relati ve path, and the
second and third by the file or subdirectory name. If you use it four times,
the first and third will be replaced by the relative path, and the second and
fourth by the file or subdirectory name.

As of version Release 2, several new substitution strings were added
to extend the flexibility of this listing. These are:

String
%A
%B
%C
%D
%F
%K
%L
%N
%P
%T

Information Substituted for String in Output
Attributes (protection flags)
Size of file in blocks
Comments attached to the file
Date of file creation or last update
The complete absolute path (starting with the volume name)
Key block number
Length of the file in bytes
Name of the file
The relative path (starting at the current directory)
Time of creation or last update

LIST

Version 2.1 adds two more substitution strings. These are:

String
%E
%M

ALL

Examples

Information Substituted for String in Output
Extension only (the part of the filename after the last period)
Filename minus the extension (everything up to the last
period)

This option, added in version Release 2, lists the contents of
all of the subdirectories of the specified directory, as well as
the directory itself.

1. Display standard LIST information about the contents of the current
directory on the screen:

LIST

2. Output all standard LIST information and the block number of each item
in the current directory to the system printer:

LIST KEYS TO PRT:

or

LIST> PRT: KEYS

3. Display standard LIST information about each file in directory water/
sports whose name contains the character string skin:

LIST water/sports SUB skin

or

LIST water/sports/#?skin#?

Note: Information for both Snorkel & Skin Diving and SkinnyDipping
would be displayed by this example.

4. Output just the names and date information for items in the current
directory beginning with the letters compute that were created or last
updated on or before November 4, 1991. Send the output to a file called
MySelections:

LIST compute#? QUICK DATES UPTO 04-Nov-91 TO
MySelections

249

LIST

5. Create a script file which, when executed, will set the pure bit of every
file in the C: directory:

LIST >RAM:TEMP C:#? LFORMAT "protect %S +p"

This creates a script file called RAM:TEMP which contains a PROTECT
command for each file in the C: directory. To set the pure bit in each file,
you need only EXECUTE RAM:TEMP.

LOADWB Command
Location: 1.3 and Release 2 and 3 C:

Function
The LOADWB command is used to start the Workbench program. This
command is usually issued automatically at boot time, as part of the
s:startup-sequence batch file. When the Workbench is started, it notes the
search paths that are currently in effect, and sets these same paths for each
CLl or Shell that is started from a Workbench icon.
Versions prior to Release 2 will cause the Workench to reinitialize if you
issue a LOADWB command after the Workbench is already loaded. Under
Release 2 and 3, it will merely give you a message saying that the Work
bench is already loaded.

1.3 Format
LOADWB [DELAY or -DEBUG]

Release 2 and 3 Format
LOADWB [DELAYI [-DEBUG] lCLEANUP] lNEWPATHl

Explanation of Parameters and Keywords

250

[DELAYl The DELA Y option was added in version 1.3 to create a
three-second pause before the program returned. This pause allows the
floppy disk activity that LOADWB initiates to stop before the next com
mand in the script is executed. If there is no pause and the next command
starts before LOADWB finishes using the disk, both commands have to
share the floppy disk, which causes disk access to slow down and causes
the disk heads to make a loud "thrashing" noise.

[-DEBUGl The -DEBUG option, also added in version 1.3, enables a
new Workbench menu which is normally not displayed. This menu con
tains two items that are provided for the convenience of programmers. The

LOADWB

first item, Debug (called ROMWack on the Release 2 and 3 menu), exe
cutes the ROMW ACK debugger, a program which communicates through a
9600-baud terminal connected to the serial port. If no such terminal is
connected, your computer will appear to lock up, since not even the mouse
will move until it receives its commands from the remote terminal. The
second item, Flushlibs, causes Workbench to expunge any libraries, devic
es, fonts or other resources that are resident in memory, but are not current
ly being used (just like the FLUSH option of the A V AI command). This
frees up the memory used by these resources, allowing programmers to
more easily check if there programs have freed all of the memory that they
allocated.

In version 1.3, either DELAY or -DEBUG may be used, but not both
at the same time.

[CLEANUP j This option, added in Release 2, automatically performs a
"Cleanup" operation on the Workbench window, assuring that the disk
icons are neatly lined up.

[NEWPATHj This option was added in Release 2 to allow you to
change the path associated with the Workbench. Normally, Workbench
remembers the path of the CLI or Shell window that issued the LOADWB
command, and assigns that same path to each Shell that is started from an
icon. You can change that path at a later time by issuing a LOADWB
NEWPATH command. This causes the Workbench to use the path associat
ed with the Shell window from which that command was issued.

Examples
1. Load the Workbench environment and close the CLI window:

LOADWB DELAY
ENDCLI >NIL:

2. Load the Workbench environment with the DEBUG menu activated:

LOADWB -DEBUG

3. Add the SYS:REXX directory to the path that Workbench assigns to new
Shell windows that are opened from an icon:

PATH SYS:AREXX ADD
LOADWB NEWPATH

251

LOCK

LOCK Command
Location: 1.3 and Release 2 and 3 C:

Function
LOCK was added to Workbench 1.3 to enable or disable write protection of
a hard drive partition that uses the Fast File System. Under Release 2 and 3,
its scope was broadened to include all kinds of disks, including floppies.
Once write protection is set, it remains in force until reset with another
LOCK command, or until the system is rebooted. If an optional password is
used to lock the drive, the same password must be used to unlock the drive.

1.3 and Release 2 and 3 Format
LOCK drive [ON or OFF] [password]

Explanation of Parameters and Keywords
drive The device name of a disk or disk partition. Under 1.3, it must be
a hard drive that is formatted with the Fast File System, but under Release 2
and 3, it can even be a floppy drive. This command works differently with
floppy drives than any other command. Normally, commands that concern
a disk that is mounted in the floppy drive apply only to that particular disk.
When a floppy drive (such as dfl:) is locked, however, you cannot write to
any disk in that drive until the lock is removed.

[ON or OFFJ These optional keywords can be used to write protect the
disk (LOCK ON) or write enable the disk (LOCK OFF). If neither is
specified, the disk will be write enabled.

[password] An optional password of the user's choosing (in early
versions, this had to be four characters long, but now can be any length).
This password is a normal text string, and as such, if it contains spaces it
must be enclosed in quotes. If a password is used as part of the LOCK ON
command, the same password must be used in the LOCK OFF command in
order for the disk to be write enabled.

Example
1. Write protect hard drive DHO:, with a password offish.

LOCK dhO: ON fish

252

MAGTAPE

[REW or REWIND] This option rewinds the tape to the beginning.

[SKIP numfilesl This option moves forward past a given number of
files. The number numJiles indicates how many files to skip.

Example
Rewind the tape on a A3070 tape unit whose SCSI unit number is set to
zero, and which is attached to a Commodore SCSI controller:

MAGTAPE JEV1CE scsi .ripvice UNTT 0 REWTND

MAKEDIR Command
Location: 1.3 and Release 2 and 3 C:

Function

254

MAKEDIR creates a new directory, where lists of file and directory names
may be stored. This allows you to create a multi-tiered filing system within
a disk volume.

Suppose you wanted to separate your written correspondence by
category and recipients. Your business correspondence usually deals with
accounts payable and receivable, with some occasional miscellaneous
letters. Your personal correspondence is mostly letters to your family and
friends, letters concerning your personal bills, and some other occasional
things. You might decide that you want things organized like this:

MAKEDIR

Planned Directory Form

Root

Business

I I
Receivables Payables Misc. Personal

I

91 92 Family Bills Friends Misc.

I
I
I I

Larry Curly Moe

Assuming that you begin with the root directory of an AmigaDOS
disk, this is one of the possible sequences of AmigaDOS commands that
will set up such a directory structure:

255

MAKEDIR

256

MAKEDIR Business
MAKEDIR Business/Receivables
MAKEDIR Business/Receivables/86
MAKEDIR Business/Receivables/87
MAKEDIR Business/Payables
MAKEDIR Business/Misc
MAKEDIR Personal
CD Personal
MAKEDlR Family
MAKEDIR Friends
MAKEDIR Bills
MAKEDIR Mi sc
CD Family
MAKEDIR Larry
MAKEDIR Moe
MAKEDIR Curly
CD II

Let's examine how this was created, starting with the business corre
spondence first. Note the top-down order in which the directories were
created. MAKEDIR builds only one subdirectory at a time. When you type
MAKEDIR Business/Recei vables/86, the only directory entry created is
86, the rightmost portion of the specified directory path. For the command
to execute successfully, both the Business directory and a subdirectory
within it called Receivables must have already been created.

As the business correspondence MAKEDIR commands illustrate, you
can expend a lot of keystrokes typing pathnames. Just look at all the times
you had to type Bus ines s. You can use the CD command to signifi
cantly reduce the number of keystrokes required. Look at the sequence of
commands again, paying particular attention to the last half, in which the
personal correspondence directories were created. After the MAKEDIR
Personal used to create the directory for personal letters, a CD Personal
changed the current directory so that the pathname Personal could be
omitted from all subsequent MAKEDIRs. CD was used again to "drop
down" into the Family subdirectory and keep unnecessary keystrokes to a
minimum. Note that once again, care has been taken to insure that the

MAKEDIR

directories are built from the top down. A final CD II at the end backs you
up two levels to your starting point (see the CD command for more infor
mation on its use).

For information on removing directory entries, see the DELETE
command; for more information on directory structures, see Chapter 3,
'The Filing System."

I .3 and Release 2 and 3 Format
MAKEDIR name

Explanation of Parameters and Keywords
name The name of the directory to be created; name must be specified.
MAKEDIR fails if name is the name of a file or subdirectory which already
exists in the "parent" directory (the next highest directory in the hierarchy).
MAKEDIR also fails if a nonexistent pathname is specified.

Examples

1. Create a subdirectory called YeliowPages in the current directory:

~~KEDIE YellowPages

2. Create a subdirectory called Dictionary in the root directory of the disk
inserted in drive df1:.

MAKEDIR dfl:Dictionary

3. Create a subdirectory called Encyclopedias in the root directory of the
current drive, create five subdirectories within Encyclopedias, and then
change the default directory to the root of the current drive:

MAKEDIR :Encyclopedias
CD :Encyclopedias
MAKEDIR "World Book"
MAKEDIR Grolier
MAKEDIR Britannica
MAKEDIR "World Book"
MAKEDIE "Funk & Wagnals"
CD :

4. Create a subdirectory called Lightning on the Amiga's RAM disk:

MAKEDIR RAM:Lightning

257

MAKEDIR

5. ASSIGN a logical device name QWIK: to the directory created in
example 4 and create a subdirectory called WarpSpeed in it:

ASSIGN QWIK: RAM:Lightning
MAKEDIR QWIK:WarpSpeed

Note: This results in creating the same subdirectory as

MAKEDIR RAM:Lightning/WarpSpeed

MAKELINK Command
Location: Release 2 and 3 C:

Function
This command creates links, which are files that point to other files.
Whenever programs ask for the link file, they actually get the file to which
the link points. Links are handy when different programs want to reference
the same file in several directories. For instance, the icons for document
files often try to load the document into a reader program like More, but
they may specify this program as C:More or Sys:Utilities/More, or
C:MuchMore. To satisy all of these types of document icons, you could
make three copies of the reader program, but that would take up unneces
sary disk space. With links, you can have one copy of the reader program,
and two links that direct other programs to that file.

Release 2 and 3 Format
MAKELINK [FROM] fromname [TO] toname [HARD] [FORCE]

Explanation of Parameters and Keywords

258

[FROM] fromname The name of the link file to create. The FROM
keyword is needed only if the order of fromname and toname are reversed.

[TO] toname The name of the target file to which the link file will
refer. This file must be in the same volume asfromname, and cannot be a
directory name unless the FORCE option is used.

[HARD 1 This optional keyword is used to indicate that the link is a
hard link-one in which the link and its target are on the same volume.
Currently, the command does not support soft links, in which the link file
and its target are on different volumes.

MOUNT

[FORCE] This optional keyword is used to create directory links, in
which the link file refers to a directory rather than a file. These types of
links can create confusion within the file system, particularly if the target
directory contains link files, or the link refers to a target which is its own
parent directory. MAKELINK will not let you create certain types of links
which are obviously confusing, but you should still exercise care.

Example

Create link files C:More and C:MuchMore that refer to the file
SYS: Utilities/More:

MAKELINK C:More SYS:Utilities/More
MAKELINK C:MuchMore SYS:Utilities/More

Whenever a file tries to run the program C:More or C:MuchMore, it
will run SYS:UtilitieslMore instead.

MOUNT Command
Location: 1.3 and Release 2 and 3 C:

Function
This command allows AmigaDOS to recognize an external hardware
device (such as a 51f4-inch disk drive or a second serial port) as a DOS
device. It can also be used to add a virtual device like a recoverable RAM
disk, or a speech output device. MOUNT is most often issued as part of the
startup-sequence script file in the s directory of the Workbench disk, so that
the device is automatically configured each time that the Amiga boots up.

MOUNT looks for a description of the device requested in the file
DEVS:Mountlist, or an optional FROM file. The Mountlist file is a text file
which describes various attributes of the device. This file shares some of
the traits of C language source code files. If more than one description
appears on a line, they must be separated by semicolons, hexadecimal
numbers must start with the characters Ox, and comments must start with
the characters 1* and end with *1. Each entry in the Mountlist ends with the
pound sign character (#).

The standard Workbench 1.3 disk comes with a sample Mountlist file
that can be used to mount an external 514-inch drive as device DF2:. This
device description looks like:

259

MOUNT

260

DF2:Device = trackdisk.device
Unit = 2

Flags = 1
Surface = 2
BlocksPerTrack 11
Reserved = 2
Interleave = 0
LowCyl = 0; HighCyl = 39
Buffers = 20
BufMemType = 3

The most important line is the first, which tells AmigaDOS that the
device driver for this device is trackdisk.device. Since this device driver is
an intrinsic part of the operating system, it need not be loaded in from disk.
External device drivers can be loaded from disk if necessary, however.
AmigaDOS will look for such drivers in the path specified, or in the DEVS:
directory if no path is included in the device driver name.

The rest of the information tells AmigaDOS what kind of disk drive
this is-it's double-sided (Surface = 2), has 40 tracks per side (LowCyl =
0; HighCyl = 39), with 11 sectors of 512 bytes per sector (BlocksPerTrack
= 11). This means that the total available storage on the drive is 440K (.5K
x 2 x 11 x 40).

As configured, this list assumes that you have an external 3V2-inch
drive, so it mounts the external drive as DF2:. If you don't have a 31/2-inch
drive as DFl:, you'll want to mount the 514-inch drive as DFl: (it should
always be last in the chain). To do this, make two changes to the Mountlist
file.

First, change the device name from DF2: to DFl:. Second, change the
unit number from 2 to 1. Now the command MOUNT DF2: mounts the 514-
inch drive as DF2:.

The MOUNT command also can be used to mount devices other than
file storage devices. The Mountlist file in the DEVS: directory contains a
sample mountlist for a non-buffered serial device named AUX:, which
shares the standard serial port hardware with the buffered device SER:

MOUNT

AUX: Handler = L:aux-handler
Stacksize = 1000
Priority = 5

Instead of describing the storage capacity of the device, this list
merely shows where to find the handler (a program whose purpose is
similar to that of the device driver), the size of the stack used by that
program, and the priority at which it runs.

Versions 1.2 and higher of CLI commands such as FORMAT and
DISKCOPY have been altered so that they work with devices which have
been mounted. Note, however, that you still can't use DISKCOPY between
devices that aren't identical in storage size and layout. Thus, while you can
use DISKCOPY between two 5'A-inch drives, two hard disk partitions of
equal size, or two 3V2-inch drives, you can't use DISKCOPY from a 51/'!-inch
drive to a 3Y2-inch drive.

AmigaDOS Release 2 and 3 users should note that as of version 2.1, a
DOSDrivers drawer has been added to the DEVS directory. This directory
was designed to hold new Mountlist-style files with icons. These files differ
from a normal mountlist in that (a) they contain only one device description
per file (b) the name of the device is the name of the file and is not speci
fied in the text of the mountlist and (c) they do not end with a pound sign.
Any device whose mountlist file is dragged into the DOS Drivers drawer
will automatically be MOUNTed when the Workbench is loaded. Mountlist
files which you do not want to be mounted automatically are stored in the
DOSDrivers drawer of the Storage directory.

1.3 and Release 2 and 3 Format
MOUNT device [FROMjilenamej

2.1 Format
MOUNT device(s) [FROMjilename]

Explanation of Parameters and Keywords
device This is a AmigaDOS device name, such as DF2:, DHO:, or
AUX:, which refers to either a hardware device like a disk drive or serial
port, or a logical device such as a RAM disk. The device name should be
the same as the label given an entry in the Mountlist file, and the device
driver or handler file indicated by that Mountlist should be available to the

261

2. To tum off the write protection, you'd use the command:

LOCK dhO: OFF fish

or just

LOCK dhO: fish

MAGTAPE Command
Location: Release 2 and 3 only C:

Function

MAGTAPE

MAGTAPE was added to Workbench Release 2 to provide a means of
controlling the Commodore A3070 tape backup unit. This tape drive is a
sequential device, like a video or audio tape unit, so you must manually
"fast forward" or "rewind" to get to a particular file, rather than just skip
ping directly to it, as you would on a random-access device like an audio
CD player or a disk drive. The MAGTAPE command allows you to rewind,
retension, or skip a given number of files on the tape.

Release 2 and 3 Format
MAGTAPE [DEVICE devicename] [UNIT unitnum] [RET or
RETENSION] lREW or REWINDl [SKIP numfiles [

Explanation of Parameters and Keywords
[DEVICE devicename]
[UNIT unitnum] By default, MAGTAPE assumes that the SCSI unit
number of the A3070 tape drive is set to four (the factory setting), and the
drive is connected to a Commodore SCSI controller, whose device drive
name is scsi.device. If you wish to change the SCSI unit number of the tape
drive, or use it with a controller other than Commodore's, you must specify
both the device name of the SCSI controller and the unit number of the tape
drive, using the DEVICE and UNIT keywords. Normally, you can change
the unit number of the tape drive by setting switches on the drive itself. If
you do not know the device name of your SCSI driver, you can obtain it
from the controller's manufacturer. This name will end in ".device", as in
Commodore's "scsi.device".

[RET or RETENSIONl This command is used to re-tension the tape,
by running it to the end, and then rewinding.

253

MOUNT

262

system. Some of the standard MOUNTable devices are described in Chap
ter 4.
device(~) Under Workbench 2.1, you can list multiple device names,
and thus mount several devices with a single MOUNT command. Also, the
MOUNT command supports mounting devices from the new icon-based
mountlist files, as well as conventional entries in the DEVS:Mountlist file.
If the device name ends in colon (such as SPEAK:), MOUNT will look for
an entry in DEVS:Mountlist, or whatever other Mountlist file you specify.
If the device name doesn't end in a colon (for instance SPEAK), MOUNT
will look for the file of that name in the DEVS:DOSDrivers or
SYS:StoragelDOSDrivers drawers (wildcards can even be used to MOUNT
several device files). If it doesn't find the file in either place, it will look for
a corresponding entry in the Mountlist file.
[FROM filename] This option, added in version 1.3, allows you to
specify a file other than DEVS:Mountlist as the place to look for the
description of the device to be MOUNTed.

There are a number of keyword options that can used in the Mountlist
file to describe a device. Not all of them are required for all devices-in
fact, most are optional.

Keywords include:

Handler = The name of the device handler file.
EHandler= The name of the environment handler file (Release 2

FileSystem =
Device =
Priority =

Unit =
Flags =
Surfaces =

and 3).
The name of the file system file.
The name of the device driver file.
The task priority of the process;
5 is customary for handlers, 10 for file systems.
The unit number of the device.
Flags setting for OpenDevice call (usually 0).
Number of write surfaces.

BlocksPerTrack = The number of disk blocks (sectors) per track (cylin

Reserved =
PreAlloc =

der).
The number of blocks used for boot block; usually 2.
The number of blocks reserved at the end of a parti
tion; used with a few IBM-style hard drives. Usually
set to O.

Interleave =

LowCyl =
HighCyl =

Stacksize =

Buffers =
B ufMemType =

Mount =

Max Transfer =

Mask =

GlobVec =

Startup =

BootPri =

MOUNT

Interleave value (controls DOS interleave, not physi
cal hard drive interleave).
Starting cylinder to use for this device.
Ending cylinder to use for this device. Total number
of cylinders = HighCyl-LowCyl+ 1.
The amount of working memory to allocate to the
process.
Number of cache buffers to use with the device.
Type of memory to use for cache buffers.
o or 1 = Any
2 or 3 = CHIP
4 or 5 = FAST
If this value is positive, MOUNT loads the handler or
driver software as soon as the device is MOUNTed,
rather than the first time the device is accessed.
Workbench 2.] adds ACTIVATE as a synonym for
this keyword.
The maximum number of blocks transfered at one
time; used with Fast File System devices.
Address mask that specifies the memory range that
can be used for DMA transfers; used with Fast File
System.
If the handler is written in BCPL, it needs a global
vector. A value of 0 sets up a private global vector;
anything else indicates that the handler is written in C
or assembly language, and no global vector is needed.
If this keyword isn't used, the shared AmigaDOS
global vector is used.
A string passed to the handler, device, or file system
on startup. This string is passed as a BPTR to a
BSTR.
The boot priority of a bootable device, expressed as a
number between -J 29 and] 27. A value of -129
indicates that the device isn't bootable, as is appropri
ate for use with the recoverable RAM disk if you
don't want to boot from that device on reset.

263

MOUNT

DosType =

Baud=
Control=

ForceLoad=

Indicates the format of the file system used. If the
Fast File System is used. this value should be set to
Ox444F5301 (DOS/l). Other types introduced in 2.1
include Ox444F5302 (DOS12), an international
version of the old file system that allows mixed-case
accented characters in filenames. and Ox444F5303
(DOS/3), an international version of the Fast File
System.
Serial device speed (in bits per second).
Serial device control parameters-word length,
parity, and stop bits (e.g. 8Nl, 7El).
A new 2.1 option. When this value is zero (the
default), the system will check the resource list to see
if the file system named in the entry has already been
loaded. If it has, the system will use that one, instead
of loading a new copy. When ForceLoad is set to one,
however, a new version will always be loaded from
disk.

Examples
Mount an externa1514-inch disk drive as device DF1:

MOUNT DF1:

NEWCLI Command
Location: 1.3 C: Release 2 and 3 Internal

Function

264

NEWCLI opens a new CLI window on the system display. The new
window sports the same gadgets (drag gadget, back/front gadget(s), sizing
gadget, and under Release 2 and 3, zoom and close gadget) as a CLI
process that's started either by double-clicking the CLl icon from the
Amiga Workbench or by booting up a specially prepared CLl disk. A
window created by NEWCLl becomes the current, active window immedi
ately after NEWCLl is executed. It inherits the current directory from the
CLl from which NEWCLI was executed.

NEwell

Every eLI window represents an independent eLi environment. You
may change the active eLI window by moving the mousc pointer within
any eLI window and clicking.

The default window title of eLI windows opened by NEWeLl with
no title specified is Nnv CLI (AmigaSheli under Release 2 and 3). The ncw
eLi's prompt line will be preceded by the message Nnv CLI task n, wherc
n is the task number assigned to the neweLl window.

The task number associated with the neweLl window is different
from all other eLi windows currently open on the screen. For instance, if
two eLI windows are created by issuing one NEWel J command, the
command line prompt of the first eLI is I> and the command line prompt
of the second is 2>. The eLi prompt of a window created by issuing
another NEWeLl is 3>. A neweLl (task 3) can be created by issuing a
NEWeLl from either of the two original eLI windows.

The resolution of the AmigaDOS screen display is 640 pixels (picture
elements) wide and 200 pixels high. Think of an invisible 640 x 200 grid
superimposed over your Amiga's display. AmigaDOS creates new eLI
windows in a location that starts at the top, left edge of the screen, and
extends 640 pixels wide by 100 pixels high. All neweLl windows are
created in the same place-in the same size-unless you specify otherwise.
This means that the third eLi window appears on top of the second, and
you'll have to drag one out of the way if you want to usc both.

The obvious question is, aside from impressing your friends and
running a computerized version of a three-ring circus, what good is
NEWeLl? One obvious use is preventing a helpful display of information
from scrolling off the screen. If you're attempting to clean up or reorganize
a directory full of files, having to issue repetitive DIR commands to refresh
your memory can be tedious, especially considering AmigaDOS's less than
speedy directory searches. Opening a new window with NEWeLl and
issuing a DIR command brings up a directory display which may be sent
out of sight and recalled at will by using the front and back gadgets of the
two active windows. Your file maintenance commands may be issued from
the original eLI, whose scrolling display will not affect the directory
display in the neweLl window.

You can even start a process in one eLI window and, while it's
executing, make another existing eLI the active environment and start up
another process in it. Multiple AmigaDOS functions can be set churning
away in separate windows. While this multitasking is somewhat similar to

265

NEwell

the facilities offered by the RUN command, opened CLI windows remain
available until closed by the ENDCLI command.

Versions prior to Release 2 support a maximum of 20 open CLl
windows. This limit is not present in Release 2 and 3.

1.3 Format
NEWCLI [AUX: or CON:hpos/vpos/widthiheiglzt/windowtitle] [FROM
filename]

Release 2 and 3 Format
NEWCLI [AUX: or CON:hpos/vpos/widthiheight/windowtitle/options]
[FROM filename]

Explanation of Parameters and Keywords

266

[A UX: or CON:hpos/vpos/widthiheight/windowtitle] CON: lets you
specify the size, position, and title of the new CLI window. (If the
NEWCON: device has been MOUNTed under 1.3, NEWCON: can be
substituted for CON :.) CON: is required if any of the following parameters
are specified.
• hpos is the horizontal position of the top left corner of the window

(expressed as the number of pixels in from the left edge of the screen). If
a value for hpos is omitted, it's assumed to be zero.

• vpos is the vertical position of the top left corner of the window (ex
pressed as the number of pixels down from the top edge of the screen). If
a value for vpos is omitted, it's assumed to be zero.

• width and height, which must be specified, give the size of the window
in pixels. The maximum size for a CLI window is the screen size, 640 /
200 pixels. The minimum is 90 / 25 pixels. Unless a window of exact
size is required, it's usually easier to resize and drag a default size
NEWCLI window (200 / 100 pixels) to a desired size and screen loca
tion rather than typing the required size parameters.

• windowtitle,which is optional, allows you to enter the text of a title to
appear in the title bar. If you want to set windowtitle,all preceding
parameters must also be set. If you don't enter any text for window title,
the title bar is left blank. Even if you want the title bar to be blank, the
last slash (I) following height is required. Titles with spaces can be
entered, but quotation marks must enclose the entire list of NEWCLI
parameters-see example 3 below. (The default title, if you do not
specify any parameters, is New CLI.)

NEwell

• options A number of options were added to the console window in
AmigaDOS Release 2 and 3 to expand its usefulness. The CON: window
description can have one or more options entries appearing after the title,
each separated by a slash. These options include:

AUTO The window opens automatically when the program
that opened it requires input or produces output.

CLOSE A close gadget is included in the window border. This
is the default case if no options are selected.

BACKDROP The window type is changed to backdrop, which
means that it appears behind all other windows on the
Workbench screen, and you cannot depth-arrange,
move, or resize it (except by using the zoom gadget).

NOB ORDER No visible line is drawn around the window, although
the zoom and close gadgets will still appear above it.
If you zoom this window to full size, those gadgets
will disappear, and you will have a full-screen
window that can't be sized or moved.

NOD RAG The window can't be dragged. It will have a zoom,
depth, and size gadget, but no close gadget.

NOSIZE The window will not have zoom, size, or close
gadgets. Only a depth gadget will appear.

SCREENname The window will open on the public screen whose
name is name. For example, to open the CLI window
on the public screen named Fred, you would add /
SCREENFred to the end of the window description.
This option only works if a public screen of the
specified name is already open.

SIMPLE Chooses the simple window refresh scheme. If you
enlarge such a window, the text expands to fill the
available space, allowing you to see more informa
tion, including information that had scrolled off the
screen. This is the default refresh type for Release 2
and 3 Shell windows if no option is specified.

SMART Chooses the smart window refresh scheme. If you
enlarge thi s kind of window, existing text is not
redrawn. This is the kind of CLI window used by
AmigaDOS 1.3 and earlier.

267

NEwell

WAIT The window does not close automatically when the
program that created it terminates. Rather, it waits
until its close gadget is selected (if it has one), or the
user enters the CTRL-\ key combination.

Although CON: and NEWCON: windows are the most likely targets
of a NEWCLI window, you also may direct the input and output of a CLI
window out the serial port, by mounting the AUX: device, and then issuing
a NEWCLI AUX: command. Such a CLI will only be able to effectively
run text-based programs that direct their output to the CLI window, and
cannot be used to cancel requesters like Insert volume Workbench in any
drive.

[FROM filename 1 This option allows you to specify a batch file that is
to be executed automatically when the CLI opens, just like the s:startup
sequence file executes when the initial CLI window opens. Starting with
version 1.3, if you do not specify a startup file, NEWCLI attempts to
execute a default startup file, s:CLI-Startup, if such a file is present in the s:
directory. (A Shell windows executes s:shell-startup if present.) The
default startup file allows you to retain settings, such as the CLI prompt,
which do not carryover from one eLI to the next.

Examples

268

1. Create a new CLl window using AmigaDOS's defaults. The upper left
corner of the new 200 x 100 window will be located at the top left corner of
the screen. The new window will be titled New CLI:

NEWCLI

2. Create a 250 x 125 pixel CLI window in the upper left corner of the
screen. The new window is to have no title:

NEWCLI CON://250/125/

3. Create a new CLI window 450 x 40 pixels, located 25 pixels to the right
and 30 pixels below the upper left corner of the screen. The new window is
to have the title Flying High with CLI:

NEWeLl "CON:25!30/450/40/Flying High with CLI"

4. Create a new CLI that uses the serial port for input and output:

NEWCLI j'l,UX:

NEWSHELL

NEWSHELL Command
Location: 1.3 Alias created by the Shell-startup script Release 2 and 3 Internal

Function
In Version 1.3, NEWSHELL opens an interactive Shell using a NEWCON:
console window, only if the Shell-Seg has been made resident and the
NEWCON: device MOUNTed. This Shell is an enhanced CLI which
supports features such as command aliases, resident commands. and a
prompt that reflects the current directory.

In order to open a Shell window, the Shell-Seg program must have
been made resident with the command
RESIDENT eLI L:Shell-Seg SYSTEM pure

If Shell-Seg has not been made resident, the NEWS HELL command
will open a normal CLl window instead of a Shell window, but will still try
to use a NEWCON: window. If the NEWCON: device hasn't been
MOUNTed, NEWS HELL will use a CON: window instead.

As of Release 2, both the enhanced CLl and enhanced console device
are built into AmigaDOS, and using either the NEWCLl or NEWS HELL
command will open a new Shell window.

1.3 Format
NEWS HELL [AUX: or NEWCON:hpos/vpos/widthiheight/windowtitle 1
[FROM filename]

Release 2 and 3 Format
NEWS HELL [AUX: or CON:hpos/vpos/width/height/windowtitle/options]
[FROMfilenameJ

Explanation of Parameters and Keywords
[AUX: or NEWCON:hpos/vpos/widthiheight/ windowtitleloptions]
NEWCON: lets you specify the size, position, title, and options for the new
Shell window. (If the NEWCON: device has not been MOUNTed, CON:
can be substituted for NEWCON:.) See NEWCLl, above, for details.

As with NEWCLl, NEWSHELL can be used to open an interacti ve
Shell through the serial port, with the command NEWSHELL AUX:.

[FROM filename] This option allows you to specify a batch file that is
to be executed automatically when the Shell opens, just like the s:startup
sequence file executes when the initial CLl window opens. If you do not

269

NEWSHELL

specify a startup file, NEWS HELL attempts to execute a default startup
file, s:Shell-Startup, if such a file is present in the s: directory. Use of the
default startup file allows you to retain settings, such as command aliases,
which do not carryover from one Shell to the next.

Example

Create a new Shell window 450 x 100 pixels, located 25 pixels to the right
and 30 pixels below the upper left comer of the screen. If using 1.3, assume
that the Shell-Seg has already been made RESIDENT, and NEWCON: has
been MOUNTed. The new window is to have the title My Shell:

NEWS HELL "NEWCON:25130/450/l00/My Shell"

PATH Command
Location: 1.3 C: Release 2 and 3 Internal

Function
Changes or displays the search path used by AmigaDOS to locate a com
mand file. When you type a command at the CLI prompt, AmigaDOS first
looks for the command file in the current directory-if the file is not there,
DOS looks for it in whatever directory was assigned as the C: directory.
(See Chapter 2 for more information on search paths.) The PATH com
mand allows the user to specify additional directories to be searched after
the current directory but before the C: directory.

This command also may be used to display the current search path.

1.3 Format
PATH [SHOW] [ADD or RESEl1 dir [,dir, dir ...] [QUIEl1

Release 2 and 3 Format
PATH [SHOWJ [ADD or RESET or REMOVE] dir(s) [QUIEl1

Explanation of Parameters and Keywords

270

[SHOWJ This optional key word displays the search path that
AmigaDOS is currently using. Typing the command PATH without
specifiying any directories accomplishes the same thing. The current search
path is displayed in the following format:

PATH

Current directory
Workbench 1.3:System
C:
[ADD] dir(s) The optional ADD keyword allows you to add from one
to ten additional directories to the current search path. The same effect may
be achieved by typing PATH, followed by one or more directory names. The
dire s) parameter is the name of the directory or directories to add. This
directory may be specified relative to the current directory, or the entire
path name may be used to specify it. If more than one directory is added,
each directory name is separated by a space. Each new directory that's
added gets searched after the other user-specified directories, but before the
c: directory.

[RESET dir(s)] The optional RESET key word is used to delete the
current search path and optionally to replace it with one or more directories.
The optional dire s) parameter is the name of the directory to be added to the
search path. This directory may be specified relative to the current directo
ry, or the entire path name may be used to specify it. If more than one
directory is added, each directory name is separated by a space. If no
directory names are specified, the default search path is reset to the current
directory and the C: directory.

[REMOVE dir(s)] The optional REMOVE keyword, added in Release
2, is used to delete one or more directories from the current search path.
The di r(s) parameter is the name of the directory or directories to be
removed from the search path. If more than one directory is added, each
directory name is separated by a space.

[QUIET] This optional keyword was added in version 1.3. It can be used in
combination with the SHOW option to suppress the Please insert volume
xxx requester for disks that aren't currently mounted. When the QUIET
option is used, only the volume name will be diplayed for paths in un
mounted volumes.

Examples
1. Add the System and Utilities directories on the root directory to the
current search path:

PATH ADD :System :Utilities
or

271

PATH

PATH :System :Utilitles
2. Display the current search path, suppressing the Please insert volume
requester for unmounted disks:

PATH SHOW QUIET
or

PATH QUIET

3. Reset the search path to the current directory and the C: directory:

PArI-! RESET

4. Replace the current search path with the Demos and Utilities directories
in the root directory of the disk in the extemal 3V2-inch disk drive:

PATH RESET dfl:Demos dfl:Utilities

PROMPT Command
Location: 1.3 C: Release 2 and 3 Internal

Function
The PROMPT command changes the prompt for the currently active CLI or
Shell. The default prompt for any given CLl or Shell is n>, where n is the
task number associated with that CLI. For instance, if only one CLI has
been started, its prompt is 1>. [ftwo more CLI windows are then started
with the NEWCLI command, their prompts will be 2> and 3>.

When used with a Shell window, PROMPT can automatically display
the current directory as part of the command prompt. The Shell-startup
script file automatically changes the default prompt string of a Shell
window to the task number of the Shell, followed by a period, the current
directory path, a right angle-bracket, and a space.

1.3 and Release 2 and 3 Format
PROMPT prompt

Explanation of Parameters and Keywords

272

prompt The string you want to substitute for the active CLI's prompt.
If no value for prompt is specified, the CLI prompt will be changed to >.
The string specified in prompt may be a maximum of 59 characters. If it
contains spaces, the entire prompt must be enclosed by double quotation

PROMPT

marks. Note that the ANSI escape sequences shown in the table in Chapter
2 can be used in the prompt string to change the prompt to a different color,
or italics.

There's a special substitution string allowed with the value specified
for prompt. If prompt contains the two-character combination %N, the task
number associated with the current CLI is substituted for those two charac
ters. The Workbench 1.3 Shell adds another substitution string. When the
characters %S are used in a Shell prompt, they are replaced with the current
directory path. Release 2 adds yet another substitution string, %R, which
displays the return code for the last program that was executed from the
Shell.

Examples

1. Change the current CLI prompt to Ready):

PROMPT Ready]

2. Change the current CLI prompt to Really Ready (with a trailing space):

PROHPT "Really Ready "

3. Change the current CLI prompt to eLl n Ready (with a trailing space,
and where 11 is the current CLI' s task number):

PROHPT "eLI %N Ready "

4. Change the current Shell prompt to show the Shell task number and
current directory in reverse text, separated by angle brackets (»:

PROHPT "<esc>[7m%N»%S><esc>[Om "

where <esc> represents a single press of the Escape key.

S. Under Release 2 and 3, change the CLI prompt to reflect the current date
·and time each time it is printed:

prompt "*'DATE*' > "

This command uses the back apostrophe (back tick) character to
output the results of the])A TE command to the prompt string. The asterisk
character is used as an escape to indicate that the DATE command is to be
executed each time that the prompt string is printed. If this escape character
is not used, the prompt string will always print the same time and date.

273

PROTECT

PROTECT Command
Location: 1.3 and Release 2 and 3 C:

Function

274

PROTECT allows you to alter the attributes of AmigaDOS files and
directory entries. Originally, there were protection flags associated with
each of four attributes. These flags are r, w, e, and d; they tell the system if
the file or dircctory entry may be read (r), written over (w), executed (e), or
deleted (d). In Workbench 1.3, three more flags were added. These flags are
s, p and a. They indicate whether the file is a script that may be directly
executed from a Shell (s), a pure command file that may be made resident
(p), or if the file has not remained unchanged since the last archival back up
(a).

The LIST command is used to examine the status of a file or directory
entry. In the display provided by the LIST command, there's room for eight
characters to the left of the datc information. Seven of these characters,
sparwed, correspond to the seven protection status flags. When a file or
directory entry is first created, the last four flags are turned on, and they
may be modified thereafter using PROTECT. The three new bits must be
set either by the user or by a backup program.

If a flag character is present in the LIST display, it is said to be on,
and the operation may be carried out. The Read flag lets you read from a
file or directory entry, the Write flag lets you update the file or directory
with new information, the Delete flag allows the file or directory entry to be
removed altogether, and the Execute flag is meaningful only for files which
are actual programs for the Amiga. The Execute flag allows DOS to
execute (run) the program. If you set the Execute flag on a non program file
(like a text file, for instance), you cannot expect DOS to load and run the
file. The Script bit will allow you to execute a script file just by typing the
name of the file at the Shell prompt. Remember, this only works with a
Shell window, not a CLI, and the filename must be of a valid script file.
The Pure bit is used in connection with the Resident Shell command, and
indicates that a command is suitable for being made resident. The Archive
bit is used mostly by backup programs, to indicate which files have not
changed since the last back up.

If a flag is off, the LIST display shows a dash (-) in place of the flag
character.

PROTECT

Of the initial four bits (rwed) only the Delete and Execute nags
actually do anything. You can set the other flags, but DOS does not act on
those settings.

1.3 Format
PROTECT [FILE] name [FLAGS]lSJ [P] [AJ [R] [W] [EJ [D] [ADD ur

+] [SUB or-]

Release 2 and 3 Format
PROTECT [FILE] name [FLAGS] [S] [PJ [A] [RJ [WJ [E1 [DJ [ADD or

+J [SUB or-] lALLJ lQUIEl1

Explanation of Parameters and Keywords
[FILE] name The name of the file whose protection nags are to be
modified; name, which is mandatory, may be any valid AmigaDOS
filename or directory name. The FILE keyword is optional. Under Release
2 and 3, a pattern may be used to change the protection nags on a number
of files at once.

[FLAGS] [S][P]lAJ[R]fW][E][D] The protection flags which will be
turned on by PROTECT. The FLAGS keyword does not have to be en
tered-it's optional. The protection flags to be turned on must be specified
as a single string in any desired order. Remember that if a flag is set to on,
the operation associated with the t1ag may be carried out. If no flags are
specified, all flags are turned off. These are the operations associated with
each flag:
S-Script This script file can be run without the Execute command.
P-Pure This program file can be made Resident.
A-Archi ve This file has not changed since the last backup was made.
R-Read This file may be read.
W-Write This file may be written to.
E-Execute This file is an executable program.
D-Delete This file may be deleted.

Note: AmigaDOS commands that overwrite existing files (such as
COpy) actually delete the old file and then create a new one with the same
name. For this reason, COpy and other commands which behave in this
manner will fail when they try to overwrite files that are protected from
deletion.

[ADD or +1

275

PROTECT

[SUB or - J Version 1.3 of the Protect command introduced the capa
bility to add or subtract individual bits, rather than requiring you to set all
of a file's flags at once. To set specific flags, you can name the flags and
follow them with the keyword ADD, or just put a plus sign (+) in front of
the initials. To turn off specific flags, follow the list with the keyword SUB,
or precede it with a minus sign (-).

[ALLJ This optional keyword, added in Release 2, allows you to set or
reset the specified protection bits in all of the files in directory name, as
well as all of the its subdirectories.

[QUIETI This option can be used to suppress the progress report that is
printed when changing the protection status of multiple files using the
Release 2 and 3 ALL option or pattern matching.

Examples

276

1. Make the file S:Script executable directly from a Shell window:

PROTECT FILE Script S AJD

or

PROTECT Script +S

2. Protect the file Public Knowledge in subdirectory,' info/expose from
being deleted. Allow it to be executed as a program, and flag it as capable
of being read, but not written to:

PRO~ECT ":info/expose/Publ Knowledge" RE

3. Protect a file called transitory on the system's RAM disk from being
read, written to, deleted, or executed:

PRO~ECT RAM:transitory

4. Reset a file called Enough Already on drive dfl: to the protection at
trihutes it had upon creation:

PROTEC~ "dfl:Enough Already" WRED

S. Protect a directory entry called shuttlelcolumbia from being deleted:

PROTEC~ snuttle/columbia -D

QUIT

QUIT Command
Location: 1.3 C: Release 2 and 3 Internal

Function
The QUIT command is used within command sequence files (see Chapter 5
for complete information on command files). The QUIT command allows
you to exit a command sequence file and, optionally, to set the return code.

1.3 and Release 2 and 3 Format
QUIT (returncode]

Explanation of Parameters and Keywords
returncode The return code which is reported when the command
sequence file is terminated by a QUIT. If returncode is above the FALLA T
threshold, the message

Quit failed returncode returncode
is displayed on the screen, with the number specified substituted for the
second returncode. If returncode is set below the failure threshold, or is not
specified, no message is displayed on termination of the command se
quence file by QUIT.

Examples
1. Exit a command sequence file using the QUIT command. The QUIT in
the following example is executed only if the file woljbane is found on
drive dfl:. No return code is to be set:

IF dfl:wolfbane EX~STS
ECHO "Get the siJver bullets"
QUIT
ENDIF
TYPE :Transylvania/here/I/come

2. Exit a command sequence file using the QUIT command. A return code
of 88 is to be set:

ECHO "This is just a silly example"
QUIT 88
LISr:='

277

QUIT

The LIST command in the above example will never be executed. The
message quit failed returncode 88 will be sent to the system display when
the QUIT 88 is executed.

RELABEL Command
Location: 1.3 and Release 2 and 3 C:

Function
RELABEL lets you change the name associated with a disk volume.
Volume names are initially assigned when a disk is formatted by the
FORMAT command or created by a DISKCOPY operation. The volume
name is the name that appears under a disk icon on the Workbench screen
and should not be confused with the device name of a disk, such as dfO: or
dhO:.

Format
RELABEL [DRIVE] drive [NAME] name

Explanation of Parameters and Keywords

278

[DRIVE] drive The device name or the volume name of the disk you
wish to relabel. The DRIVE keyword is optional if drive precedes the
volume name in the RELABEL statement. RELABEL does not prompt you
for the disk to be inserted. If you have a single-drive system and issue the
RELABEL command using the device name (dfO:), you'll be prompted to
insert the disk with the command directory (C:) library on it in any disk
drive. Once you do so, RELABEL promptly renames the volume with the
command library on it, not the disk you originally wanted to RELABEL.
Therefore, single disk owners should always specify the volume name of
the disk they want to RELABEL, not the device name. If you have single
drive system and don't know the volume name, the following procedure
will allow you to use the device name:

RELABEL ?

At the prompt, swap the disk you want to relabel into the internal
drive, and type:

dfO: NewName
[NAME] name The volume name which will replace whatever name is
currently associated with the target disk; name may be up to 30 characters

REMRAD

long. If the volume name contains spaces, quotation marks must enclose it.
The NAME keyword is optional if name follows drive.

Examples
1. Relabel the disk in drive dfl: as Various Programs:

RELABEL DF1: "Various Programs"

2. Relabel the disk in drive dfO: as Home on the Range:

RELABEL NAME "Home on the Range" DRIVE DFO:
Notice that in this example, both NAME and DRIVE were specified, since
their order was switched in the RELABEL statement.

REMRAD Command
Location: l.3 and Release 2 and 3 C:

Function
REMRAD allows you to remove the recoverable RAM disk device, RAD:,
from the system without turning off the power. Although this device's
ability to survive a warm boot can be handy, it also presents a problem
when you decide that you wish to de-allocate the memory set aside for the
RAM disk. REMRAD commands the device to delete all of its files and
release most of its memory. The next time the system reboots, the recover
able RAM disk is removed entirely.

1.3 Format
REMRAD

Release 2 and 3 Format
REMRAD unitnum [FORCE]

Explanation of Parameters and Keywords
unitnum Under Release 2 and 3, you can create multiple recoverable RAM
disk volumes by specifying different unit numbers in the Mountlist.
REMRAD allows you to selectively remove one of these volumes by
specifying a unit number (the default unit number is zero).
[FORCE] If a RAM drive unit is in use (it is your current directory, or it
has a logical device name assigned to it, for example) the REMRAD

279

REMRAD

command will ordinarily fail. By using the optional FORCE keyword,
however, you can force removal of the drive even if it is currently in use.

Example
Remove recoverable RAM drive unit I that is currently in use:

REMR}\D 1 FORCE

RENAME Command
Location: 1.3 and Release 2 and 3 C:

Function
RENAME allows you to ehange the name of AmigaDOS files and directo
ries. This command also lets you move files from one directory to another
on the same disk and reorganize entire directory structures.

1.3 Format
RENAME [FROM] fromname [TO or ASl toname

Release 2 and 3 Format
RENAME [FROMjfromnallle [TO or AS] /oname [QUIET]

Explanation of Parameters and Keywords

no

[FROMjfromname The file or directory that's to be renamed. The FROM
keyword is not required iffromname is the first argument of a RENAME
statement. Under Release 2 and 3,fromname may be a wildcard pattern.
when foname is a directory into which the files that match the pattern will
be moved.

[TO or AS I tOllame The new name to be given to the file or directory
specified by fromname. The TO and AS keywords may be used inter
changeably and are optional if foname is the second argument of a RE
NAME statement. If fromname already exists, RENAME will fail.

Note: from name and toname must reside on the same disk volume.

[QUIET] This option, introduced in Release 2, suppresses the progress
report that is normally printed when multiple files or directories are being
renamed using pattern matching.

RENAME's ability to manipulate AmigaDOS directory structures
makes this one of the most powerful AmigaDOS commands and, conse
quently, a command that should be used with great care. An entire directo-

RENAME

ry, including all files, subdirectories, and files within its subdirectories may
be moved to another location in the volume's directory tree structure with a
single RENAME.

For instance, suppose the directory structure of a disk volume looks
like this:

Volume Animals, Before RENAME

Root

Birds Reptiles Fish

I
I

I
I

South
I

North East
I

Gills

n
Guppies Catfish

Snakes Lizards

I
I

I
Cobra Bull

Issuing the following RENAME command:

RENAME :FISH/GILLS :REPTJLES/SNAKES/BULL/PETS

results in a new directory structure.

I
Eels

281

RENAME

Volume Animals, After RENAME

Root

Birds

I I
I

Reptiles

I

Fish
I

Eels
South North East

I
Cobra

Snakes

I
I

Bull

I
Gills

n
Guppies Catfish

Lizards

Examples

282

1. Rename a file called birddog to hounddog:

RENAME birddog hounddog

2. Move a file called Lights Out to a directory called HeavyMetallJGeils
without changing the filename:

RENAME "Lights Out" ":HeavyMetal/JGeils/Lights Out"

3. Move a directory called LaserDiscs and all the files and subdirectories
within it to a directory called Phils/Video without changing the directory
name:

RENAME LaserDiscs Phils/Video/LaserDiscs

REQUESTCHOICE

4. Move a file called Apple in the fresh/fruits directory to a directory called
Desserts/Light, changing the name of the file to RomeApple:

RENAME fresh/fruits/Apple Desserts/Light/RomeApple

5. Move a directory called Ancient Computers and all the files and subdi
rectories within it to a directory called 8-Bit Processors, changing the
directory name to Ancient History:

RENAME "Ancient Computers" "8-Bit Processors/Ancient
History"

REQUESTCHOICE Command
Location: Release 3 C:

Function
This command was added in Release 3 to allow the user to easily add a
decision requester to a script file or AREXX program. A requester opens a
window that presents the user with some text, and one or more buttons to
choose. This window remains in place until the user clicks on one of the
buttons, at which point, the program prints out the number of the button
that was chosen.

Release 3 Format
REQUESTCHOICE titletext hodytext huttontext(s) [PUBSCREEN
screennameJ

Explanation of Parameters and Keywords
titletext The string of text that you wish to appear in the title bar of the
requester window. This string should identify the program that opened the
window (e.g. "Setup Program Window"). Some text string is required, even
if it is only the blank text string (""). As always, if the text string contains
spaces, the entire string must be surrounded by quotes.

hodytext The text string that prompts the user's choice (e.g. "Do you
wish to continue?"). This string is also required.

buttontext(s) Text strings for one or more button choices. A minimum
of one button is required, but you can add additional buttons just by tacking
on extra text screens. Each button is assigned a number, and when the user
makes a choice, the command prints the number of that choice to the

283

REQUESTCHOICE

standard output (usually the Shell console). If you provide text for multiple
buttons, the buttons appear in the window from left to right. The leftmost
button is assigned the number 1, the next the number 2, etc. The only
exception is that the last button is always assigned the number zero. That
button is usually reserved for the "Cancel", "No" or "Quit" option.

[PUBSCREEN screen name] This optional keyword allows you to
place the requester on a public screen, by using the keyword followed by
the name of the screen.

Examples
1. Have the user select a number for 0 to 4, and print that number in the
Shell window:

SET Number 'REQUESTCHOICE II II IIPick a number ll 1 2 3 4 0'
ECHO lIyou chose the number $Number ll

2. Write a script that asks the user if he wishes to continue, and quits if he
does not:

SET Continue 'REQUESTCHOICE Script IIShall we contin
ue?" Yes No'
IF VAL $Continue EQ 0
ECHO "Time to quit ll

QUIT
ENDIF

ECHO IILet's go onll

REQUESTFILE Command
Location: Release 3 C:

Function

284

The REQUESTFILE command was added in Release 3 to allow the use of
the standard ASL file requester (the interactive window that displays a list
of filenames and asks you to select one) in a script or AREXX program.
The command returns the name of the file that was selected, surrounded by
double quotes. If more than one file is selected, each name is printed to the
standard output device (usually the console). separated by spaces. If the
user selects the window close gadget, or the "CANCEL" button instead of a

REQUESTFILE

filename, the program ends with a return code of 5, which can be detected
by the "IF WARN" statement (see chapter 5 for more information about the
use of IF in scripts). If a file is selected, the program ends with a return
code of zero.

REQUESTFILE takes a bewildering array of command parameters,
but all of them are optional. If you just issue the REQUESTFILE command
by itself, it presents the standard file requester with which almost every
user will be familiar.

Release 3 Format
REQUEST FILE [DRAWER dir] [FILE filename] [PATTERN pat]
[TITLE titletext] [pOSITIVE postext] [NEGATIVE negtext]
[ACCEPTPATTERN pat] [REJECTPAITERN pat] rSAVEMODEl
rDRA WERSONLY J [MULTISELECT] [NOICONS] [PUBSCREEN
screenname]

Explanation of Parameters and Keywords
[DRA WER dir] If this option is used, the initial directory listing will be
that of the drawer dir. and this directory path will appear in the drawer
gadget of the file requester.

[FILE filename 1 If this option is used, the requester comes up with
filename selected as the default file. If this file is not in the current directo
ry, use the DRAWER option to specify its directory.

[PATTERN pat] When this option is used, the file requester comes up
with a pattern gadget, and the file list only shows the files that match the
AmigaDOS pattern specified in pat. This can be used in the case where the
name of the file to be selected usually follows a standard naming conven
tion. The user is free, however, to change this pattern, and thus may still
select any file.

[TITLE tiltelext] This option permits you to designate a text string
(texttitle) that will appear in the title bar of the window. This title should
indicate the purpose behind the file selection (e.g. "Load a picture file").
There is limited space on the title bar, so a message that is more than about
30 characters or so may be truncated.

[POSITIVE postext] This option allows you to change the message on
the leftmost button on the file requester, which the user presses to select a
file. If this option is not used, the button is labeled "Ok". For example, if

285

REQUESTFILE

286

the file is to be deleted, you might change the button to read "DELETE", or
if the file is to be loaded, to "LOAD".

INEGATIVE negtextl This option allows you to changc the message
on the rightmost selection button, which the user presses to exit without
selecting a file, from its default text of "CANCEL." You may wish to
change the button to something more meaningful, such as "Skip" or
"Abort."

[A CCEPTPATTERN pat] This option allows you to limit the file
display to those files whose names match the pattern pat. Unlike the
PATTERN keyword, this option does not give the user a chance to change
the pattern, so there is no way to select a file that doesn't match the pattern.
If pat is "#?c", for example, only C language source code files whose
names end in ".c" will be displayed.

[RE]ECTPATTERN patl This option allows you to exclude from the
display files whose names match the pattern pat. This option does not give
the user a chance to change the pattern, so there is no way to select a file
that doesn't match the pattern. If pat is "#?h", for example, C language
header files whose names end in ".h" will not be displayed.

[SA VEMODEI This option causes the requester to operate in "save
mode," in which the file display window is black with gray letters instead
of gray with black letters, and in which the multiselect option is disabled.

lDRA WERSONLY] This option eliminates all filenames from the
display, and lists only directory names.

I MULT/SELECT] The MUL TfSELECT option allows the user to
select more than one file by holding down the Shift key while clicking on
each additional filename. All selected filenames are printed to the standard
output device (usually the console), separated by spaces, when the "Ok"
button is pressed.

[NO/CONSJ This option eliminates icon files (those whose
names end in ".info") from the display. It is the same as specifying
"REJECTP A TTERN #? .info".

[PUBSCREEN screenname] This option allows you to display
the file requester on the public screen whose name is screenname.

RESIDENT

Examples
1. Have the user select a directory within a script, and store the directory
name in the local environment variable dirname:

UNSET dirname
SET dirname 'REQUESTFILE DRAWERSONLY'
IF "$dirname" EQ "*$dirname"
ECHO "You didn't choose a directory name"
ELSE
ECHO "The directory you chose was $dirname"
ENDIF
UNSET dirname

Note that we had to test for the Cancel button by seeing if "$dimame"
(which is replaced by the contents of the environment variable) is equal to
the literal string "$dirname" (the asterisk means that the IF command will
interpret the dollar sign as a dollar sign, not the contents of an environment
variable). We could not use the IF WARN test because we only get the
return code from the SET command, not the REQUESTFILE command
that it contains.

RESIDENT Command
Location: 1.3 C: Release 2 and 3 Internal

Function
The RESIDENT command is used to load programs into memory and to
keep them resident there, where they may be executed without having to
load them from disk each time. This not only saves the time required for
loading the command, but also can save memory in a multitasking environ
ment, since several Shell windows can execute the same program code
simultaneously, without having to load a separate copy of the program for
each Shell.

Commands may be made resident only from a Shell window, and not
from a pre-I.3 CLI. Moreover, only program files that meet certain specifi
cations can be made resident, as explained below.

287

RESIDENT

1.3 Format
RESIDENT name filename [REMOVE] [ADD] [REPLACE] [PURE]
[SYSTEM]

Release 2 and 3 Format
RESIDENT name filename [REMOVE] [ADD] [REPLACE! [PURE or
FORCE]ISYSTEM]

Explanation of Parameters and Keywords

288

name An optional resident name for the program. For example, you
may choose to call your resident version of the DIR program by the letter
D. If no resident name is specified, the filename is used as the resident
name.
filename The name of the program file to be made resident. The full
path name should be used.

Not all commands may be made resident. Resident commands must
be reexecutable, which means that they must be able to be run a number of
times in a row without being reloaded or reinitialized. They must also be
reentrant, which means that the same copy of the program must be able to
be executed from different Shells simultaneously, without destroying
internal data that other copies of the program may generate. Many of the
programs in the C directory of Wocrkbench 1.3 can be made resident, and
their files have the pure protection bit set to indicate this fact. How can you
tell if a program can be made resident? If it can, the documentation usually
will say so, and the pure bit will be set on the program file.

[REMOVE] This keyword is used to remove the indicated resident
name from the resident list. This operation will succeed only if the resident
command is not currently in use. Under Release 2 and 3, REMOVE may
also be used to disable Internal commands (they may be re-enabled with the
REPLACE option).

[ADD]

[REPLACE] Use of these keywords is strictly optional, since the
behavior of RESIDENT is about the same whether or not they are used.
That is, if these keywords are used without a filename (RESIDENT ADD
or RESIDENT REPLACE), the command lists the programs on the resident
list, just as it would if you issued the command RESIDENT. If either is
used with a filename, the RESIDENT command tries to place that file on
the resident list. If there is another file with the same filename or resident

RESIDENT

name already on the list, the new command will replace the old one, unless
the old one is already in use and cannot be deleted. Under Release 2 and 3,
however, use of the REPLACE option will fail if the resident name is not
already on the list. Also, under Release 2 and 3, REPLACE may be used to
re-enable an Internal command that had been disabled with the REMOVE
option.

[PURE or FORCE] Normally, a command cannot be made resident
unless its file has the pure bit set (see PROTECT). When the PURE key
word is used, however, RESIDENT is forced to load the program whether
or not the pure bit is set, and to print the warning message Pure hit not set.
Of course, the file still must be an executable program-RESIDENT can't
make a data file resident. Under Release 2 and 3, FORCE was added as a
synonym for PURE.

Using the PURE option to make possibly unsuitable command
resident is a hazardous proposition which can lead to a system crash.
Therefore, if you wish to experiment with making commands resident, try
to do so under conditions that won't lead to catastrophic data loss. Don't
experiment with RESIDENT. and then go to work on your most important
project.
[SYSTEM] This option is used to add a command to the system portion
of the resident list. Once added, this command cannot be deleted by the
user. The most common use of this keyword is to add the Shell-Seg pro
gram that enables Shell windows in place of ordinary CLI windows under
Workbench 1.3. The command you use to make the Shell-Seg resident is:

RESIDENT CLI L:Shell-Seg SYSTEM
This command is normally issued automatically by the 1.3 Startup

sequence script. It is not needed under Release 2 and 3, because the Shell is
built into the operating system.

If used without a filename, the SYSTEM keyword can be used to list
the resident system commands along with the resident user commands.

Examples
1. Make the DIR command resident, using the resident name 0:

RESIDENT DC: DIR

2. Remove the EXECUTE command from the resident list:

RESIDENT execute REMOVE

289

RESIDENT

3. List all of the commands (including the system commands) on the
resident list:

RESIDENT SYSTEM

4. Temporarily disable the Internal RUN command:

RESIDENT RUN REMOVE

RUN Command
Location: 1.3 C: Release 2 and 3 Internal

Function
The RUN command may be used to create a system eLI task which exe
cutes in the Amiga's background (in other words, the task doesn't present
you with an interactive eLI window). RUN allows multiple AmigaDOS
commands (each separated by a plus sign) to be executed in sequence.
Once all commands given to a RUN statement are executed, the back
ground task disappears.

When RUN is initiated the system prints the message

[eLI nJ
where n is the task number assigned to the background task. Immediately
after the message is issued, control is returned to the eLI from which RUN
was issued. The background task keeps running until all commands are
completed or until the task is interrupted by the BREAK command. The
commands are executed sequentially. If any command fails with an error
code, the background task terminates and removes itself.

With version 1.3 or higher, RUN checks the resident list before
looking in the current directory for a command, so that it uses the resident
copy if available. Also, if the input and output of the RUN command is
redirected from and to the NIL: device, the existence of a background task
usually will not prevent the closing of the eLI window from which that
task was launched.

1.3 and Release 2 and 3 Format
RUN command+command ...

290

RUN

Explanation of Parameters and Keywords
command+command ... The AmigaDOS command you want executed in
the background. More than one command may be executed by a single
RUN command. To build a RUN sequence with multiple commands, end
each command line with a plus sign (+) and press RETURN . RUN treats
the plus sign as a command delimiter. The cursor will jump to the begin
ning of the next line, at which point you may enter another command. Keep
ending each command line with a + until you've entered the last one for
this RUN sequence. End the last command line with a RETURN (no +
preceding it). RUN then begins processing the commands-one by one-in
the background. You may receive messages and requester boxes from
background tasks.

Examples

1. Print a complete directory and file listing of the current drive to the
printer. The print operation is to be executed in the background:

RUN DIR > PRT: OPT A

2. Format a blank disk in drive dfl: and then install boot files on the newly
formatted volume. Print a message on the screen when the format and
install are done. The operations are to be executed in the background by a
single task:

RUN FORMAT DRIVE DF1: NAME EMPTY +
INSTALL DF1: +
ECHO "Format and Install Finished"

3. Execute the command sequence file My Command File located on the
system RAM disk. The command file is to be executed in the background
by a single task:

RUN EXECUTE "RAM:My Command File"

4. Start the Clock program as a background task, and redirect the output of
the RUN command to NIL: so that you can close the eLI while Clock is
still running:

RUN >NIL: Clock

291

SEARCH

SEARCH Command
Location: C:

Function
SEARCH lets you scan AmigaDOS files for a specified string of characters.
You may SEARCH a single file, all files matching an AmigaDOS pattern,
all files within a directory, and, optionally, all files within a directory's
subdirectories.

SEARCH displays the name of the AmigaOOS file currently being
searched and, if the search text is found, all lines containing the search text.
Each displayed line is preceded by a line number. In version 1.3 and higher,
the command returns a code of zero if the object is found, and 5 (WARN) if
it isn't, which makes the command more useful in scripts. The CTRL-C key
combination may be used to stop the search. The CTRL-D combination
may be used to stop searching the current file, and proceed with the next
file.

AmigaDOS treats the carriage return character as an end-of-line
character. SEARCH examines only the first 205 characters of each line. If
SEARCH comes across a line longer than 205 characters, the message
LINE n truncated displays and SEARCH continues.

1.3 Format
SEARCH [FROM] name [SEARCH] string [ALL] [NONUM]
[QUIET][QUICK] [FILE]

Release 2 and 3 Format
SEARCH [FROM] name [SEARCH or NAME] string [ALLJ [NONUMl
[QUIET][QUICK] [FILE] [PATTERN]

Explanation of Parameters and Keywords

292

[FROM] name The file or directory that you want searched; name also
may be an AmigaDOS pattern. (See Chapter 3, "The Filing System," for
detailed information on patterns and their uses.) If name is the first argu
ment in the SEARCH command, the FROM keyword is optional.

[SEARCH or NAME] string The text string that will be searched for. If
string is the second argument in the SEARCH command, this second
SEARCH keyword is optional. If string contains any spaces, it must be
enclosed in quotation marks. Case (uppercase, lowercase) within string is

SEARCH

ignored by SEARCH. A search string of rubber ducky, for instance,will
match the text found in a file which contains the phrase Ernie bought his
rubber ducky an Amiga. Under Release 2 and 3, NAME can be used as
a synonym for the SEARCH keyword.
[ALL] If the ALL keyword is specified and name is an AmigaDOS
directory, all files within the directory and its subdirectories are searched.
[NONUM] This option, added in version 1.3, suppresses the output of
line numbers along with the strings.
[QUIET] This option, added in version 1.3, suppresses all output, to
facilitate the use of the command in scripts.
[QUICK] The QUICK option, introduced in version 1.3, uses a more
compact format for the output.
[FILE] The FILE option, introduced in version 1.3, searches for a file
whose name is exactly the same as string, rather than searching for the
string within the contents of the file. If the file is found, its name is printed.
In version 1.3 only the filename is printed, but in Release 2 and 3, the full
path name is printed. Thus, the Release 2 and 3 version can be used to find
a particular file on a large disk volume.
[PATTERN] This optional keyword, introduced in Release 2, indi-
cates that a pattern is used in the search.

Examples
1. Search all files within the directory called Mayan/Civilization and all
files within its subdirectories for the phrase ancient astronauts:

SEARCH Mayan/Civilization "ancient astronauts" ALL

2. Search a file called MyLetters for the word gorilla:

SEARCH MyLetters gorilla

3. Search all files which end with .bills in the current directory for the
phrase blank disks. Redirect the QUICK output to the system printer:

SEARCH> PRT: #?bills "blank disks" QUICK

4. Under Release 2 and 3, search volume Kalamazoo and its subdirectories
for all files whose names contain the word ELVIS in them:

SEARCH Kalamazoo: #?ELVIS#? PATTERN FILE ALL

293

; (SEMICOLON)

; (Semicolon) Command
Location: Internal

Function
The semicolon (;) command allows the insertion of comments in command
sequence files and command lines. The comments may be on the same line
as other AmigaDOS commands, or they may stand by themselves on a
separate line. Anything to the right of a semicolon in an AmigaDOS
command line is considered a comment.

1.3 and Release 2 and 3 Format
; [comment]

Explanation of Parameters and Keywords
[comment] May be any text string, up to 254 characters in length (if the
; is the first character of a line).

Example

294

Here is a simple example of a command sequence file with comments,
using the: command. Remember, everything to the right of a semicolon is
considered a comment.

; Niaqra Falls Routine
IF Curly EXISTS ; Test for a stooge
SAY Slowly I turned ; Set em up for the gag
WAIT 5 SEes ; Dramatic pause
SAY Inch by Inch
ELSE
;Sign off without gag
SAY tho .th .. th .. thats all folks
ENDIF

SET

SET Command
Location: Release 2 and 3 only Internal

Function
SETENV is used to assign a text string to a local environment variable, or
to delete a text string already assigned to such a variable. A local environ
ment variable is a named text string that is stored in an environment space
and is accessible only to the Shell in which it was created (and Shells
spawned from that Shell). Unlike the global variables created by SETENV,
the local environment variables are stored in private system memory, rather
than in the RAM disk.

Release 2 and 3 Format
SET varname [string]

Explanation of Parameters and Keywords
varname The name of the local environment variable to set.
[string] The text string to assign to the environment variable. Like all
such strings, if there are spaces in the text, the entire string must be en
closed in quotes. If no string is specified, an empty string will be copied to
the variable, effectively removing the text string currently associated with
it. To remove the variable completely, use the UNSET command.

Under Workbench Release 2 and 3, there are a number of significant
local environment variables that are automatically set for you, or which you
can set yourself. These include:

Process The process number of the current Shell.
RC The return code of the last command that was executed.

Result2

This allows you to examine the code without using the IF
WARN or IF FAIL command.
The error number that indicates why the last command
failed. You can use the FA UL T command to interpret these
error codes.

295

SET

Echo This local environment variable controls whether or not the
Shell repeats each command as it is executed. If you SET
Echo on, the commands are repeated. If you set Echo to
anything else (or don't set it at all), they are not repeated.
Turning Echo on is a good way to debug scripts that don't
work, since there is often no other way of telling at which
line they failed. With Echo on, you can tell which lines are
executed properly, and which fail.

Example

Copy the word Swordfish to a local environment variable named Password:

SET Password Swordfish

SETCLOCK Command
Location: 1.3 and Release 2 and 3 C:

Function
SETCLOCK is used to copy the time and date from the hardware clock on
the 2000 and 3000 (optional on the 500 and 600) to the AmigaDOS soft
ware clock, or vice versa. It only works with Commodore's own clock!
calendar, or compatible units.

Format
SETCLOCK LOAD or SA VE or RESET

Explanation of Parameters and Keywords

296

LOAD or SA VE or RESET One of these three keywords must be used
with SETCLOCK. If the SAVE option is used, the current AmigaDOS
system time and date (the one set with the DATE command) is copied to
the hardware clock. If the LOAD option is used, the stored time and date is
copied from the hardware clock to the system clock (this is performed
automatically in the 1.3 startup sequence, and by the Release 2 and 3
Kickstart ROM). The RESET option is used to start the clock up again if it
has been turned off by some runaway program that accidentally wrote to its
hardware registers. (The system may show the clock as unset, or report
"battery backed clock not found.")

SETDATE

Example
Set the system time and date from the hardware clock:

SETCLOCK LOAD

SETDATE Command
Location: 1.3 and Release 2 and 3 C:

Function
Changes the date or time associated with a file or directory. The time and
date of the file creation can be displayed with the LIST command.

SETDATE is useful when the date and time associated with a directo
ry or file doesn't reflect its true creation date, either because the date and
time wasn't set correctly when the file was created, or because the file was
copied from another disk, in which case the date-stamp reflects the date of
the copy, not the date of creation. It can also be used to manipulate a
"make" type program, which directs a C compiler to compile files based on
the date-stamp.

1.3 Format
SETDATE name [date] [time]

Release 2 and 3 Format
SETDATE name [datelltimellALLl

Explanation of Parameters and Keywords
name The name of the directory or file whose date stamp you wish to
change. Under Release 2 and 3, you may use pattern matching to change
several files at once.
[date] The day, month, and the year associated with the file. The date is
usually specified as DD-MMM-YY, where OD is a two-digit number
representing the day, MMM is a three-letter abbreviation of the month
(such as FEB or JUN), and YY is the last two digits of the year. The
SETDATE command, like the DATE command, also allows indirect
references for setting the date, such as YESTERDAY, or WEDNESDA Y.
For more complete details, see the DATE command. If no date or time is
included with the filename, the file is set to the current system time and
date.

297

SETDATE

[time 1 The optional time-stamp for the file, expressed in the format
HH:MM:SS, where each is a two-digit number representing the hours,
minutes, and seconds. Hours are set in 24-hour format, where I :00 p.m. is
referred to as 1300 hours. If minutes or seconds are omitted, they're set to
zero. If this optional parameter is omitted when the day, month, and year
are specified, the time-stamp on the file is set to 00:00:00.

Examples
1. Change the date-stamp of the Printers subdirectory of the Devs directory
on the Workbench disk to show a creation date of January 5, 1987 at 1 :56
p.m.:

SETDATE Workbench:Devs/Printers 05-jan-87 13:56

2. Change the date-stamp of the file Mydata in the current directory to
midnight yesterday:

SETDATE Mydata Yesterday

3. Change the date-stamp of the file "Au Courrant" in the current directory
to the current time and date:

SETDATE "Au Courrant"

SETENV Command
Location: 1.3 C: Release 2 and 3 Internal

Function
SETENV is used to assign a text string to an environment variable, or to
delete a text string already assigned to such a variable. An environment
variable is a named text string that is stored in an environment space that is
accessible to all tasks. Currently, an ENV: directory is created on the RAM:
disk to hold global environment variables. This means that "SETENV test
TestString" is really the same as "ECHO >ENV:test TestString". In future
versions, the global environment variables may be stored in system RAM,
and manipulated by their own device handler, as the local environment
variables are.

1.3 and Release 2 and 3 Format
SETENV varname [string]

298

SETFONT

Explanation of Parameters and Keywords
varname The name of the environment variable to set. Currently, this is
the name of a text fi Ie that is stored in the ENV: directory. Using the
SETENV command copies the text string to this file.

Under Workbench Release 2 and 3, there are a number of significant
global environment variables that are automatically set for you, or which
you can set yourself. These include:

Kickstart
Workbench-These variables are created by the startup-sequence

script, and contain the version numbers of the Kickstart and Workbench
that you are using.

Editor-This environment variable is recognized by some Workbench
programs like the MORE program. If you set this variable to the path name
of your text editor, MORE allows you to bring up the program to edit the
current file by pressing Shift-E.

[stringi The text string to assign to the environment variable. Like all
such strings, if there are spaces in the text, the entire string must be en
closed in quotes. If no string is specified, an empty string will be copied to
the variable. effectively removing the text string currently associated with
it. To totally remove the environment variable under Release 2 and 3. use
the UNSETENV command.

Example

1. Copy the name Darlene to an environment variable named Cubhy:

SETEKV Cubby Darlene

2. Remove the text string associated with the environment variable named
Annette:

SETFONT Command
Location: Release 2 and 3 C:

Function
The SETFONT command was added in Release 2 to allow the user to
specify the text font, size. and style used in a particular Shell window.

299

SETFONT

Normally, each Shell window uses the System Default Text font that was
set from the Font preferences program.

Release 2 and 3 Format
SETFONTjontnamejontsize [SCALE] [PROP] [ITALIC] [BOLD]
[UNDERLINE]

Explanation of Parameters and Keywords
jontname The name of the font to install. This must either be a system
bitmap font that is installed in the FONTS: directory, or a scalable outline
font that was installed with the Fountain program.
jontsize The size of the font, expressed as a given number of lines in
height. If no bitmap of that size is installed, SETFONT will give you the
next closest size, unless you set the SCALE option.

[SCALE] This optional keyword enables bitmap scaling. This means
that if no bitmap font of size jontsize is installed, the SETFONT program
will create one by scaling the characters of the next closest size.

[PROP] This optional keyword permits the use of proportional fonts. If
you try to use a proportional font without using this keyword, the command
will fail with the message Object not of required type. Some proportional
fonts will not print correctly in a console window.

[ITALIC] This keyword gives you the italic version of the font.

[BOLD] This keyword gives you the bold version of the font.

[UNDERLINE] This keyword gives you the underlined version of the
font.

Examples

300

1. Change the font in the current Shell to a scaled version of the Topaz font,
sixteen lines high:

SETFONT Topaz 16 SCALE

2. Change the font in the current Shell to a bold italic version of the propor
tional Diamond font, twelve lines high:

SET?ONT Diamond 12 BOLD ITALIC P~OP

SETKEYBOARD

SETKEYBOARD Command
Location: 2.1 C:

Function
Changes the default key map of the keyboard for this particular Shell
window, allowing the use of different keyboard layouts for foreign coun
tries. For more information on key maps, see the SETMAP command.

The SETKEYBOARD command looks for its key map data files in
the Kevmaps subdirectory of the directory designated as the logical device
DEVS: (usually the Devs directory of the startup disk). You can, however,
designate another directory by typing the entire path name of the key map
file (for instance SYS:Storage/Keymaps/po). The standard key map files on
the 2.1 Workbench disk include:

cdn French Canadian
ch 1 Swiss French
ch2 Swiss German
d German
dk Danish
e Spanish
f French
gb Great Britain
1 Italian
n Norwegian
p Portugese
s Swedish
usaO Emulates the standard key mapping of the 1.1 Workbench.
usal Includes maps for additional numeric pad keys on 500/2000.
usa2 U.S. keyboard with Dvorak layout

2.1 Format
SETMAPmapfile

Explanation of Parameters and Keywords
mapfiie The name of the key map data file describing the keyboard
layout to be used. If the file is located in the Keymaps subdirectory of the
directory designated as DEVS:, you only need include the filename. Other
wise, you must specify the entire path name.

301

SETKEYBOARD

Example
Install the British key map in this Shell window:

SETKEYBOARD gb

SETMAP Command
Location: 1.3 and 2.0 SYS:SYSTEM

Function

302

Changes the default key map of the keyboard, allowing the use of different
keyboard layouts for foreign countries.

The key map is a data table to which the Amiga refers when a key is
pressed. By changing this key map, you can change which character is
printed when you press a particular key. For example, the French keyboard
has the letter Q reversed with the letter A, so when you use the SETMAP
command to install the French key map, every time you press the A key a q
appears, and vice versa. Keymaps can also be used to assign strings to the
function keys.

The SETMAP command looks for its key map data files in the.
Keymaps subdirectory of the directory designated as the logical device
DEVS: (usually the Devs directory of the startup disk). The standard key
map files on the Workbench disk include:

cdn French Canadian
ch 1 Swiss French
ch2 Swiss German
d German
dk Danish
e Spanish
f French
gb Great Britain

Italian
IS Icelandic
n Norwegian
s Swedish
usaO Emulates the standard key mapping of the

1 .1 Workbench.
usa I Includes maps for additional numeric pad keys on 500/2000.

SETMAP

usa2 u.s. keyboard with Dvorak layout

Some of the new key maps implement a new feature known as dead
keys. A dead key is one which prints out a character only when struck
preceding another character. It's often used for accented vowels. In order to
produce an a with an accent mark over it, for example, you would hit the
accent key (the dead key) first. Nothing prints on the screen when you hit
the accent key, but if the next key you press is an a, an accented a appears.

Complete information about the layout of the various foreign key
boards is included in Introduction to the Amiga. The Key toy program
(named KeyShow in Release 2 and 3), included in the Tools directory of the
Extras disk, displays a graphics representation of the current key map as
well.

Version 2.1 and higher of the operating system incorporates language
localization. In those versions, the key map is set by the Locale preference
program. You can change the mapping for a particular Shell window using
the SETKEYBOARD command.

I .3 and Release 2 Format
SETMAP mapfile

Explanation of Parameters and Keywords
mapfile The name of the key map data file describing the keyboard
layout to be used. This file should be located in the Keymaps subdirectory
of the directory designated as DEVS:. In order to restore the default key
map, use the name usa for the mapfile. This key map is part of the operat
ing system and need not be read from a disk file.

Examples

1. Install the French language key map:

SETMAP f

2. Restore the default system key map:

SETMAP usa

303

SETPATCH

SETPATCH Command
Location: 1.3 and Release 2 and 3 C:

Function
The SETPA TCH command is supplied by Commoodore to fix any known
problems with the system software in the Kickstart ROMs. It should be run
as the first command in the startup-sequence file. The command prints a
list of the patches (program corrections) made.

1.3 Format
SETPATCH [rl

Release 2 and 3 Format
SETPATCH [NOCACHEJ [QUIETJ

Explanation of Parameters and Keywords
[r] This optional switch is used to allow the recoverable RAM disk
(RAD:) to recover sucessfully on machines that are running Workbench 1.3
with one megabyte of CHIP RAM. It need only be used with systems that
include the one-Meg Agnus chip (on which A VAIL shows over SI2K of
CHIP RAM). Note that the letter r should be in lower case, as some ver
sions of this command are case sensitive.

[NOCACHE] This Release 2 and 3 option can be used to disable the
data cache on accelerator cards. Normally, Kickstart turns the cache on,
since this increases the speed of operations, but some older programs do not
run correctly with the data cache turned on.

[QUIEll This option prevents the command from printing out a status
report of the patches that it has made.

Example
Patch the 1.3 Kickstart routines without printing a list of the patches:

SETPATCH >nil:

304

SKIP

SKIP Command
Location: 1.3 C: Release 2 and 3 Internal

Function
The SKIP command is used within command sequence files to jump to a
specified label. When a SKIP is executed, command execution continues at
the line following the label.

If SKIP is executed with no label specified, command execution
continues with the commands following the next LAB command in the
command file.

If a SKIP is exccuted and the label specified is not found, or if a SKIP
with no label searches to the end of the command file without encountering
a LAB command, command file execution is terminated and the message
label label notfound by SKIP is displayed.

In versions 1.3 and higher, an option allows skipping backwards in the
file as well as forwards.

1.3 and Release 2 and 3 Format
SKIP [string] [BACK]

Explanation of Parameters and Keywords
[string 1 The string attached to a LAB command which SKIP searches for
in the currently executing command file. The search starts at the command
following SKIP and continues downward toward the end of the command
file. If the matching LAB string command precedes the SKIP command,
SKIP will not find it, and the command file terminates with an error (unless
the BACK option is used).

If string is not specified, the first LAB command following SKIP will
be skipped to.

[BACK] This option, added in Workbench 1.3, starts the search for the
specified label at the beginning of the file, not at the line following the
SKIP command. You still may not SKIP backwards past an EXECUTE
statement, however.

Examples

1. Transfer control to the commands immediately following the next LAB
filecontrol command in the current command sequence file:

305

SKIP

SKIP filecontrol

2. Transfer control to the commands immediately following the next LAB
command in the current command sequence file:

SKIP

3. Transfer control to the commands immediately following the preceding
LAB Jumpback command in the current command sequence file:

SKIP Jumpback BACK

SORT Command
Location: 1.3 and Release 2 and 3 C:

Function

306

SORT performs an alphabetic sort of the lines within an AmigaDOS text
file. Lines are sorted according to the ASCII val~e of their beginning
characters.

Within a file, AmigaDOS treats any string of characters that ends with
a line feed character as a single line. SORT compares lines, beginning with
the first character, unless a different sort start position is specified via the
COLSTART keyword. Lines that begin with numbers will precede those
that begin with alphabetic characters in the sorted version of the original
file. Lines with numbers will be in ascending order. Case is ignored by
SORT (unless an available version 2 option is used). For instance, a SORT
of a file containing these lines:

1,234,576
a sunny spring day
AOK
rags to riches
. Hiya.
I
R2D2 and C3PO
3.14159
.0000000001

results in this output:
.0000000001
. Hiya.

SORT

1
1,234,576
3.14159
a sunny spring day
AOK
R2D2 and C3PO
rags to riches

Older versions of SORT are not particularly fast, especially when the
size of the file to be sorted is longer than 50 lines. They also have a prob
lem sorting files that are over 200 lines long without increasing the stack
size (see the STACK command description for details). SORT fails if the
file to be sorted is larger than the system's available free memory.

1.3 Format
SORT [FROMlfromname [TO] toname [COLSTART n]

Release 2 and 3 Format
SORT [FROMjfromname [TO] toname [COLSTARTnJ [CASE]
[NUMERIC]

Explanation of Parameters and Keywords
[FROMjfromname The name of the AmigaDOS file whose contents
are to be sorted. If fromname is the first argument of a SORT command, the
FROM keyword is optional.
[TO] toname The name of the AmigaDOS file or logical device to
which the sorted lines fromfromname will be sent. If toname is the second
argument of a SORT command, the TO keyword is optional; toname must
be different fromfromname or the SORT will fail.
[COLSTART nl Causes SORT to compare lines beginning with the nth
character in each line. If 11 is given, the COLST ART keyword must be used.
IfCOLSTART 11 has been specified and lines are found to be equal, SORT
attempts a secondary sort of the equal lines, starting with the first character
of each line.
[CASE] If the CASE option is used, capital letters are given prece-
dence over lower case letters. Normally, case is ignored.
1 NUMERIC] When the NUMERIC option is used, all lines are interpreted
as numbers, stopping at the first non-numeric character. Lines that begin
with letters are assigned a value of zero. If both the CASE and NUMERIC
options are used, CASE is ignored.

307

SORT

Examples

1. Sort the contents of a file called Mixed Up to a file called InOrder:

SORT "Mixed Up" InOrder

2. Sort the contents of a file called Inventory in the majorappliancelwashers
directory. Print the sorted output on the system printer:

SORT :majorappliance/washers/Inventory PRT:

3. Sort the contents of a file called widgets located on the system RAM
disk, comparing lines beginning with the fifth character of each. Display
the sorted output on the current system console screen:

SORT RAM:widgets * COLSTART 5

STACK Command
Location: 1.3 C: Release 2 and 3 Interial

Function
The STACK command may be used to display or set aside the amount of
stack space for the currently active CLI. The stack space is used by
AmigaDOS commands and all other programs as a sort of intermediate
work area. The default stack size for a CLI environment is 4000 bytes,
which is large enough to execute the vast majority of AmigaOOS com
mands successfully.

Older versions of two AmigaDOS commands may require a stack size
greater than 4000 bytes. If an older SORT command is executed on a file
with more than 200 lines, or if an older DIR is issued against a file structure
with more than six levels of directories, the stack size should be increased.
The exact size is open to question. According to the developers of
AmigaDOS, optimum stack sizes for a specific heavy SORT or orR are a
matter of trial and error.

You can check the stack size of all active system tasks with the
STATUS command.

Format
STACK lnewsize]

308

STATUS

Explanation of Parameters and Keywords
[newsize] The amount of space, in bytes of memory, that you wish to
assign as stack space for the currently active CLI. If newsize is omitted, the
current stack size is displayed.

Examples
1. Display the stack size of the currently active CLI:

STACK

2. Change the stack size of the currently active CLI to 12,000 bytes:

STACK 12000

STATUS Command
Location: Internal

Function
The STATUS command displays system information about active tasks.
STATUS displays the stack size, global vector size, priority, and program
name associated with active tasks. This kind of detailed technical informa
tion is of interest mostly to advanced programmers. STATUS can come in
handy when using the RUN and BREAK commands, however. The CLI
STATUS keyword may be used to check what command is currently active
in both foreground and background CLl environments, something you may
forget once you execute a RUN. STATUS also may be used to find the task
number of a particular program, so that you may send it a BREAK command.

1.3 and Release 2 and 3 Format
STATUS [tasknum][FULLl [TCBllCLI or ALL] rCOMMAND or COMl

Explanation of Parameters and Keywords
[tasknum] The number of the task which STATUS is to report 00. If
tasknum is not specified, all active tasks are reported.

[FULL] FULL displays all the information normally reported by
STATUS if both the TCB and AU, keywords were all specified. The FULL
keyword is optional.

309

STATUS

[TCB] Causes STATUS to display information dealing with the stack size,
global vector size, and priority of each active task known to the system.
Thc TCB keyword is optional.

[CLI or ALL] Specifying either CLI or ALL causes STATUS to report
on all currently active CLI tasks and display the names of all commands
currently loaded within the CLIs (this is the same result as when you issuc
thc STATUS command by itself). The CLI and ALL keywords are inter
changeable and optional.

[COMMAND or COM] This option, added in version 1.3, prints the
task number of the CLl from which the program named in filename was
run. This allows you to send that program a BREAK, for example, using a
script file. If the command is not found, a return code of 5 (WARN) is set.

Examples

1. Display an abbreviated status report on all active tasks:

STATUS

2. Print the stack sizc, global vector size, priority, and segment list section
names of each active task known to the system on the system printer:

STATUS> PRT: FULL

3. Scnd a BREAK to the task running the WAIT command:

STATUS >ram: temp COMMc~ND WAIT
BREAK <ram: temp >NIL:?
DELETE ram:temp

Under Release 2 and 3, you can accomplish the same task with one line:

BREAK 'STATUS COMJ'!:AND WAIT'

TYPE Command
Location: 1.3 and Release 2 and 3 C:

Function

310

Thc TYPE command lets you output the contents of any AmigaDOS filc to
the screen, a disk file, or any AmigaDOS physical device.

TYPE

TYPE is most often used to examine the contents of a file, although it
may actually be used to copy a file. TYPE can format its output as hexadec
imal numbers, or include line numbers at the beginning of each output line.

TYPE's output may be paused by hitting the space bar (or any other
key) and resumed by hitting the RETURN key, BACKSPACE key, or
holding down the CTRL-X key combination. Its output may be canceled by
breaking the command with CTRL-C.

1.3 and Release 2 and 3 Format
TYPE [FROM]fromname [[TO] toname][OPT N or NUMBER or OPT H
or HEX]

Explanation of Parameters and Keywords
[FROM] fromname The name of the file you want TYPEd;jromname
is required and may be any valid AmigaDOS filename. The FROM key
word is optional and need not be specified if fromname immediately
follows TYPE. Under Release 2 and 3, you may specify multiple filenames,
each separated by a space, or use pattern matching to specify multiple files.

[[TO] toname] The name of the file or device you want the output of the
TYPE operation sent to. In versions 1.3 and below, the TO keyword is
optional if the first argument of TYPE is fromname and the second argu
ment is toname. In version 2, a second filename will be presumed to be
another fromname unless the TO keyword is used.

I f no destination for TYPE's output is specified, the output is dis
played on the screen. toname may be an AmigaDOS file or an AmigaDOS
device, such as the printer (PRT:). If toname is an existing file, its contents
are overwritten; if toname is a file which does not exist, it will be created
by the TYPE operation. If toname is a directory with files in it, TYPE fails;
if toname is an empty directory, the directory will be deleted and a file
called toname created.
[OPT N or NUMBER or OPT H or HEX] Adding OPT N or NUM-
BER to a TYPE command instructs the system to precede each line output
by TYPE with a line number. AmigaDOS treats any number of characters
within a file ending with a linefeed as one line.

Specifying OPT H or HEX instructs TYPE to produce a formatted
hexadecimal dump of thefromname file's contents. The Nand H options
are mutually exclusive-only one may be specified. If either option is

311

TYPE

specified using the initial instead of the full word, the OPT keyword must
be used.

Examples
1. Output the contents of a file in the current directory called textwiz on the
screen:

TYPE textwiz

2. Copy a file called copyclone in a direclory called qwikbuck to a file of
the same name in the directory called copies on dfl:.

TYPE :qwikbuck/copyclone to dfl:/copies/copyclone

3. Produce a formatted hexadecimal dump of a file called objectcode on the
printer:

TYPE objectcode to PRT: OPT H

or

TYPE> PRT: objectcode HEX

4. List the contents of the filename list with line numbers before each line to
a file on the system RAM disk called tempname:

TYPE namelist to RAM:tempname OPT N

UNALIAS Command
Location: Release 2 and 3 Internal

Function
UNALIAS is used to removed an alias from the system list (see ALIAS
command for definition of an alias). It also can be used to list the current
aliases.

Release 2 and 3 Format
UNALIAS [name]

Explanation of Parameters and Keywords
[name] The name of the alias you wish to remove. If no name is
specified, the command will list all current aliases.

312

UNSETENV

Example
Remove the XCOPY alias:

UNALIAS xcopy

UNSET Command
Location: Release 2 and 3 Internal

Function
UNSET removes the specified local environment variable (see SET com
mand for definition of a local environment variable). If no variable is
specified, UNSET merely lists the current local environment variables and
their contents.

Release 2 and 3 Format
UNSET [name]

Explanation of Parameters and Keywords
[name] The name of the local environment variable to remove. If no
name is specified, the command lists the current local environment vari
ables and their contents.

UNSETENV Command
Location: Release 2 and 3 Internal

Function
UNSETENV removes the specified global environment variable (see
SETENV command for definition of a local environment variable). This in
effect deletes the named file from the ENV: directory. If no variable is
specified, UNSETENV merely lists the current global environment vari
ables.

Release 2 and 3 Format
UNSETENV [name J

313

UNSETENV

Explanation of Parameters and Keywords
[name] The name of the global environment variable to remove. If no
name is specified, the command lists all of the global environment vari
ables.

VERSION Command
Location: 1.3 and Release 2 and 3 C:

Function
Displays the internal version number of the Kickstart and Workbench disks
used to start the computer. This provides a CLI equivalent of the Version
selection on the Workbench's Special menu. The internal version numbers
give much more precise information about which release is in use than a
mere 1.3 or 2.0 identifier. Programs that open one or more operating
system libraries may specify the release required, so that the program
doesn't try to use certain features not available with earlier versions of the
system. With the first 1.3 release, the VERSION command returns the
following information:

Kic~start version 34.5 Workbench version 34.20
VERSION returns the following information about the first Release 2
release:

Kic~start version 37.175 Workbench version 37.64
As of Workbench 1.3, VERSION can be used to find the version and

revision number of any library or device. In Release 2 and 3, this capability
is expanded to include any command that contains a version string. These
capabilities also may be used to test for a particular version in a script file.

1.3 Format
VERSION libraryname or devicename versionnum revisionnum unitnum

Release 2 and 3 Format
VERSION [lihraryname or devicename or filename] version_num
revision_num unicnum [FILE] [INTERNAL] [RES] [FULL]

Explanation of Parameters and Keywords
lihraryname or devicename or filename This optional parameter can be
used to specify the library or device whose version you wish to check. A

314

VERSION

library name ends in the letters ".library" (such as "graphics.library"), while
a device name ends in the letters ".device" (like "trackdisk.device"). With
Release 2 and 3, you also may specify the name of a program file, since
many programs contain a version string. If you do not specify a library or
device name, VERSION returns the version number of Kickstart and
Workbench.

unicnum When checking the version number of a device, an optional
unit number may be specified if the device has more than one unit.

version_num
reV1SlOn_num These optional parameters may be used to verify that the
version number (or revision number) is greater than the number specified.
If the version number (and, optionally, revision number) is greater than or
equal to the one specified, the command returns a code of zero. Otherwise,
it returns a code of 5 (WARN).

[FILE] When this option is used, VERSION will treat the library or
device name specified as a file.

[INTERNAL 1 This option allows you to find the version number of an
Internal command.

[RES] This option allows you to find the version number of a resident
command.

[FULL] The FULL option causes VERSION to print out the entire
version string, including the date.

Examples
1. Display information about the Kickstart and Workbench disks used to
start the computer:

VEPSION

2. In a script, check to see if the version of the graphics library is greater
than or equal to 37.35. Print a warning message if it isn't.

VEPSION >NIL: graphics .1_ ibrary VEPSION=37 REVISION=35

IF WARN

ECHO "G~aphics library version below 37.35"

ENDIF

315

WAIT

WAIT Command
Location: 1.3 and Release 2 and 3: C:

Function
WAlT can be used to put a task in a state of suspended animation for a
user-definable period of time or until a specified time of day. WAIT can be
used in command sequence files or in conjunction with a RUN command.

When WAlT is encountered by the system, the task sits in a seeming
ly idle state for the specified period of time and then continues with the
next command. Sending a BREAK to a W AlTing task causes the WAlT to
conclude.

Format
WAIT [nIlSEC or SECS] [MIN or MINS] [UNTIL time]

Explanation of Parameters and Keywords
[nl[SEC or SECS] [MIN or MINSl The amount of time, in minutes or
seconds, that the system will wait. If n is omitted and the SEC or MIN
keyword is specified, n defaults to one (1). Using the SEC or SECS key
word tells AmigaDOS to wait n seconds, while using MIN or MINS causes
the CLI task to wait n minutes before continuing. SEC/SECS and MINI
MINS keywords are optional. If they're omitted, the default unit of time is
seconds.

[UNTIL time] The time of day until which the current process will wait
before continuing. If time is specified, the UNTIL keyword is required:
time must be stated in the format HH:MM, where HH and MM are the hour
and minute of the day in military (24-hour) time. If UNTIL time is used, the
system will "wake up" sometime between HH:MM:OO and HH:MM:59.

Examples

1. Wait for one second:

WAIT

2. Wait for one minute:

WAIT MIN

3. Wait for three minutes:

WAIT 3 MIN

316

WHICH

or

WAIT 180

4. Wait until 10:15 a.m.:

WAIT UNTIL 10:15

5. Set up a background process using the RUN command that will wait
until 11 :00 p.m. and then copy all the files in a directory called documents
to a directory on dfl: called backupdir:

RUN WAIT UNTIL 23:00 +

COpy :documents/#? to df1:backupdir

WHICH Command
Location: 1.3 and Release 2 and 3 C:

Function
The WHICH command, introduced in Workbench 1.3, can be used to
display the path for a given command. The command in question must be
on the resident list, or in the current directory or search path. If there is
more than one version of the command available to AmigaDOS, this
command will tell you WHICH version will be found first.

1.3 Format
WHICH filename [NORES or RES]

Release 2 and 3 Format
WHICH filename [NORES or RES] [ALL]

Explanation of Parameters and Keywords
filename The name of the file or directory or logical device to find.
WHICH searches in the resident list, the current directory, and the search
path. If a directory or logical device is specified, the ASSIGN list is also
checked.

[NORES or RES] If the NORES option is selected, the resident list is
not checked for the command. If the RES option is selected, only the
resident list is checked.

317

WHICH

[ALL] The ALL option causes the command to search all of the paths,
as well as internal and resident lists. This should reveal all of the copies of a
particular command.

Example
1. Display the directory in which the Setmap program is stored. Don't
check the resident list:

2. Display the directory to which the logical device WP: is ASSIGNed:

~\lHICH WP:

WHY Command
Location: c:

Function

318

WHY can be used to obtain additional information about failing com
mands. AmigaDOS is relatively friendly compared with most other com
puters' disk operating systems. Most DOSs will give no error messages or,
at best, minimal messages when a command fails. Even when an error
message is displayed, it's often a cryptic numeric which sends you scurry
ing for the appendix of a DOS manual. When AmigaDOS runs into a
problem, it will usually display a message telling you that the command
failed, an English language description of the problem or a requester box
telling you what needs to be done. Issuing a WHY immediately after a
command failure can provide more detailed information on the reason for
the failure.

In some instances, WHY will indicate a numeric return code as the
reason for the failure. When this happens, the FAULT command can be
used to investigate the error code.

WHY can provide meaningful information only if the previous
command fails with a nonzero return code. A WHY issued after a success
ful command, or after a failed command which has already given you all
information available, results in the message The last command did not set
a return code.

Format
WHY

Explanation of Parameters and Keywords
None

Example

WHY

A WHY command is issued after an EXECUTE command fails to get more
information about the failure:

l>EXECUTE nowherefile
EXECUTE: Can't open nowherefile
1>WHY

Last command failed because object file not found

319

Appendix A

Files On the Workbench Disk

The unassuming Workbench disk you received with your Amiga holds a score of
directories which contain well over a hundred different files. This appendix will
help you get a handle on what files these directories contain, and the purpose of
these files.

As you look at a directory listings of your Workbench disk, you' 11 notice
that a number have names ending in the characters .info. These files are used by
the Workbench to store the information needed to display icons for the program
files (tools), data files (projects), directories (drawers), trashcan, and disks. Thus,
Disk. info contains information needed to display the disk icon on the Workbench
itself, System. info contains icon information for the System drawer, and so on.

You may also notice that prior to Release 2, each directory for which there
is an icon also contains a file named .icon. These files contain information about
the other icon files in that directory. In general, all .icon files are used only by
the Workbench and may be removed if you don't plan to use the Workbench
environment.

The files on the Workbench disk are grouped together into a number of
directories.

Workbench Directories
Trashcan
The Trashcan directory is used as a temporary holding area for files whose icons
are moved to the trashcan icon on the Workbench. When a file named
Program file is moved to the Trashcan, it's actually renamed Trashcanl
Programfile, as is its associated icon file. When you select Empty Trash from the
Workbench, the contents of this directory are deleted. The Trashcan directory
starts out empty, except for the .info file which is used to hold information about
the icon files moved to this directory. Although you cannot delete this directory
from the Workbench, you can delete it by using the eLI command:

DELETE SYS:Trash#? ALL

320

FILES ON THE WORKBENCH DISK

c
Holds all CLI command programs. Whenever you issue a command to the CLI,
AmigaDOS first looks in the current directory for a filename matching the first
word of the command line. If it doesn't find the command in the current directo
ry, it then searches the C: device directory. If you primarily use the Workbench
interface, and wish to free up some space on your Workbench disk, you can
delete all the commands here, except for the ones named in the s:startup-se
quence file. These include ADDBUFFERS, BINDDRIVERS, COPY,
MAKEDIR, ASSIGN, EXECUTE, RESIDENT, MOUNT, ECHO and a few
more. Since these vary depending on the Workbench version, check your startup
sequence file to see which of these commands are used.

Demos
For AmigaOOS 1.2 and earlier. Contains three graphics demonstration programs,
which merely open windows onto which dots, boxes, and lines are drawn. This
whole drawer can be discarded to make more room on the disk.

System
Contains several system utilities programs, some of which are Workbench
equivalents of CLI command programs like NEWCLI, DISKCOPY, and FOR
MAT. Although most of these programs are useful enough to keep around, there
are only a few which you absolutely must keep. DISKCOPY, FASTMEMFIRST,
and SETMAP are used by the system, and must not be moved or deleted.

AmigaDOS looks for its own library functions in this file. These are extensions
to AmigaOOS itself, such as the Ram-Handler file which controls the RAM:
disk. Most should not be deleted, and a few, like the Disk-Validator and Port
Handler are absolutely essential.

devs
Contains device drivers for the various devices which the Amiga uses. When a
program wants to open a device, it calls the system routine OpenDevice, which
looks in this directory for the device driver if it's not already been loaded.

Some of the Amiga devices are discussed in Chapter 3-the serial device,
the parallel device, and the printer device. The printer device uses printer drivers
contained in the subdirectory printers. These files provide specific information
about the command codes that the named printers use. You select the printer

321

FILES ON THE WORKBENCH DISK

driver that you wish to use in the Change Printer section of the Preferences
program. In addition to the printers named, there is a generic printer driver which
performs only minimal translations. You can select this driver from Preferences
by choosing Custom and typing in the name generic in the space marked Custom
Printer Name.

The devs directory also contains drivers for devices which the CLI com
mands do not use directly, like the narrator. device (speech synthesizer) and the
clipboard. device. Finally, it contains the system-configuration file that holds the
preference settings you save from the Preferences program. About the only thing
you may want to delete from this drawer are drivers for printers that you don't
use (later Workbench versions store the printer drivers on the Extras disk, and
you must install your own printer drivers).

In versions 2.1 and higher, this directory also contains a DOSDrivers
drawer, which is used to MOUNT additional devices automatically. Release 3
adds a "datatypes" drawer to facilitate the object-oriented scheme for dealing
with different types of sound, picture, and text data used by the MultiView
program.

S

Used to hold command sequence files (batch files). When the EXECUTE
command is told to execute a sequence file, it first looks in the current directory.
If it doesn't find it, it tries the directory to which the logical device name S: has
been assigned. The most important file in this directory on the Workbench disk is
called startup-sequence. This batch file is automatically loaded and run when the
Workbench disk is inserted, and the script it contains causes AmigaDOS to load
and run the Workbench program. By modifying this file, you can perform
additional tasks at boot time or skip loading the Workbench entirely when you
boot up. Other files such as DPAT, SPAT, and PCD may be deleted if you don't
use these scripts, but they are small enough so that you may as well keep them.

t
Starts out empty, but is used by some programs (such as the system editors) to
hold temporary work files. If you get tight on disk space, you may want to delete
the contents of this directory.

fonts
Contains the files for the various text fonts that the Amiga uses. When a program
wants to open a new font, it makes a call to the operating system routine
OpenFonts. OpenFonts checks to see if the font is already loaded into memory.

322

FILES ON THE WORKBENCH DISK

If not, the routine tries to find a disk file containing the new font in this directory.
This directory contains a file for each font, the name of which ends in .font, for
example, ruby.font. This contains information about the font, such as the type
sizes available. In addition, the fonts directory contains a subdirectory for each
font, which contains an image data file for each size of the typeface, such as 12
(dots high) or 8 (dots high). All of the files in the fonts directory may be deleted
if you do not use any of the disk-loaded fonts in your graphics programs. Note
also that the Release 2 Workbench disk may not have any fonts loaded, as it uses
a separate FONTS disk.

libs
Holds the system library files. These are used for operating system extensions
implemented as a library of functions. Libraries are used to implement such
functions as text-to-speech conversion (the translator. library file), the loading
and unloading of disk-based text fonts (disk(ont.library), certain aspects of the
Workbench (icon.library and info.library), single- and double-precision floating
point math functions (mathieeedoubbas.library and mathieeesingbas.library),
and transcendental math functions (mathtrans.library). Whenever a call is made
to the OpenLibrary routine, the operating system looks in this directory for the
library file if the library is not already memory resident. Generally, all of the
math files may be safely deleted, as can the translator library if none of your
programs use synthesized speech.

Empty
Just what the name implies. The only file it contains is the .icon file needed to
keep track of other icon files which may be added later. Empty is needed because
the pre-2.0 Workbench does not have the equivalent of a MAKEDIR command.
The only way to create a new directory from the Workbench is to copy the
Empty directory. When you do this, the new directory is named Copy of Empty,
and you must then use the Rename menu option to give the directory its chosen
name. The Release 2 Workbench has a "New Drawer" menu option that makes
the Empty drawer unnecessary.

Utilities
Contains small programs that perform tasks like displaying and printing text
files, and displaying and printing graphics files. This whole drawer may be safely
deleted if you don't use the programs in it.

323

FILES ON THE WORKBENCH DISK

Expansion
For AmigaOos 1.2 and higher. Used to store optional device drivers like those
required for the Bridgeboard, or the very first Amiga hard drive controller. If this
drawer is empty, you can safely delete it.

Prefs
For AmigaOOS 1.3 and higher. Holds the 1.3 Preferences program or the Re
lease 2 preference editor programs. Once you have set you preferences, you can
delete the preference program(s), but don't delete the directory itself.

Wbstartup
For AmigaOOS Release 2 and higher. A new feature that added to Release 2

. enables the user to start some program automatically at boot-up time, just by
dragging their icons into this drawer.

Monitors
For AmigaOOS Release 2.0 only. This drawer is used in the initial 2.0 scheme to
hold the monitor description files. To add a monitor description (which lets the
system know whether you have a PAL, NTSC, or MUL TISYNC monitor), you
drag the proper icon from the MonitorStore drawer on the Extras disk to the
Monitors drawer on the Workbench. In Release 2.1 and higher, the Monitors
drawer is moved into the OEVS drawer, and the MonitorStore drawer becomes
the Monitors drawer in the Storage drawer.

Storage
For AmigaOOS 2.1 and higher only. This drawer contains the same sub-drawers
as the OEVS drawer (OOSOrivers, KeyMaps, Monitors and Printers), and is
used to store device drivers, keyboard mapping files, monitor descriptions, and
printer drivers that aren't currently in use. Any of these "extra" files may be
safely deleted.

Classes
Workbench 3 includes a Classes drawer which contains the operating system
programs that provide a standard system of access to various types of picture,
sound, and text data files, as well as some new system gadgets.

324

Appendix B

AmigaDOS Error Messages

Eventually. you'll see an AmigaDOS error message. Just how intelligible that
message is depends in part upon the version of AmigaDOS you are using.
Generally, the more recent the version, the more helpful the error message.

The code numbers and short messages listed below show what appears
when you use the FAULT or WHY command. A brief explanation of the cause
(and cure) or the situation complained of in the message follows. Where there are
significant variations of the message between DOS versions, both versions are
given. Where an extra word or two appears in some versions and not in others,
those words are enclosed in parentheses.

103: insufficient free store (1.3)
not enough memory available (2.0 and higher)

There's not enough contiguous free memory available to run the program. You
may have too many other programs already running. in which case you may be
able to reclaim enough memory to mn the program by closing any program that
is running, but that you aren't actively using. Another possible cause may be
memory fragmentation. This condition may arise after you have run a few
program-you have enough memory, but it has been broken down into hunks
that are too small to use by programs that have taken a bit of memory here, and a
bit there. The only way to un-fragment is to reboot the system and try again. If
you get this message frequently, it may be a sign that you don't have enough
memory installed for the the type of operation you want, in which case you
should consider buying some expansion memory.

I 14: bad template (2.0 and higher)
The arguments (the additional items of information after the command name)
that you've specified are incorrect or do not apply to that command. For a quick
check of the argument template for any AmigaDOS command, type a space and
question mark (7) immediately following the command and hit RETURN. See

325

ERROR MESSAGES

the "AmigaDOS Command Reference" for complete information on the proper
format for all of the commands.

I I 5: bad number (2.0)
The command expects you to supply a number, but the group of characters that
occupies the space where the number should be cannot be interpreted as a
number. Check the command template and make sure to put the number where it
should be.

I 16: required argument missing (2.0)
This command requires an additional item of information which you have left
out. Check to make sure what arguments are required.

117: value after keyword missing (2.0)
Some of the newer commands include optional keywords that require a value in
addition to the keyword, sometimes appearing after an "equals" sign. For exam
ple, the LFORMAT option of the list command requires a text string (such as
LIST LFORMAT = "%S" or just LIST LFORMAT "%S"). If you include the
keyword, you must also include the value, whether or not you use the equals
sign.

I 18: wrong number of arguments (2.0)
You have specified too many or too few items of information. For example,
"FORMAT dfO: dfl :" fails because you can only specify one drive at a time to
format.

I 19: unmatched quotes (2.0)
Commands that include quotes may require that you include a beginning quote
mark for every end quote, and vice versa. Check to make sure that your quote
marks come in pairs.

120: argument line invalid or too long (1.3 and 2.0)
The arguments (the additional items of information after the command name)
that you've specified are too long, or include invalid characters. For example, the
command LIST "RAM:TEST is invalid, because the directory name starts with a
quote mark, but doesn't end with one. For a quick check of the argument tem
plate for any AmigaDOS command type a space and question mark (?) immedi
ately following the command and hit RETURN. See the "AmigaDOS Command
Reference" for complete information on the proper format for all of the com
mands.

326

ERROR MESSAGES

121: file is not an object module (1.3)
file is not executable (2.0)

The file you've attempted to run is not a valid program file. If a file named
Picture contains graphic information, for example, you cannot type the command
Picture or RUN Picture and expect to see the picture, because the file contains
only the graphic information itself, not the program required to display that
information. To show the picture, you would need a command like DISPLAY
Picture, where DISPLAY is a program that displays picture files. Another exam
ple is AmigaDOS command sequence files (scripts), which are text files, not
binary program files. Use the EXECUTE command to start up a command
sequence file.

202: object (is) in use (1.3 and 2.0)
The directory or file specified as an argument in the invoked AmigaDOS com
mand is being used by another active task. For example, if you CD to a certain
directory, making it the current directory of a Shell window, and then try to
delete that directory, AmigaDOS won't let you do it, because the Shell is using
that directory. You must wait unti I the task using the file or directory has freed
the object (in the example above, you could just CD to a different directory),
then try again.

203: object already exists (1.3 and 2.0)
You've attempted to create a directory or file that already exists. Since
AmigaDOS is case-insensitive, you would get this message is you tried to create
a directory named STUFF, for example, if you already had a directory named
stuff in the same place. The solution is to rename or delete the existing object if
you wish to use the specified name for a new file or directory.

204: directory not found (1.3 and 2.0)
You've referred to a directory which does not exist. Check the complete path
name and spelling of the specified directory. LIST and DIR may be used to get a
complete listing of all the directories on a disk. See the "AmigaDOS Command
Reference" sections on the LIST and DIR commands for complete information.

205: object not found (1.3 and 2.0)
You've referred to a file or device which does not exist. Check the spelling of the
specified object-you may have typed LIST Fed instead of LIST Fred. LIST and
DIR may be used to get a complete listing of all the files on a disk. The ASSIGN

327

ERROR MESSAGES

command can be used to check on the name of all logical and physical devices
known to the system. See the "AmigaOOS Command Reference" sections on the
LIST, DIR. and ASSIGN commands for complete information.

206: invalid window description (1.3 and 2.0)
You've attempted to open a new window on the screen with invalid width,
height, or position, or you've specified a physical device which does not support
display windows (for instance, SER: or PAR:).

210: stream name component invalid (1.3)
object name invalid (2.0)

The filename you've specified contains one or more invalid characters (such
control characters) or is longer than 30 characters.

212: object (is) not of required type (1.3 and 2.0)
The type of the object you've specified is incompatible with the AmigaDOS
command. An example of this is attempting an operation on a file that can only
be performed on a directory, or vice versa. See the "AmigaDOS Command
Reference" for complete information on the command and its options.

213: disk not validated (1.3 and 2.0)
An error has occurred during the validation of a disk. The disk may be bad or the
validation process was interrupted before it was completed. If the disk was in
use, try copying all of the existing information on it to another disk. You may
also be able to salvage the information using a program like the shareware
DiskSalv or the commercial program Quarterback Tools. You cannot write to an
unvalidated disk.

214: disk (is) write protected (1.3 and 2.0)
You've attempted to write to a disk whose write-protection tab is in the write
protected position. If you're sure you want to write to the disk, slide the black
plastic write-protect tab so that it completely covers the smail, square cut-out.

215: rename across devices attempted (1.3 and 2.0)
You've specified different devices in the FROM and TO (or AS) arguments of
the RENAME command. Both arguments must reside on the same device. See
the "AmigaOOS Command Reference" section on the RENAME command for
further information.

328

ERROR MESSAGES

216: directory not empty (1.3 and 2.0)
You've attempted to DELETE a directory that's not empty. You can force the
deletion to occur by adding the ALL keyword to the DELETE command. See the
"AmigaDOS Command Reference" section on the DELETE command for
further information.

218: device (or volume) not mounted (1.3 and 2.0)
You've referenced a disk volume that isn't currently in any of the disk dri ves.
Check the name specified, or locate the desired volume and insert it in one of the
system's drives, then try again.

220: comment too big (1.3)
comment is too long (2.0)

You've specified a comment which exceeds 80 characters in conjunction with
the FILENOTE command. Try again with a shortened version of the comment.

221: disk (is) full (1.3 and 2.0)
The disk that you've attempted to write to does not have enough free space to
complete the specified command. Free up enough space by deleting any unneed
ed files and/or directories, or use another disk.

222: file (object) is protected
from deletion (1.3 and 2.0)

You've attempted to delete a file which has been protected from being deleted by
the PROTECT command. The status of a file's protection flags may be examined
using the LIST command. See the "AmigaDOS Command Reference" sections
on the PROTECT and LIST commands for complete information.

223: file is write protected (1.3 and 2.0)
You've attempted to write to a file which has been protected from being written
to by the PROTECT command. The status of a file's protection flags may be
examined using the LIST command. See the "AmigaDOS Command Reference"
sections on the PROTECT and LIST commands for complete information.

224: file is protected from reading (1.3 and 2.0)
You've attempted to read a file which has been protected from being read by the
PROTECT command. The status of a file's protection flags may be examined

329

ERROR MESSAGES

using the LIST command. See the "AmigaDOS Command Reference" sections
on the PROTECT and LIST commands for complete information.

225: not a (valid) DOS disk (1.3 and 2.0)
You've inserted a disk that is not an AmigaDOS format disk into one of the
system's drives. If you are using CrossDOS to read an IBM disk, you will get
this message whether you've inserted either an IBM or Amiga format disk, since
an IBM disk will be invalid to the Amiga device (dfO:) while an Amiga disk will
be invalid to the IBM device (pcO:)

226: no disk in drive (1.3 and 2.0)
You've referenced a disk drive which does not contain a disk. Insert an
AmigaDOS format disk in the specified drive to proceed.

330

Index

ADDBUFFERS command 173-175
ADDDATATYPES command 175-176
ALIAS command 17, 176-177
aliases

creating 17, 176-177
listing 17
removing

apostrophe (')
AREXX 113

17. 177, 312-313
49. 169

adding requester to 283
and ED 132-133

arguments 119, 171-172, 325. 326
ASK command 101, 112, 177-178
ASSIG],; command 66. 76. 178-183

options for Release 2 74-75
asterisk (*) 47, 166

as OLltput device 64
AUX:. See devices
AV AIL command 112. 184-185

back apostrophe. See back tick
back tick lR-19, 273
backups

incremental 36
batch files 86
BINDDRIVERS command 54, 185-186
BRA. See directives
BREAK command 15, 112. 186-187

carriage returns

eliminating during printing 60
CD command 187-189
CHANGETASKPRI command lR9-190
characters

alternate 12
CLI 8-27

and Workbench 3
editing commands 9-12
entering commands in 9
getting to 4-5
listing current tasks and command programs

in 26
opening

multiple windows in 22
with CLI Workbench disk 5-7

pausing and restarting 15
running programs from 20
terminating output in 15
windows

changing from inactive to active 23
changing size of 23
closing 26
determining active 23
options 24
titling 24

CLI commands
commonly used in scripts lI2-113
copying to RAM 69, 91
making resident 70

command history buffer 14
command lines

condensing with aliases 17
editing 82, 164

with console 165, 166
with NEWCON 164, 165

retrieving previous 14
searching for 14

command sequence files 8, 86-113, 322
adding requester to 283
altering failure level threshold 224-225
commonly used commands in 112-1 \3
creating 87
debugging 110-1 II
executing 18, 108-110

from Workbench III
with EXECUTE 88

exiting 277-278
invoking 222-224
NEWCLI 25
passing instructions in 94-97
prompting 178
testing conditions with IF 97-104

command sequences
changing failure threshold 102
exiting 103

command templates 96. 170-172
commands

changing name with aliases 17
embedded 19
resident 22

331

INDEX

running without opening CLI window 26
comments 10, 329
communications ports 59-60

parallel 59
serial 59

CONCLIPcommand 190-191
console device 9-20

output window 23
console window 61

as input device 63-66
creating 61, 62
options 62-66
size of 61
sizing 61

COPY command 11, 45, 98, 191-195
CPU command 112, 196-198
Current Directory command 43
cursor commands

in extended mode
in immediate mode

dash (-) 50, 169
data types

adding 175-176
date and time

changing 297-298

119-120
116-117

setting 37, 198-201, 296-297
at startup 92-94

DATE command 37, 93, 198-201
dead keys 303
DEF. See directives
DELETE command 46, 201- 202
delimiters 119
devices 52-85

AUX: 80-81
console 60-{)6
drivers 321-322
fonts 71
for sending information to printer 60
LIBS: 71-73
logical 66-76

C: 69
CLIPS: 73
ENV: 73
L: 68
listing 68
S: 68
T: 74

NIL 65-{)6
PCO 56-59

332

PCI 56-59
PIPE: 79-80
PRT: 59-60
RAD: 76-78

deleting 77
formatting for FFS 78

RAW 64-{)5
SPEAK RI-82

voice options 81
standard input 83
standard output 83
SYS: 73

DIR command 32, 42, 202-204
directives

.BRA 97

.DEF 95

.DOL 97

.DOT 97

.KET 97

.KEY 94, 96
directories 40--45

assigning to logical device 74
changing 43--45
command 20
copying 191-195
creating 254-258
current 53

changing 187-189
default 42, 53
deleting 46, 201-202, 329
displaying 32
listing 202-204
moving 280-283
naming 41,327
renaming 45--46, 280--283
root 20, 40, 53

disk drives 52-57
internal 52
SCSI (Small Computer System Interface) 55

DISKCHANGE command 204-205
DISKCOPY command 5, 30, 84, 205-208, 230
DISKDOCTOR command 20R-209
disks

copying 205-208
corrupted

reconstructing 208-209
formatting 28-31, 30, 205, 229-231

floppy 30
naming 28

renaming 29
storage capacity of 29
validating 328

DJMount 55
DOL. See directives
dollar sign ($) 95, 10 1
DOT. See directives

ECHO command 87, 112, 209-211
ED 114-137

and AREXX 132-133
command script 130-133
console window 114
control commands

editing 115
copying text 123
cursor commands I 16-117
deleting

blocks of text 122
text in immediate mode I 17

exiting 114, 124
inserting

a blank line 117
a blank line in extended mode 120
blocks of text 122
text in extended mode 120
text in immediate mode 117

inserting text
from disk file 123

issuing commands to 115
loading files 124
margins 118
marking blocks of text 122
menus

customizing 127
repeating commands 125-127
saving files 123
scroll commands I 16
search and replace 120-121
setting

margins 124
tabs 125

starting 114
undoing 125
word-wrap 118

disabling 124
workspace

changing size of 114
EDcommand 212-213
EDIT 114, 138-163

INDEX

changing case of characters with 144
command groups 158
current line 13 8, 141

combining 156
operational window 143
operational window pointer 143
splitting 156
verifying 142

current line marker 138, 141
moving 145-146

current string alteration command 153
delete command qualifiers 155-156
deleting

characters with 144
text 154-155

displaying multiple lines of text in 146-147
exiting 141
find command qualifiers 151-152
global commands 157

canceling 157-158
inserting text 147-149
invoking 139
merging files 159-160
output buffer 138
pointing variants of replace command 154
renumbering lines 150
replace command qualifiers 154
replacing text 149-150, 153

with blanks 144
searching 150--151
searching and deleting 155
verification device 139

EDIT command 139,213-215
editor

starting 6
ELSE command 98, 112, 215-216
ENDCLI command 65, 216
ENDIF command 97, 112, 217
ENDSHELL command 217
ENDS KIP command 105, I 12, 218
environment variables 10 I

assigning text string 298
deleting text string 298
global

printing 232-233
removing 313-314

local
assigning text string 295
deleting text string 295

333

INDEX

printing 231-232
removing 313

error codes 225-226
error messages 318, 325-330

decoding 21
EVALcommand 112,218-221
EXECUTE

command 18, 68, 86, 88, 106, 108, 222-
224

extended mode commands 115, 118-133
assigning to function keys 129
cursor 119-120
issuing 118

FAILAT command 90, 102, 112, 224--225
Fast File System 30, 56, j 74
Fast Fonts program 227
FAULT command 21, 225-226, 325
FF command 227
FFS .. See Fast File System
file redirection 79
filenames 164--165, 328

characteristics of 32
FILENOTE command 34, 228-229
filenotes 34--40

characteristics of 34
copying 34
deleting 34

files 31-40
accessing in subdirectories 42
combining 46
comments 228-229

inserting 294
viewing 228

copying 45, 191-195
dating 37-40
debugging 250
deleting 46, 201-202
duplicating under another name 20
library 323
linking 258-259
listing 202-204
merging 244
naming 32-40, 327
nesting 222
outputting 310--312
protecting 35-40, 274--276, 329
renaming 45-46, 280--283
resident 287-290
size of 35

334

viewing contents of 31
fonts 322-323

changing 25, 299-300
FORMAT command 28, 229-231

GET command 112, 231-232
GETENV command 101, 113, 232-233

hard disks 54--57
booting from 54
partitioning 55
transferring programs from floppies 55

HDToolbox 55

ICONX 111
identification number 29
IF command 97, 112, 233-237
immediate command mode 115-118
immediate mode commands 115
INFO command 29, 237-240
input/output

redirection 83-85
input/output redirection 172
INSTALL command 30, 240--242
IPREFS command 242-243

JOIN command 46, 243-244

KET. See directives
KEY. See directives
key maps 302-303

LAB command 104, 112, 245-250
LlBS:. See devices
LlST command 32, 112, 245-250
LOADWB command 250--251
LOCK command 252-253

MAGTAPE command 253-254
MAKEDIR command 40, 254--258
MAKELlNK command 258-259
memory 325

fragmentation 325
printing report of system resources 184--185

MOUNT command 52, 54, 55, 76, 259-264

NEWCLl 22-23, 264--268
NEWCLl command 264--268, 268
NEWCON: 13, 61, 82-83, 164

editing command line with 13
NEWSHELL command 16, 18, 269-270
NIL. See devices

parentheses () 48, 167
PATH command 69, 270-272
pattern matching 47-51, 166--169

summary of characters 169-170
PCO. See devices
PC I. See devices
percentage sign (%) 49, 168
PIPE:. See devices
pixels 23
"PopCLI" 26
pound sign (#) 47, 167
preference settings 242-243
printers

diagnosing problems with 60
programs

assigning aliases to 75
resident 36
running from CLI 20

PROMPT command 16, 272-273
prompts

changing 23
PROTECT command 36, 239, 274-276
PRT:. See devices

qual ifiers 171
question mark (?) 47, 167

as command parameter 84
QUIT command 103, 277-278
quotation marks 326

RAD:. See devices
removing 279-280

RAM Disk 57-58
RAM disk

adding buffers to 173-175
capacity of 58
creating 57
using as CLI command directory 58
versus RAD: device 76--78

RAW. See devices
RELABEL command 29, 278-279
REMRAD command 77, 279-280
RENAME command 45-46, 280-283, 328
REQUESTCHOICE command 283-284
REQUESTFILE command 284-287
RESIDENT command 22, 36, 92, 287-290, 290
return codes 21, \0 I
Rigid Disk Blocks 55, 174
RUN command 26, 290-291

INDEX

SA Y command 87
screen

clearing 12
script files 86

running 68
using to build and execute other scripts \09

SEARCH command 295-296
semicolon (;) 164, 294
Semicolon (:) command 294
SET command 19, 112, 295-296
SETCLOCK command 37, 39, 296-297
SETDATE command 297-298
SETENV command 19, 101, 113, 298-299
SETFONT command 25, 299-300
SETKEYBOARDcommand 301-302
SETMAP command 90, 302-303
SETPATCH command 90, 304
Shell 16--20
SKIP command \04-105, 112, 305-306
SORT command 306-308
SPEAK:. See devices
special characters

use in EXECUTE directives 96
STACK command 21, 308-309
stack space 308-309

determining size of 22
increasing 21

startup-sequence files 89-94
STATUS command 26, 112, 309-310
subdirectories

accessing files in 42
creating 40

SupraMount 54
SYS:. See devices
system library files 71

tape backup 253
task number 23
text

copying 14
formatting II, 12
inserting 18
pasting 15
searching for 292-293
sorting 306-308

tilde H 50, 169
trailing spaces

in EDIT 143

335

INDEX

TYPE command 31, 112,310-312

UNALIAS command 18, 177. 312-313
UNSET command I 12. 295, .'\ 13
UNSETENV command 113, 299, 313-314
user-startup files 90

variables
ECHO 20
glohal 19
KICKST ART 20
local 19
PROCESS 20
RC 20
RESULT2 20
WORKBENCH 20

VERSION command 102, 112, 314-315
vertical line (I) 48, 168
virus programs

destroying 31
volume names 28, 53

changing 278-279

WAIT command 90, 316-317
WHICH command 317-318
WHY command 21. 318-319. 325
wildcard characters 47, 166

336

Workbench 3-4
and eLI 3
directorics

c 321
demos 321
devs 321-322
Empty 323
Expansion 324
fonts 322-323
J 321
Iibs 323
monitors 324
prefs 324
s 322
storage 324
systcm 321
t 322
Trashcan 320
util ilies 323
Wbstartup 324

disk 320-324
making copy of 5-6
screen

switching to 26
starting 250--251

write protection 252-253, 328

ABetter
Decision.

We're the Amiga store with a difference. Great pricing on

all Amiga products. Our goal is to supply Amiga users

with the best balance of price and support. You can rest

assure that whoever answers your call, owns an Amiga and

is familiar with all the most popular Amiga software and

accessories. This way we can help you make a better

purchase decision instead of wasting valuable time and

money returning products that didn't do what you expected.

So make the better decision - Finetastic Computers .

•• -Finetastic~: Computers
•

721 Washington Street, Norwood, MA 02062
Telephone: (617) 762-4166 •

Shareware
UNliMITED Whenever you're ready

to get serious with your
THE ULTIMATE

FILE TRANSFER
SERVICE AMIGA

Use your high speed modem and call • • •

900-933-0024
$1.39 first minute .39 cents each additional minute 2400 or 9600+ bps.

Must be 18 years or older or have parents permission.

Animations
Graphic Utilities
Demos
Fonts

New Users or Novices Call Our Free Practice Line:

(702) 386-2112
2400 Baud Only

Icons
Pointers
Printer Drivers
Games

Programming
Source Code
Business
Communications

Database
Educational
Sound
Amateur Radio

Fred Fish Disks! XXX Graphic Adult Files
We've Got 'Em All! Download Consent Form For Access

S - .. • M d Uprai-AA 0 eln \1.32 bis
The Ultimate Modem For Your AMIGA!

• 14.000/960017200/4800/2400/1200/300 bps data
• Up to 57.600 bps throughout with V.32 bis
• 9600 bps class 1 & 2 send/receive fax
• compatible with Group 3 fax machines
• Bell 103/212A & CCITIN.21N.22!V.22bisIV.23N.32!V.32 bisV.42N.42bis & MNP 2 - 5
• 100% compatible with industry standard "AT" commands and result codes
• extended error correction/data compression "AT" commands & result codes

~~r~~ $399 $289,: $110
Expl ... 12131/83 • 11

NDC Computers
(702) 386·8048
M-F 10AM - 6PM PST

~II111

~ TT.,.
= - • - --- - . - --

C1V~ u ~J....J ..L'Y
SOFTWARE TUTORIAL SERIES

The Buddy System for AmigaDOSTM is your personal guide
through the fundamentals and features of the Amiga® and
its operating system. Increase your productivity with an
online help system that gives you the information that you
want and need to know!

• Multitasking software gives help at the touch of a key
• Point & Click Hypertext interface interactively follows

your thinking process
• Topic index & search functions get you to important

information quickly
• Visual Demonstrations show you how to use various

functions andfeatures on your computer
• Amiga® Speech narration & captioning
• A Complete source of reference:

- Getting started with your Amiga system
- Beginner to advanced level tutorials

/""">-~;::-........_ - Professional tips and techniques
- Workbench ™ AND Shell techniques
- Online AmigaDOS™ & Arexx™ command reference
- Scripting, Mountlists & Startup-Sequences
- The Preference Editors and System Utilities
- Compatible with AmigaDOSTM releases 1.3 and 2.x

(upgrades will be made available for future releases)
- And much more!

"If you are a new Amiga User ... you can't afford to be without the Buddy System ...
If you are an experienced user, the Buddy System is still a valuable asset ... •

- Chuck Raudonis, Amazing Computing, Jan 1992

Also Ava. Hable [or: $49 95
PageStream ™ ea

DELU~EP ~I~TM IV* s:ggested RetaH
unagme 'expanded DPaint version available ($69.95)

I
j

Authorized
Amiga

Hardware
Specialists

68030 & 68040 ACCELERATORS • INTERNAL

& EXTERNAL DRIVE SYSTEMS. VIDEO TOASTER

SYSTEMS. A-B ROLL EDIT SYSTEMS COMPLETE

• CHIPS MEMORY AND MOTHER BOARD UP

GRADES. USA AND EUROPEAN SOFTWARE

• SALE AND SERVICE TECHNICIANS ON SITE

CALL 1-800 729-4361
G E N E S I S ELECTRONIC

SERVICES INC.

A CALIFORNIA CORPORATION

(714)361-7610. FAX(714)361-7629. 942CALLENEGOCIO,SANCLEMENTE,CA92673

Ami-Back is the solution of

choice for all your data

backup needs. Designed to

be both powerful and

flexible, Ami-Back gives you

complete control over the

backup process. There is

no other backup program for

the Amiga that can even

come close to offering the

features, ease of use, and

reliability of Ami-Back.

Thefastest hard disk backup programfor the Amiga

• "91 I-Recovery "Til mode recovers lost data without the
needfor disk utility programs

• Backs up to floppies, hd floppies, hard drives, and
SCSI tape cfrives and DAT arives.

• Backs up to a single AmigaDOS file or device

• Appends mUltiple backups to a single tape

• Compresses data to backup with no speed loss

• Includes a graphical scheduler for unattended backups

• Has Online Help just a mouse button click away

• Allows password protection of valuable data

• Supports AREXX

• Includes many more features

Tape Drive Offer!

This is an internal SCSI interface
streaming cartridge tape drive with
250 megabytes of storage capacity.
Data transfers at rates over 5 mb per
minute. The ABT -250 kit is
bundled with the Ami-Back backup
utility and one tape for $539.95
(without Ami-Back for only
$489.95. An external drive kit is
available for an additional $120.00)

Copyright e 1990, 1991, 1992
Moonlighter Software Development, Inc.
3208·C E. ColonjaJ Drive, Suite 204
Orlrmdo, Florida 32803
Phone: (407) 384·9484 FAX: (407) 384·9391

Programs & Programmers wanJed - Write Ul.

Order One Of The Many Programs Listed Below Or Request
A Free Catalog Of Our Complete AMIGA Program Selections
Catalogs Also Available For C64/C128 And IBM & Compatible

AMIGA PROGRAMS
GAMES

ARCADE GAMES #1 (GA-002)
FeaturesthegamesCYCLES; COSMO
ROIDS, MAZEMAN, STONE-AGE;
TRICLOPS; and 3-D BREAKOUT
WHEEL (GA-003)
Talking Wheel of Fortune game
HACK! (GA-006)
Adventure game features both tex1 and
graphic versions
MORIA (GA-011)
Role playing adventure, requires 1 Meg
GAME PACKAGE (GA-013)
Includes SLOT CAR arcade racing game;
ZERG fantasy role-playing game; MO
NOPOL Y board game
THE SIMPSONS GAME (GA-016)
1 or 2 player arcade, Help Bart and Lisa
make the daring & exciting escape from
Elementary School (joystick)
GAME ASSORTMENT (GA-018)
CLUE board game; AMIGA CRIBBAGE
card/board game; ROLL-ON 9 arcade
game; CHECKERS board game; OB
S ESS-O-MATIC clever tetris-type game
KINGDOM AT WAR (GA-019)
Strategy game requires 1 Meg
ARCADES & TRIVIA (GA-020)
DOWN HILLC HALLENGEskiing arcade;
HEAD GAMES arcade game; HOLLY
WOOD TRIVIA choose topics (joystick)
SHOOTEM'UP ARCADES (GA-024)
Features these arcade games
WOLFBANE; 109; and DEATH (joystick)
THE HOLY GRAIL (GA-030)
Self-Booting Tex1 adventure game

FRED FISH & TBAG DISKS

Fred Fish and TBag Disks Are Available

BUSINESS

THE CLERK (BU-001)
Complete Accounting Package for Small
Businesses, includes account receiv
ables, account payables, general led
ger and file cabinet
LEGAL FORMS (BU-002)
Ready-to-use legal forms to use with
your word processor

EDUCATION

EDUCATION PACKAGE (ED-002)
Includes SPELL.TEST enter spelling
words and take test; STATES QUIZ study
or test on states by spelling, capitals,
nicknames & more; MATH.TEST study
or test on addition, subtraction, multipli
cation, metrics, weights, measures &
more; YOUR BOOKS features book
maker and reader; ORBIT3D survive in
orbit game (joystick); PUSHOVERstrat
egy game; BLACKBOX logic game

UTILITIES

NIB (UT-002)
Precision disk copier/nippier requiring
2 drives
CLI TUTORIAL DISK (UT-OOS)
Learn the ins & outs of C LI
UTILITY DISK (UT-008)
AMCAT disk cataloger; FORMATTER;
DCOPY disk copier; MACGAG;
SLiDESHOW CONSTRUCTION KIT;
BOOTBLOCK GENERATOR; POWER
PACKER pack files; and ENVELOPE
PRINTER
MASTER VIRUS KILLER (UT-01S)
Detect & Destroy Viruses

HOME & HOBBIES

TAROT READER (HH-003)
Fortune Teller of Past, Present & Future
BIO-RHYTHMS (HH-006)
Computes & charts biorhythms

MUSIC

PERFECT SOUND EDITOR (MU-002)
Creates, Edits, Plays and Saves
GALLERY OF CHRISTMAS (MU-01 0)
Images, Sounds, Scenes and Music
CLASSICAL MUSIC (MU-021)
J.S.Bach's Prelude #2,3,4,5,6,9,10; E
Minor; and Peer Gynt Suite Selections

GRAPHICS

FONTS #1 (GR-003)
BLlTZFONTS faster output; AL TICON
separate icon images; SETFONT
changes font; and 40+ NEW FONTS
ACTION MOVIE MAKER (GR-012)
Present pictures, sounds & speech
BOOT SCROLL MAKER (GR-029)
Make your own scrolling tex1
PAINT PROGRAMS (GR-034)
ULTRA-PAINT; SIMPLE PAINT; PAT
TERN EDITOR; and MOVIE

ORDERING INFO
Shipping & Handling Charges are $3.50 per
order, Foreign Orders are $3.50 plus $1.00
per disk. Florida Residents add 6% Sales
Tax. Remit in U.S. Funds, Order By Disk #

Prices are per disk ordered:
1 109 $2.75 10 to 29 $2.50 301074 $2.25

75t099 $2.00 100+ $1.75

Send check or money order to:
DISKS O'PLENTY INC.

8362 PINES BLVD., SUITE 270-E
PEMBROKE PINES FL 33024

Check or Mone, Order
YMC Software

PO Box 326 Cambria Hts, NY 11411
NY Residents Add Sales Tu

..

	Binder1.pdf
	front-cover
	back-cover

